Lis	st of I	Eigures	í.	XV
Lis	st of T	Tables		xvii
Pr	eface			xix
Et	hical	consid	erations for this book	xxvii
1	The	ermod	ynamics and sociological fundamentals	1
			modynamic basics	1
		1.1.1	Interactions between matter	1
		1.1.2	Feynman diagram representation of interactions	5
		1.1.3	Basic parameters of thermodynamic	8
		1.1.4	Equilibrium thermodynamic and non-equilibrium	
			thermodynamic	12
		1.1.5	Linear approximations for nonlinear	
			nonequilibrium thermodynamic	14
		1.1.6	Van der Waals equation and phase transition	19
		1.1.7	Case study: Critical temperature of water	22
		1.1.8	Relationship between thermodynamic parameters	24

	10	T1	wine of an airle and	
	1.2		ries of sociology	25
		1.2.1	The influence of thermodynamic theory on the	
			development of sociology	25
			Levels of sociological research	29
	1.3	Coml	oining thermodynamic with sociological theory	32
		1.3.1	Limitations of applying the laws of thermodynamic	
			in society	32
		1.3.2	Quantification of social parameters	35
	Refe	erence	S	41
2			on processing and the formation of society	45
	2.1	Infor	mation and biological interaction	4 5
		2.1.1	What is information	45
		2.1.2	Information and cognition	49
		2.1.3	Case study: Bitcoin mining and energy consumption	52
		2.1.4	Information and interaction	54
	2.2	Neur	al networks and cognition	60
		2.2.1	A simple neural network model	60
		2.2.2	Neural network growth and cognition	62
		2.2.3	Asynchrony between physiological growth and	
			cognitive growth	64
		2.2.4	Division of cognitive development stages based on	
			artificial neural network brain model	64
	2.3	Intera	action between neural networks	67
		2.3.1	Information exchange between neural networks	
			from a thermodynamic perspective	67
		2.3.2	Cognition and interaction	71
		2.3.3	Two types of interactions	<i>7</i> 5
		2.3.4	Case study: Use Feynman diagram to represent the	
			spread of virus	77
	2.4	Cogn	ition and the formation of society	78
		2.4.1	A society based on the same cognition	78

		2.4.2	Three different social system structures	80
		2.4.3	Interaction between different societies	82
		2.4.4	Case study: Cultural conflict in schools	86
		2.4.5	Case study: Vietnam war	89
	Refe	erence	s	91
3	Teato	مد نده مد	no in the conial existence	93
<i>J</i>	3.1		ns in the social systems action between individuals	93
	0.1	3.1.1		93
		3.1.2	-	95
			Social interactions	95
			Gender interaction	97
			Case study: Gender flow in East Asian countries	98
		3.1.6	•	100
	3.2		ler nucleus in family atom	102
			Gender relations	102
		3.2.2	The formation of basic social members	106
		3.2.3	Case study: Dynamics of African lions	108
	3.3		ly atoms	110
		3.3.1	Kinship	110
			Formation of family atom	111
		3.3.3	Interaction between family atoms	115
	3.4	Intera	action between societies	117
		3.4.1	Nation and society	117
		3.4.2	Relatively independent social thermodynamic	
			system	117
		3.4.3	Case study: Disintegration of the Soviet Union	118
		3.4.4	Interaction between social thermodynamic systems	121
	3.5	Intera	action within different age groups	124
		3.5.1	Human cognitive growth and interaction	124
		3.5.2	Children interaction	127

		3.5.3	Case study: Academic differences of students in the		
			background of Chinese and Western cultures	129	
		3.5.4	Adult group interaction	131	
		3.5.5	Interaction of the elderly	133	
	Refe	erences	S	135	
4	Thermodynamic parameters of biological systems				
	4.1	4.1 Comparison of biological and thermodynamic systems			
		4.1.1	Energy input and output	137	
		4.1.2	Relationship between various thermodynamic		
			parameters	140	
		4.1.3	Information flow	142	
	4.2	Energ	gy production and consumption in biological systems	144	
		4.2.1	Levels of energy generation	144	
		4.2.2	Composition of social energy	146	
		4.2.3	Case study: Comparison of energy consumption		
			between dinosaur society and human society	149	
	4.3	Socia	l space	152	
		4.3.1	The volume of matter and biological social space	152	
		4.3.2	Case study: Different versions of the Internet		
			improve social space	157	
	4.4	Press	ure on biological systems	160	
		4.4.1	Composition of social pressure	160	
		4.4.2	Case study: Information force received by		
			customers on Black Friday	163	
	4.5	Temp	perature and entropy of biological systems	166	
		4.5.1	The meaning of social temperature and entropy	166	
		4.5.2	Case study: The relationship between climate		
			change and the development of social civilization	171	
	Refe	erence	s	176	
5	Basi	ic soci	al thermodynamic equations	179	
	5.1	Over	view	179	

		5.1.1	Fundamental laws of thermodynamic systems	179
		5.1.2	The applicability of the laws of thermodynamics	
			in social thermodynamic systems	181
	5.2	Equa	tion of state	183
		5.2.1	The PVT equation for social systems	183
		5.2.2	Estimation of parameters	185
		5.2.3	A few examples	190
		5.2.4	Case study: Social temperature of wolves and	
			population size limits	195
		5.2.5	Thermodynamic zeroth law and society	197
	5.3	The f	irst law of thermodynamics	199
		5.3.1	Energy conservation and internal energy	199
		5.3.2	Changes to internal energy due to work	201
		5.3.3	Thermal capacity and enthalpy	203
		5.3.4	Case study: The impact of Ukrainian wheat on Egypt	212
		5.3.5	Reversible and adiabatic processes	214
		5.3.6	Carnot cycle	220
		5.3.7	Case study: Holiday effect	222
	5.4	The s	econd law of thermodynamics	226
		5.4.1	The formulation of the second law of	
			thermodynamics	226
		5.4.2	Entropy	228
		5.4.3	Entropy increase of balanced system	232
		5.4.4	Free energy	234
	Refe	erence	s	235
6	Soci	ial the	rmodynamic phase transitions	237
	6.1	Chan	ges in the number of social individuals	237
		6.1.1	Social thermodynamic system with variable	
			number of individuals	237
			Variable particle number thermodynamic equations	
	6.2	Cond	litions for thermal equilibrium	244

		6.2.1	Criteria for entropy	244
		6.2.2	Free energy criterion	250
		6.2.3	Case study: The impact of industrialization on a	
			small town	253
	6.3	Phase	e equilibrium	263
		6.3.1	Phase diagram	263
		6.3.2	Three social states	265
		6.3.3	Critical temperature	267
		6.3.4	Actual isotherms	270
		6.3.5	Equilibrium phase transition	274
		6.3.6	Social thermodynamic system well below critical	
			temperature	276
		6.3.7	Case study: Critical temperature in Soviet society	279
	6.4	The i	mpact of information technology development on	
		socia	l thermodynamic parameters	285
		6.4.1	The role of information technology	285
		6.4.2	Information technology and changes in social	
			thermodynamic system status	286
		6.4.3	Case study: The impact of information technology	
			on traditional society	287
	Refe	erence	S	292
7	Soc	ial-ori	ented society	293
	7.1		origin of social-oriented society	293
		7.1.1	The effect of temperature on social types	293
		7.1.2	History	296
		7.1.3	Case study: Thermodynamic parameters of Hun	
			society	300
		7.1.4	Modern social-oriented society	306
		7.1.5	Case study: Thermodynamic parameters of	
			Ukraine before and after the annexation of Crimea	309
	7.2	Intera	action method	314
		7.2.1	Gender interaction in social-oriented society	314

		7.2.2	Social interaction in social-oriented society	316		
		7.2.3	Case study: The interaction of social-oriented			
			society from the perspective of classic literary works	319		
	7.3	The to	wo states and development of social-oriented society.			
		7.3.1	Gaseous state	320		
		7.3.2	Liquid state	321		
		7.3.3	Development of social-oriented society	322		
	Refe	erences	3	324		
8	Fam	ily-ori	iented society	325		
	8.1	•	rigin and development of family-oriented society	325		
		8.1.1	The influence of warm climate on the formation of			
			family-oriented society	325		
		8.1.2	Early family-oriented society	327		
		8.1.3	Case study: Hakka people in southern China	329		
		8.1.4	Modern family-oriented society	335		
		8.1.5	Case study: Thermodynamic parameters within a			
			family	336		
	8.2	Intera	ection	338		
		8.2.1	Interaction within the family	338		
		8.2.2	Social interaction	342		
			Calculation of thermodynamic parameters	345		
		8.2.4	Case study: Urban density comparison of Tokyo			
			and London	350		
	8.3		e states of family-oriented society	354		
			Gaseous family-oriented society	354		
			Liquid family-oriented society	356		
			Case study: Roma society in Europe	357		
			Solid family society	363		
	Refe	erences	3	365		
9	Bala	inced s	society	367		
	9.1	The o	rigin and development of balanced society	367		

	9.1.1	The family-oriented society of ancient Greece and	
		Rome	367
	9.1.2	The emergence of balanced society	368
	9.1.3	Diverse society	369
	9.1.4	Social changes in the Internet era	370
9.2	Intera	action of balanced society	372
	9.2.1	The interaction between social individuals and	
		family atoms	372
	9.2.2	Interaction between gender molecular and family	
		atom	373
9.3	The r	nature of interfaces between multiple societies	374
	9.3.1	Multiple types of social contacts	374
	9.3.2	Space energy region	375
	9.3.3	Case study: A quantitative analysis of the academic	
		differences of students from Chinese and Western	
		cultural Backgrounds	378
9.4		s of balanced society	383
	9.4.1	Gaseous balanced society	383
	9.4.2	Liquid balanced society	384
	9.4.3	Mixed state of balanced society	385
9.5	Clima	ate change and human social development	386
	9.5.1	Trends in climate change since the birth of the earth	386
	9.5.2	Energy generated by human activities	388
	9.5.3	Effects of heat generated by human society on the	
		atmosphere	392
	9.5.4	Greenhouse gas effects	393
	9.5.5	Social Thermodynamic Parameters of Global	
		Human Society	394
	9.5.6	Impact of climate change on human society	396
Refe	erence	S	404

Appendix I: Commonly used international system of units (SI) units	405
Appendix II: Constants	407
Appendix III: Parameters used in this book and their meaning	409
Appendix IV: Important formulas	411