HANSER

norbert HEIDERICH
wolfgang MEYER

TECHNISCHE
PROBLEME
LOSEN MIT C/C++

4

VON DER ANALYSE BIS
ZUR DOKUMENTATION
5., aktualisierte und erweiterte Auflage

Im Internet: Codebelsplele HANSER

Leseprobe

ZUu

Technische Probleme l6sen mit C/C++

von Norbert Heiderich und Wolfgang Meyer

Print-ISBN: 978-3-446-46823-8
E-Book-ISBN: 978-3-446-46896-2

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468238
sowie im Buchhandel

© Carl Hanser Verlag, Miinchen

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468238

Vorwort des
Herausgebers

Was konnen Sie mit diesem Buch lernen?

Wenn Sie mit diesem Lernbuch arbeiten, dann erwerben Sie umfassende Erkenntnisse, die
Sie zur Problemlosungsfahigkeit beim Programmieren mit der Hochsprache C/C++ fiihren.

Der Umfang dessen, was wir IThnen anbieten, orientiert sich an

= den Studienpldnen der Fachhochschulen fiir technische Studiengéinge,
® den Lehrplanen der Fachschulen fiir Technik,

= den Anforderungen der Programmierpraxis,

® dem Stand der einschlagigen, professionellen Softwareentwicklung.

Sie werden systematisch, schrittweise und an ausgewihlten Beispielen mit der Entwick-
lungsumgebung Visual C++ (VC++) von Microsoft vertraut gemacht.

Dabei gehen Sie folgenden Strukturelementen und Verfahrensweisen nach:
= Wie stellt sich die Entwicklungsumgebung dar?

= Welche grundlegenden Sprach- und Steuerungswerkzeuge gilt es kennenzulernen und an
einfachen Beispielen anzuwenden?

® Wie wird ein Problem strukturiert programmiert?
= Wie muss die Software dokumentiert und getestet werden?

= Was meint objektorientierte Programmierung?

Wer kann mit diesem Buch lernen?

Jeder, der

® sich weiterbilden mdochte,

® die Grundlagen der elektronischen Datenverarbeitung beherrscht,

= Kenntnisse in den Grundlagen der elementaren Mathematik besitzt,

® bereit ist, sich mit technischen, mathematischen und kommerziellen Fragestellungen
auseinanderzusetzen.

6 Vorwort des Herausgebers

Das konnen sein:

= Studenten an Fachhochschulen und Berufsakademien,

= Studenten an Fachschulen fiir Technik,

® Schiiler an beruflichen Gymnasien und Berufsoberschulen,

= Schiiler in der Assistentenausbildung,

® Meister, Facharbeiter und Gesellen wahrend und nach der Ausbildung,
= Umschiiler und Rehabilitanden,

® Teilnehmer an Fort- und Weiterbildungskursen,

= Autodidakten.

Wie konnen Sie mit diesem Buch lernen?

Ganz gleich, ob Sie mit diesem Buch in Hochschule, Schule, Betrieb, Lehrgang oder zu
Hause lernen, es wird Ihnen Freude machen!

Warum?

Ganz einfach, weil wir Thnen ein Buch empfehlen, das in seiner Gestaltung die Grund-
gesetze des menschlichen Lernens beachtet.

- Ein Lernbuch also! -

Sie setzen sich kapitelweise mit den Lehr-, Lerninhalten auseinander. Diese sind in {iber-
schaubaren Lernsequenzen schrittweise dargestellt. Die zunidchst verbal formulierten
Lehr-, Lerninhalte werden danach in die softwarespezifische Darstellung umgesetzt. An
ausgewahlten Beispielen konkretisiert und veranschaulichen die Autoren diese Lehr- bzw.
Lerninhalte.

- Also auch ein unterrichtsbegleitendes Lehr-/Lernbuch mit Beispielen! -

Fir das Suchen bestimmter Inhalte steht Thnen das Inhaltsverzeichnis am Anfang des
Buches zur Verfligung. Sachworter finden Sie am Ende des Buches. Biicher zur vertiefenden
und erweiterten Anwendung sind im Literaturverzeichnis zusammengestellt.

- Selbstverstdndlich mit Sachwortregister, Inhalts-und Literaturverzeichnis! -

Sicherlich werden Sie durch intensives Arbeiten mit diesem Buch Thre ,Bemerkungen zur
Sache“ unterbringen und es so zu Ihrem individuellen Arbeitsmittel ausweiten:

- So wird am Ende Ihr Buch entstanden sein! -

Moglich wurde dieses Buch fiir Sie durch die Bereitschaft der Autoren und die intensive
Unterstiitzung des Verlages mit seinen Mitarbeitern. Ihnen sollten wir herzlich danken.

Beim Lernen wiinsche ich Ihnen viel Freude und Erfolg!
Ihr Herausgeber
Manfred Mettke

Vorwort der Autoren

Die vierte Auflage war schon nach kurzer Zeit vergriffen. Das ist ein deutliches Indiz fiir die
zunehmende Digitalisierung unseres Alltags. Neben der alltdglichen digitalen Kommunika-
tion und der beruflichen wie privaten Nutzung des Internets riickt die Losung von Problem-
stellungen mit Hilfe der Programmierung immer mehr in den schulischen, studentischen
und beruflichen Fokus. C/C++ ist eine in der Wirtschaft sehr weit verbreitete, problemori-
entierte Programmiersprache. Das Erlernen anhand konkreter Problemstellungen ist eine
praxisorientierte Investition in die eigene berufliche Zukunft.

Der padagogische Ansatz so wenig Theorie wie nétig, so viel Praxis wie moglich kommt bei
den Leserinnen und Lesern offensichtlich gut an. Aber nichtsdestotrotz ist ein theoretischer
Hintergrund fiir das Schreiben guter Programme weiterhin unverzichtbar.

Wie in den bisherigen Auflagen legen wir als Autoren besonderen Wert auf die Problemana-
lyse, also auf die theoretische Durchdringung der Aufgabenstellung, ohne die beispiels-
weise ein spaterer Programmtest nicht moglich ware. Syntaktische Fehler zeigt der Compi-
ler an, fiir die logischen Fehler ist allein der Programmierer verantwortlich. Die Vorstufe zur
Umsetzung der Problemanalyse in ein C/C++-Programm ist das Struktogramm nach Nassi-
Shneiderman, das sich in der strukturierten Programmierung gegeniiber dem Programm-
ablaufplan durchgesetzt hat und auch in diesem Buch durchgingig Verwendung findet.
Zusitzlich zu den umfangreichen Aufgaben, Beispielen und den nach Schwierigkeitsgrad
gestaffelten Problemstellungen haben wir in die fiinfte Auflage die Monte-Carlo-Methode,
die Volumenberechnung von Rotationskdrpern und einen Primzahlalgorithmus aufgenom-
men, wie er in vielen Sicherungsverfahren digitaler Codierung verwendet wird. Und zur
Steigerung der Motivation haben wir schon weit vorne ,Ein erstes Programm in C* einge-
baut, denn wir wissen, dass nichts motivierender ist als der Erfolg.

Wir wiinschen Thnen also viel Freude und gute Ergebnisse beim Programmieren mit C/C++!
Norbert Heiderich

Wolfgang Meyer

Inhalt

Einleitung 15
1 Systematik der Problemlosung 19
1.1 Phasen der Programmentwicklung i, 19

1.2 Software-LebenszyKIUSt 21

1.3 Software-Entwicklungsverfahren 23

2 Erste Gehversuche mitC/C++ 28
2.1 Warum gerade C/CH+? ... i 28

2.2 Compiler und Interpretert 30

2.3 Ubersetzen eines C/C++Programimscouoeeeereneneenan.. 32

2.4 Programmstartt e 33

3 Die Entwicklungsumgebung Visual C++ 34
3.1 Installation von VC++ ..o 34

3.2 Starten von VC++ oo e 36

3.3 Erstellen eines neuen Projektes 38

3.3.1 Win32-Projektet 39

3.3.1.1 Variante 1 - VC++ leistet Vorarbeit 40

3.3.1.2 Variante 2 - leeres Projekt 41

3.3.2 CLR-Projekteouuuniiiiiiiiiii i 44

3.4 Ubersetzen eines eigenen Programmscoovereneneennn.. 46

3.5 Ausfiihren eines eigenen Programmso, 49

3.6 Paradigmen der Projektorganisation 49

3.7 Ein erstes Programm in C/C++ i 51

4 Grundlegende Sprach- und Steuerungselemente 54
4.1 KOMMENLATE . ..ottt ettt et e e e 54

4.2 Datentypen und Variablen 55

4.2.1 Variablennamencoouiiiiiiiiiiiiiii 56

4.2.2 Ganzzahlige Variablen i 56

4.2.3 FlieBkommazahlen i i 58

424 ZeiChen e 59

10

Inhalt

43
44

4.5
4.6

4.7

425 Feldert e 60
4.2.5.1 Eindimensionale Felder 60
4.2.5.2 Mehrdimensionale Felder 61
4.2.5.3 Zugriff auf die Elemente eines Feldes 63
4.2.5.4 Startwertzuweisung fir ein- und

mehrdimensionale Arraysccoiiiiiaann. 65

4.2.6 Zeichenkettenoiuuiiiiiniiii i, 67

Konstantenoieiiiiii i e 68

(03753 210) o PP 69

4.4.1 Vorzeichenoperatorenoeuunieeunnneennneennnnenn. 69

4.4.2 Arithmetische Operatorenc.cooiiiiiiiennnna... 69
4421 Addition + ... 69
4.4.2.2 Subtraktion — ... 69
4.4.2.3 Multiplikation * 70
4424 DiviSION/ oot e 70
4425 Modulo% «ooviee e 70
4.4.2.6 ZUWEISUNZ = ..ottt 70
4.4.2.7 Kombinierte Zuweisungenc.cooeiiao... 71
4.4.2.8 Inkrementierung ++t 71
4.4.2.9 Dekrementierung —oiiiiiiiiiiiiiiaann. 72

4.4.3 VergleichSoperatorenc.c..ooeeeuinienneennnnenn. 72
4.4.3.1 Gleichheit== i 72
4.43.2 Ungleichheit!= i i 72
4.4.3.3 Kleiner < ... e 73
4434 GroBer > ... 73
4435 Kleinergleich<=..... 73
4.4.3.6 GroBergleich>= 74

4.4.4 Logische Operatorencoeeuuneeinnneennnnennnnenn. 74
4.4.4.1 Logisches NICHT! 74
4.4.4.2 LogischesUND &&coouiiiiiiiiiiiiniinna.. 74
4.4.4.3 LogischesODER ||ooiiiiiiiiiiiiiii i, 74

4.4.5 Typumwandlungsoperatorc.c.ooeeeuuneennnnenn. 75

4.4.6 Speicherberechnungsoperatorccoouuuninnnneenn. 75

4.4.7 BedingungSoperatorceeeuieiiiniiiinreiiaeann 76

4.4.8 Indizierungsoperatorc..iiiiiiiiiiiiiiiiaean. 77

4.4.9 Klammerungsoperatoreeeueeeunneeunnneennnennn 77

Anweisungenund Blocke Lo 79

Alternationenttt e 79

4.6.1 Einfache Abfragen (if -else) 79

4.6.2 Mehrfachabfragen (else - if) 80

4.6.3 Die switch-case-ANWeiSUNGoouiineiinneiiinennnn 81

Tterationent e 83

4.7.1 Zahlergesteuerte Schleifen (for) 83

4.7.2 Kopfgesteuerte Schleifen (while) 87

4.7.3 FuBgesteuerte Schleifen (do - while) 88

4.7.4 Schleifenabbruch (continue) 89

Inhalt 11

4.7.5 Schleifenabbruch (break)o 90
4.7.6 Schleifenumwandlungeniiiiiiiiiiiiia.n 92

4.8 FunKtioneniioniiiiii i 92
4.8.1 Formaler Aufbau einer Funktion 93
4.8.1.1 Der Funktionskopf L. 94

4.8.1.2 Der Funktionsrumpf............. L. 95

4.8.2 Datentyp und Deklaration einer Funktion - Prototyping 96
4.8.3 Das Prinzip der Parameteriibergabe 101
4.8.3.1 Aufrufverfahrencallbyvalue 101

4.8.3.2 Aufrufverfahren call by reference 103

4.8.3.3 Adressoperator, Zeiger und Dereferenzierung 106

4.8.4 Regeln fiir ein erfolgreiches Prototyping 107
4.8.5 Die exit()-Funktion i 108
4.8.6 Rekursive Funktionen i, 108

4.9 Ein-und Ausgabeiiii i 111
4.9.1 Formatierte Eingabe mitscanf() 111
4.9.2 Formatierte Ausgabe mit printf() 112
4.9.3 Arbeiten mitDateien i 113
4.9.3.1 OffnenderDateicvviuniiiiniiinainnnenn.. 114

4.9.3.2 Verarbeiten der Datensétze 114

4.9.3.3 SchlieBenderDateiiiiiiiiiiai... 115

4,934 stdioh ... 115

4.9.3.5 fflush(undstdin i, 117

5 Strukturierte Programmierung, 118
5.1 Problemstellungot e 119
5.2 Problemanalyse ieuiii e 120
5.3 Struktogramm nach Nassi-Shneiderman 123
5.3.1 SeqUENZ ...ttt 125
5.3.2 Alternationt 127
5.3.3 Verschachtelungt 128
5.3.4 Verzweigungc.uuiiiiiiit i 129
5.3.5 Schleifen 131
5.3.5.1 Zahlergesteuerte Schleife 131

5.3.5.2 Kopfgesteuerte Schleife 135

5.3.5.3 FuBgesteuerte Schleifen, 137

5.3.5.4 Endlosschleifen o i 138

5.3.5.5 Kriterien zur Schleifenauswahl 138

5.3.6 Programm- oder Funktionsaufruf 138
5.3.7 AUSSPTUNG ..ottt et e e e e e 139
5.3.8 Rechnergestiitzte Erstellung von Struktogrammen 140
53.8.1 StruktEd....... .o 140

5.3.8.2 hus-Struktogrammer i, 147

5.4 Flussdiagramm nach DIN 66001, 155
5.5 Programmerstellungt e 157

5.6 Programmutesteuuuiee it e 157

12 Inhalt

5.7 Programmlauf e 158
5.8 Dokumentation nach DIN 66230 iiiiiiiiiao... 159
5.8.1 Funktion und Aufbau des Programms 159
5.8.2 Programmkenndaten............. i, 160
5.8.3 Betrieb des Programms 161
5.8.4 ETgANZUNZENttt 161
5.9 Aspekte des Qualitditsmanagements EN-ISO 9000 162
5.10 Algorithmus - was istdas?c.. it 163
S.TTEVA-PTINZID . .o oo e 169
5.12 Programmierung von Formelwerken 170
6 Losung einfacher Probleme 175
6.1 Umrechnung von Temperatursystemenc.c.cooveuunne... 175
6.2 Flachenberechnung geradlinig begrenzter Flachen (Polygone) 181

6.2.1 Erste Problemvariation: Berechnung der Schwerpunktkoordinaten
S(Xg ; ¥s) von polygonformig begrenzten Flachen 188

6.2.2 Zweite Problemvariation: Suche nach

einem ,glinstigen Treffpunkt 189
6.2.3 Eine Projektidee: Wohnflichenberechnung 190
6.3 Berechnung einer Briickenkonstruktion 191
6.4 Schaltjahriberprifungoooiiiiii i 195
6.5 Ein Problem aus der Energiewirtschaft 201
6.6 Logarithmische Achsenteilung 211
6.7 Berechnung der Kreiszahl 7 218
6.7.1 Berechnung nach Archimedes (287 - 212v.Chr.) 219
6.7.2 Berechnung mit der Monte-Carlo-Methode 221
6.7.3 min C/C++-Programmenoouiiiiiiiinnnnnnnn.. 226
6.8 Primzahlen - Sieb des Eratosthenes 227
7 Objektorientierte Programmierung (OOP) 232
7.1 Modellbildung mittels Abstraktion oo, 232
7.2 Klassenund Objekteooouiii e 233
7.3 Attribute und Methoden einer Klasse oo o... 236
7.4 Bruchrechnung mitOOP i, 237
7.5 VErerbungt e e 246
7.0 SITINES . oottt e e e 252
7.7 TypumwandlUnGeniieunietinineeineiin e 254
7.8 Strukturierte Programmierung vs. OOP 257
8 Losung fortgeschrittener Probleme 259
8.1 Grafische Darstellung funktionaler Abhéngigkeiten 259
8.1.1 Welt- und Screenkoordinatencoiieinnneen... 261
8.1.2 Koordinatentransformationen 263
8.1.3 Darstellung der Sinusfunktion 269
8.1.4 Darstellung quadratischer Parabeln 273

8.1.5 Spannungsteilerkennlinien 276

Inhalt

8.2 Losung technisch-wissenschaftlicher Probleme
8.2.1 Widerstandsreihen E6bisE96 L.
8.2.2 Farbcodierung von Widerstanden nach DIN 41429
8.2.3 Fourier-Synthese periodischer empirischer Funktionen
8.2.4 Fourier-Analyse empirischer Funktionen

8.3 Nullstellenbestimmung von Funktionen
8.3.1 Inkrementverfahren und Intervallhalbierung
8.3.2 Dieregulafalsi.........cooiiuniiiiiii i
8.3.3 Das Newton-Verfahren

8.4 Numerische Integration i
8.4.1 Riemannsche Unter- und Obersummen
8.4.2 Trapezregel
8.4.3 Simpsonsche Regel i
8.4.4 Effektivwertberechnungencciiiiiiineann..
8.4.5 Volumenberechnungc..ooiiiuiiiiinnennnnennnn.

8.5 Einbindung eigener Klassen
8.5.1 Das ,Platinenproblem* als objektorientierte Konsolenanwendung . .
8.5.2 Das ,Platinenproblem® in der Erweiterung mit grafischer

Benutzeroberfliche i

9 Losung komplexer Probleme
9.1 Kurvendiskussion und Funktionsplotter am Beispiel
ganzrationaler Funktionen bis 3. Ordnung
9.2 Ausgleichsrechnung - Bestimmung der ,besten Geraden
ineiner Messreihe i
9.3 Digitaltechnik e

10 Tabellen und Ubersichten ...
10.1 Datentypen und ihre Wertebereiche
10.2 Vergleich der Symbole nach DIN 66 001 und
der Nassi-Shneiderman-Darstellung oot
10.3 Schliisselworter ANSICot e
10.4 Erweiterte Schliisselworter C++ i,
10.5 ASCIITabelle . . . oo vttt e e e e e e e
10.6 Standardfunktionen und ihre Zuordnung zu
den Header-Dateien (Include) oot

13

Systematik der
Problemlosung

Einst loste Alexander der GroBe den Gordischen Knoten sehr unkonventionell mit dem
Schlag seines Schwertes. An den kunstvoll geknoteten Stricken, die einen Streitwagen un-
trennbar mit seinem Zugjoch verbinden sollten, waren zuvor die Gelehrten gescheitert. Sie
versuchten, ihn ohne Beschddigung zu entfernen, quasi die Verknotungen umzukehren.
Dies zeigt deutlich, dass ein Problem komplex und damit sogar unlosbar werden kann,
wenn man nicht fahig ist, es unvoreingenommen zu betrachten, wenn man sich nicht von
unvermeidbar erscheinenden Losungswegen trennen kann. Die Losung des Problems soll
das Ziel sein - aber auch der Weg dorthin!

Zur Losung eines Problems mit Hilfe eines Rechners geht man tiblicherweise in mehreren
Einzelschritten vor. Diese Vorgehensweise ist sinnvoll, weil die in jedem Schritt anfallenden
Probleme haufig so speziell sind, dass Fachleute des jeweiligen Gebietes sie 10sen miissen.
So muss z.B. ein Betriebsfiihrer, der eine Problemstellung sehr genau aus der Sicht des
Betriebsablaufes beschreiben und sicherlich aus dieser Sicht auch erste Strategien ent-
wickeln kann, nicht notwendigerweise auch derjenige sein, der mogliche Auswirkungen auf
die Buchfithrung und Abrechnung des Unternehmens beurteilen, oder zur Auswahl geeig-
neter Programmierelemente und einzusetzender Hardware einen Beitrag leisten kann.

B 1.1 Phasen der Programmentwicklung

In den Anfangen der Datenverarbeitung waren Systemanalyse und methodisches Vorgehen
bei der Entwicklung von Software beinahe bedeutungslos und der heute gebrduchliche
Begriff Softwareengineering war noch nicht geprégt. Die erste Phase des Softwareerstel-
lungsprozesses ist die Systemanalyse. Der Systemanalytiker beschreibt hier die fiir seine
Fragestellung relevanten Elemente und deren Beziehungen zueinander.

Die ersten Rechner waren von den Abmessungen her gro und von der Leistungsfahigkeit
aus heutiger Sicht sehr bescheiden. Hardware war so teuer, dass kleinere Unternehmen in
der Regel die Verarbeitung ihrer Daten Service-Rechenzentren iibergaben. Diese Rechen-
zentren entwickelten und warteten auch die individuellen Programme ihrer Kunden. Die
eigene Datenverarbeitung im Hause bedeutete immense Investitionen, und die Software
wurde dann mehr oder weniger individuell um die vorhandene Hardware ,gestrickt”.

20

1 Systematik der Problemlésung

Die steigende Leistungsfahigkeit und der Preisverfall mit jeder neuen Generation von Rech-
nern erdffneten nach und nach immer neue Einsatzgebiete. So konnte man zunehmend
integrierte Systeme entwickeln. Allerdings wurden mit dem wachsenden Integrationsgrad
der Software die Programme und Programmsysteme komplexer.

Betrachtet man zu den Anfangen der Datenverarbeitung in mittleren bis groBen Unter-
nehmen das Verhiltnis der Kosten von Hard- zur Software, so lag die bei etwa 85:15. Die
gleiche Bewertung liefert heute ein Verhéltnis von 10:90. Vergleicht man das Kostenver-
haltnis der Hard- zur Software im PC-Bereich, so ergibt sich fiir einen normalen Anwender
in einem kleinen bis mittleren Betrieb ein ganz anderes Bild. Hier liegt das Verhéltnis
nahezu bei 50:50.

Der Einsatz von Datenverarbeitung in neuen Anwendungsgebieten ist primar ein Problem
der Qualitat, Funktionalitdt und Verfiigharkeit der Software zum richtigen Zeitpunkt und zu
einem vertretbaren Preis. Damit wird deutlich, dass die Entwicklung von Software ein hoch-
komplexes Unterfangen ist und ein abgestimmtes, methodisches Verfahren und organisa-
torisches Vorgehen verlangt. Zusammengefasst wird dies unter dem Begriff Softwareengi-
neering.

Softwareengineering wurde als Vorgehensweise zur Verbesserung der bis dahin unbefrie-
digenden Situation bei der Softwareentwicklung und -wartung betrachtet. Software sollte
produziert werden konnen wie Produkte aus der industriellen Fertigung: solide, zuverlassig
und kontrollierbar. Aus diesen Anfingen entwickelte sich die heutige Definition:

@ Unter Softwareengineering versteht man die Anwendung von Strategien,
Methoden, Werkzeugen und Kontrollinstrumenten im gesamten Prozess der
Softwareentwicklung und -wartung einschlieBlich des Managements.

Die Beschiaftigung mit Softwareengineering setzt nun einen gewissen Erfahrungsschatz in
der Softwareentwicklung voraus. Bei der Softwareentwicklung im Kleinen geht es um die
Umsetzung iiberschaubarer Problemstellungen in rechnergestiitzte Losungen. Dem Anwen-
der der fertigen Software sollen moglichst viele, von ihm bisher evtl. mit anderen Hilfs-
mitteln erledigte Arbeitsschritte durch einen Rechner abgenommen werden. Dabei stehen
die Auswahl und das Design einzelner Konstrukte im Vordergrund, was fiir die korrekte
Funktionsweise und das spatere Verstdndnis eines Bausteins absolut wesentlich ist. Bei der
Softwareentwicklung im GroBen geht es um die zweckméaBige, fast generalstabsméBige
Organisation eines Arbeitsvolumens von vielen Mann-Jahren. (In der Informatik wird der
Begriff Mann-Tage, Mann-Monate oder Mann-Jahre als AufwandsmaB eines abstrakten
Wesens verwendet, das wahrend seiner Arbeitszeit weder mdnnlich noch weiblich ist.)

In manchem ist das Softwareengineering mit der Arbeitsorganisation in herkdémmlichen
Produktions- und Konstruktionsprozessen vergleichbar. Softwareengineering beschiftigt
sich mit Arbeitsabldufen in und um die Softwareentwicklung herum. Neben dem eigent-
lichen Entwicklungsprozess sind dies:

= Projektmanagement,
® Qualitdtssicherung und

= Projektverwaltung.

1.2 Software-Lebenszyklus

@ Unter Projektmanagement versteht man die Gesamtheit von Fiihrungsauf-
gaben bei der Abwicklung eines Projekts, z. B. Fragen der Projektorganisation.

Bei der Qualitatssicherung geht es einerseits um formelle, konstruktive und
analytische KontrollmaBnahmen wéhrend des gesamten Entwicklungspro-
zesses, andererseits um interpersonelle Techniken, also darum, dafiir Sorge
zu tragen, dass alle Aufgaben von mdglichst geeigneten Mitarbeitern erledigt
werden.

Die Projektverwaltung (auch: Konfigurationsmanagement) beschéaftigt sich
mit der Bereitstellung und Verwaltung aller Ressourcen fiir den Softwareent-
wicklungsprozess sowie mit allen nebengelagerten Prozessen. Dazu gehdren
u.a. die Organisation der Speicherung aller Programmvarianten einschlieBlich
der Dokumentationen sowie die notwendigen Update-Dienste.

B 1.2 Software-Lebenszyklus

Der Software-Lebenszyklus ist ein abstraktes Modell fiir den Lebenslauf einer jeden Soft-
ware und die Grundlage fiir alle weiteren Betrachtungen zur Softwaretechnologie. Die meis-
ten Aktivitaten, Methoden und Werkzeuge der Softwaretechnologie lassen sich anhand
dieses Modells ein- und zuordnen. Fiir den konkreten Ablauf der Arbeit ist das Projekt-
management verantwortlich.

Der Software-Lebenszyklus stellt ein Modell fiir alle Aktivititen wahrend der Existenz
einer Software dar. Man kann im Wesentlichen drei Teile unterscheiden:

= die eigentliche Softwareentwicklung, bei der das neue System aufgebaut wird,
= den laufenden Betrieb, wiahrenddessen das System produktiv arbeitet, und

= die AuBerbetriebnahme des Systems mit der Sicherstellung der Datenbestande fiir
Nachfolgesysteme und der Entsorgung von Altdaten.

Wihrend des laufenden Betriebs werden immer wieder ungeplante und geplante Unter-
brechungen durch Wartung der eigentlich verschleiBfreien Software erfolgen. Diese War-
tungsarbeiten sind notwendig, um wihrend des laufenden Betriebs festgestellte Fehler oder
Effizienzverluste in den Programmen zu beheben oder die Software an gednderte Bedingun-
gen des Umfeldes, in dem sie ablauft, anzupassen. Die AuBerbetriebnahme einer Software
erfolgt ebenso in der Regel aus dem laufenden Betrieb heraus. Schematisch lasst sich der
Software-Lebenszyklus darstellen wie in Bild 1.1.

21

22

1 Systematik der Probleml6sung

Planung

Betrieb

Stilllegung

Bild 1.1 Software-Lebenszyklus

Bei der Entwicklung eines Systems werden die Zyklen Planung bis Test als Abfolge von
einzelnen Phasen durchlaufen. In jeder Phase konnen unterschiedliche Mitarbeiter an der
Realisierung des Projektes beteiligt sein, die ihre Ergebnisse jeweils fiir die ndchste Phase
zur Verfligung stellen. Der Betriebszyklus umfasst wahrend der gesamten Lebensdauer des
Systems dessen Unterhalt und Weiterentwicklung bis zur AuBerbetriebnahme des Systems.
Betrachtet man nun die Kostenseite, so verursachen die ersten vier Zyklen etwa 40 % der
Gesamtsystemkosten; die restlichen 60 % der Kosten entfallen auf den Betrieb des Systems.

Die einzelnen Zyklen lassen sich inhaltlich folgendermaBen beschreiben:

= Dje Planung umfasst eine Voruntersuchung des kiinftigen Systems mit den entsprechen-
den Wirtschaftlichkeitsberechnungen und bildet die Entscheidungsgrundlage die Recht-
fertigung und somit die Freigabe zur Entwicklung des neuen Systems. In der Praxis wird
dazu zunéchst eine Studie beauftragt, liber deren Ergebnis ein sog. Lenkungsausschuss
befindet.

= Bei der Spezifikation werden die wesentlichen Anforderungen und Leistungsparameter
des neuen Systems festgelegt. Dies ist gleichzeitig der Zeitpunkt der Erstellung eines sog.
Pflichtenheftes, das eine exakte Beschreibung des zu erstellenden Systems liefert und die
Basis bildet fiir die Programmdokumentation und das Anwenderhandbuch.

= Der Entwurf des Systems schliisselt die Anforderungen und Leistungsparameter schritt-
weise auf bis ein Detaillierungsgrad erreicht ist, bei dem die fachlichen Anforderungen
und der fachliche Losungsweg in Form von Elementarprozessen umfassend beschrieben
sind. Am Ende miissen alle fachlichen und datenverarbeitungstechnischen (kurz: DV-
technischen) Anforderungen festgelegt sein. Zu diesem Zeitpunkt ist eine umfassende
Problemanalyse abgeschlossen, das Pflichtenheft liegt in seiner endgiiltigen Form vor
und alle an der Erstellung der neuen Software beteiligten Personen verfiigen tiber aus-
reichende Fachkenntnis, um den nachsten Schritt angehen zu konnen.

= Die Codierung umfasst die eigentliche Programmkonstruktion mit der Programmierung
der neu zu erstellenden Software.

= Der Test dient der Aufdeckung von Entwurfs- und Codierungsfehlern. Werden Fehler
entdeckt, so wird die Software zur Korrektur an die Codierungsphase zuriickgewiesen.
Lassen sich Fehler nicht lokal beheben, z. B. weil ihre Ursache bereits im Entwurf liegt, so
wird die Software bis in die Entwurfsphase zurtickverwiesen. Diese Testphase blockiert
die weitere Entwicklung, bis eine sachlich und fachlich richtige Ausfiihrung der einzel-
nen Programmkomponenten sowie des Gesamtsystems gesichert werden kann. Dabei

1.3 Software-Entwicklungsverfahren

sollten Testhilfen eingesetzt werden, die sicherstellen, dass alle moglichen Fille, die auf-
treten konnen, auch tatsdachlich einmal durchlaufen worden sind.

Der Betrieb einer Software wird bis zur AuBerbetriebnahme immer wieder durch kor-
rigierende oder geplante Wartung der Software unterbrochen. Das reicht von Eingriffen
in die Konfigurationsdateien tiber das selektive Einspielen neuer Systemkomponenten
(sog. Patches) bis hin zur Modifikation oder Neuentwicklung ganzer Systemteile. Beson-
ders kritisch wird der Betrieb, wenn aus Sicherheitsgriinden eine alte und eine neue
Softwareversion parallel gefahren werden miissen.

Bei der Stilllegung einer Software kommt es schlieBlich darauf an, wesentliche Nutzdaten
sicherzustellen, die fiir die Konfiguration und Initialisierung von Nachfolgesystemen sonst
erst aufwendig akquiriert werden miissten, moglicherweise datenschutzrelevante Daten
zuverldssig aus dem System zu entfernen und alle Arten von Datenmiill zu beseitigen.
Dies ist nicht nur eine Frage der vorbeugenden Hygiene im Rechnersystem, sondern wegen
moglicher Fernwirkungen auf spater zu installierende Software dringend notwendig.

B 1.3 Software-Entwicklungsverfahren

Alle EDV-Projekte (EDV = elektronische Datenverarbeitung) haben einen typischen und
gleichartigen im Software-Lebenszyklus bezeichneten Ablauf, der in einzelne Abschnitte
unterteilt werden kann. Diese einzelnen Abschnitte oder Phasen lassen sich in einer sehr
stark standardisierten Form darstellen und fiihren zu den Phasenmodellen. Prinzipiell
kann jedes EDV-Projekt in zwei groBe Bearbeitungsbereiche, Entwurf und Realisierung,
zerlegt werden. Jeder dieser beiden Blocke muss fiir die weitere Bearbeitung in einzelne
Abschnitte aufgesplittet werden. Ein Phasenmodell entsteht im Prinzip durch genaue Defi-
nition und Abgrenzung der einzelnen Abschnitte des Software-Lebenszyklus.

Eine zu grobe Unterteilung der einzelnen Phasen ldsst einen groBen Spielraum innerhalb
der einzelnen Phase zu und erhoht damit die Fehlerwahrscheinlichkeit. Eine zu feine Unter-
teilung der Phasen verzogert die Bearbeitung wegen der haufigen Unterbrechungen durch
externe Entscheidungen. Sinnvolle Phasenmodelle unterscheiden zwischen drei und sechs
Phasen, in Abhdngigkeit vom Projektumfang. Hier soll von einem 6-Phasenmodell wie in
Bild 1.2 ausgegangen werden.

—»‘ Vorstudie

| Groblonzept
—»‘ Detailkonzept
DV-Projekt

4‘ Realisierung ‘

[Reatiorung |+ systomtest

—»‘ Systemeinflihrung

Bild 1.2 Das 6-Phasenmodell

23

24 1 Systematik der Problemlésung

Die einzelnen Phasen lassen sich wie folgt beschreiben:

= Die Vorstudie ist ein Abklarungsprozess, dem unmittelbar eine Entscheidung beziiglich
der moglichen Losungsvarianten folgt. Dabei wird die Zielrichtung fiir die Gestaltung des
neuen Projektes festgelegt. Folgende Punkte miissen in einer Vorstudie enthalten sein:

= Beschreibung der Ausgangslage und Begriindung fiir die Entwicklung einer neuen
Losung

= Konkrete Zielvorstellung

= Vollstandige Beschreibung des Ist-Zustandes und Schwachstellenanalyse
= Vor- und Nachteile der heutigen Losung mit Schwachstellenbeschreibung
= Gestellte Anforderungen und Wiinsche an die neue Losung

= Beschreibung der Losung mit moglichen Alternativen

= Bewertung der Losung und der moglichen Alternativen

= Wirtschaftlichkeitsiiberlegungen

= Planung und Freigabe der nachsten Phase

= Auf der Basis der in der Vorstudie favorisierten Losungsmoglichkeit muss eine generelle
Losung mit den moglichen Varianten in einem betrieblichen und DV-technischen Grob-
konzept erarbeitet werden. Die Losung muss hier so detailliert sein, dass eine fachliche
und sachliche Beurteilung und Bewertung moglich ist. Inhalt dieser Phase ist:

= EDV-technische Konzeption der Funktionen, Abldufe, Transaktionen, Datenstruktu-
ren, Festlegung der Verarbeitungsmodalitdten und des weiteren Vorgehens

= Betriebliche Konzeption der Funktionen, Abldufe, Transaktionen, Layouts, Ausfallver-
fahren, Verarbeitungsmodalitaten und weiteres Vorgehen

= Definition der betrieblichen Einfiihrungsstufen
= Test- und Einfiihrungskonzeption

= Uberpriifung der Losung

= Wirtschaftlichkeitsberechnungen

= Planung und Freigabe fiir die ndchste Phase

= In der Phase Detailkonzept ist das komplette fachliche und technische Systemdesign defi-
nitiv und abschlieBend zu erarbeiten. Ungeldste Probleme sind in dieser Phase nicht mehr
zulassig. Die EDV-technische und betriebliche Machbarkeit muss sichergestellt sein.

= Detaillierung und Komplettierung der EDV-technischen Konzeption

= Detaillierung und Komplettierung der betrieblichen Konzeption

= Detaillierung und Komplettierung der betrieblichen Einfithrungsstufen
= Detaillierung und Komplettierung der Test- und Einfiihrungskonzeption
= Uberpriifung aller Konzeptionen

= Wirtschaftlichkeitsberechnungen

= Planung und Freigabe fiir die ndchste Phase

® Die Phase Realisierung stellt die reine Umsetzung der erstellten Konzeption in Pro-
gramme dar. Zu diesem Zeitpunkt muss die komplette Dokumentation, wie Benutzer-
handbiicher und Operatorhandbuch, vorliegen.

1.3 Software-Entwicklungsverfahren

= Erstellung der Programme

= Erstellung der JOB-Control/Shell-Skripte

= Einzel- und Integrationstest der Programme
= Erstellung des Einfiihrungsplans

= Planung und Freigabe fiir die ndchste Phase

= Die realisierten Teile aus der vorhergegangenen Phase werden wiahrend des Systemtests
auf ihre Richtigkeit und Vollstandigkeit unter betrieblichen Gesichtspunkten tiberpriift.
Es muss dabei vorausgesetzt werden, dass die einzelnen Komponenten bereits fiir sich
alleine ausfiihrlich getestet und abgenommen worden sind. Alle durchgefiihrten Tests
miissen dokumentiert werden:

= Dokumentation der Testergebnisse

= Dokumentation des betrieblichen Tests

= Einzel- und Integrationstest der Programme
= Uberarbeitung des Einfiihrungsplans

= Planung und Freigabe fiir die ndchste Phase

® [n der Phase Systemeinfithrung wird das fertiggestellte und komplett abgenommene
System in die laufende EDV-Produktion integriert. Ein abschlieBender Funktionstest mit
dem GO-Entscheid stellt allen involvierten Benutzern das neue System zur Verfligung.

= Systemeinfiihrung und Pilotbetrieb

= Systemiibergabe in die laufende Produktion

= Konsolidierung und Optimierung des Systems

= Uberarbeiten des Einfiihrungsplans

= Planung und Freigabe fiir die ndchste Phase
Den Ablauf des klassischen 6-Phasenmodells kann man wie in Bild 1.3 zeitlich darstellen.
Jede Phase schliet normalerweise mit einer Freigabe fiir die ndchste Phase ab.

Wird die Freigabe nicht erteilt, sind solange Korrekturen innerhalb der aktuellen Phase
notwendig, bis eine Freigabe dieser Phase erfolgt (Ablaufpfeile rechts).

Bei sehr gravierenden Fehlern muss im Extremfall mehrere Phasen zuriickgesprungen wer-
den, um diese Fehler zu bereinigen. Unter Umstidnden kann dies sogar zu einem Abbruch
des Projektes fiithren (Ablaufpfeil links).

Theoretisch besteht in einem solchen Fall (Abbruch) natiirlich die Moglichkeit, bis zum
Projektstart zuriickzuspringen, aber in der Praxis sind in aller Regel bis zu einem Abbruch-
zeitpunkt bereits erhebliche Kosten verursacht worden, ohne dass entsprechende Fort-
schritte erzielt wurden, so dass die Frage, ob ein solches Projekt noch wirtschaftlich sinn-
voll weitergefiihrt werden kann eher zu verneinen sein wird.

Die Entscheidung iiber mogliche weitere Vorgehensweisen bei jedem Riicksprung trifft in
jedem Fall der Lenkungsausschuss, dem von den beteiligten Partnern die Personen angeho-
ren, die die wirtschaftlichen Entscheidungen treffen konnen.

25

26 1 Systematik der Problemldsung

= Projektstart |
o

‘ Vorstudie ‘

neln ‘@ nein

{dja

‘ Grobkonzept ‘
neln neln

‘ Detallkonzept ‘

neln neln

aja
‘ ReaI|S|erung

neln neln

Oja
‘ Systemtest

ne|n neln

1 ja
‘ SystemeinfUhrung

nein @ nein

1ja
‘ Produktion und Wartung‘

S o o

Bild 1.3
Ablauf des 6-Phasenmodells

Fiir die Bearbeitung der einzelnen Phasen sollte in etwa mit folgenden prozentualen An-
teilen des Gesamtentwicklungsaufwands kalkuliert werden:

Vorstudie 10% Realisierung 25%
Grobkonzept 25% Systemtest 10%
Detailkonzept 20% Systemeinfihrung 10%
Summe Anteil 55% Summe Anteil 45%

Aus dieser Aufstellung der Aufwande der einzelnen Phasen bei der Umsetzung eines Soft-
wareprojektes wird sehr deutlich, dass die Vorarbeiten, die der eigentlichen Program-
mierung vorausgehen, den groBten Teil (ndmlich 55%) des Aufwands des Gesamtprojekts
einnehmen. Nur, wenn diese Arbeiten mit der gebotenen und erforderlichen Sorgfalt durch-

1.3 Software-Entwicklungsverfahren

gefiihrt werden, besteht die Aussicht, dass das Projekt in der Praxis auch Bestand haben
wird. Und das ist ja schlieBlich das Ziel der Umsetzung eines jeden Ablaufes in ein ,Stlick”
Software!

Die eigentliche Codierung des Programms, also die Realisierung, nimmt gerade ein Viertel
des zu kalkulierenden Aufwands ein. Dieser Ansatz kollidiert in der Praxis oftmals mit dem
Anspruch der beteiligten Programmierer, eine ,perfekte“ Losung umzusetzen und an der
einen oder/und (!) anderen Stelle iiber das in der Entwurfsphase festgelegte und mit dem
Auftraggeber abgesprochene LeistungsmaB der zu entwickelnden Software hinauszuschie-
Ben. Hier besteht die Aufgabe des Projektmanagements darin, solche vermeintlichen Leis-
tungssteigerungen friihzeitig zu erkennen und in angemessener Form zu reagieren. Ein
erfahrener Projektmanager wird die beteiligten Programmierer so friihzeitig wie moglich
an der Entwurfsphase teilhaben lassen, um ihren Erfahrungen und Bedenken schon in
dieser Phase Rechnung tragen zu konnen. Andererseits kann ein detailverliebter Pro-
grammierer eine wichtige Besprechung zwischen Auftraggeber und -nehmer durch seine
Rolle als Bedenkentrédger natiirlich auch vollig aus dem Ruder laufen lassen, indem er das
Gesamtprojekt ausschlieBlich aus seinem Blickwinkel als der, der fiir eine lauffihige Um-
setzung zu sorgen haben wird, betrachtet, ohne den ndétigen und oftmals erforderlichen
Abstand zu den technischen Anforderungen zu besitzen - also eine echte Gradwanderung
fiir das Projektmanagement. Werden die Programmierer namlich erst sehr spat mit dem
Projekt vertraut gemacht, kann nur noch sehr schwer auf tatsdchliche Probleme, die aus der
technischen Umsetzung resultieren, reagiert werden. Und das kann natiirlich eine rei-
bungslose und termingerechte Umsetzung eines Datenverarbeitungsprojektes massiv ge-
fahrden.

27

Erste Gehversuche
mit C/C++

Dieses Kapitel beschéftigt sich mit einigen grundlegenden Aspekten der Programmierspra-
che C/C++. Neben der Frage, warum es sinnvoll ist, gerade mit C/C++ zu arbeiten, werden
Funktionsweisen der Komponenten der Entwicklungsumgebung betrachtet und erldutert.
In den folgenden Kapiteln werden zunéchst Beispiele in klassischem C als Konsolenanwen-
dungen realisiert, bevor spéter objektorientiert mit C++ weitergearbeitet wird. Dann sind
die Beispiele auch mit grafischen Oberflaichen ausgestattet.

B 2.1 Warum gerade C/C++?

Wer C/C++ erlernen will, hat sich fiir eine Programmiersprache entschieden, die auf fast
allen Rechnertypen und unter fast allen Betriebssystemen verfiigbar ist. Es steht Ihnen,
anders als bei vielen anderen Programmiersprachen, auf den verschiedensten Entwick-
lungsplattformen eine genormte Standard-Bibliothek zur Verfligung. Damit gelingt eine
einheitliche Implementierung der mit dieser Programmiersprache erstellten Programme
mit sehr hoher Geschwindigkeit.

C wird auch als Highlevel-Assembler bezeichnet, also als Programmiersprache, die sehr nah
an der Maschinensprache ist. Dies beruht auf der Tatsache, dass der Kern (bzw. Kernel)
aller giangigen Betriebssysteme in C geschrieben wurde. Damit eignet sich C/C++ auch in
besonderem MaSe fiir die Systemprogrammierung, also fiir Programme, die fiir den Betrieb
von Rechenanlagen erforderlich sind.

Dank der relativ einfachen Struktur und dem geringen Umfang der eigentlichen Sprache,
d.h. der verfiigharen Schliisselworte der Programmiersprache, war es moglich, C-Compi-
ler, also spezielle Programme zur Ubersetzung des vom Programmierer erstellten Codes in
eine maschinenverstandliche Sprache, fiir alle Arten von Prozessorplattformen zu entwi-
ckeln, so dass die Programmiersprache C/C++ heute fiir die gesamte Leistungspalette vom
Mikrocontroller bis zu High-End-Rechnern verfiighar ist. Fiir den Entwickler von Software
bedeutet dies: Egal fiir welche Prozessorplattform programmiert wird, einen C-Compiler
wird man fiir das relevante Zielsystem bekommen. Man braucht sich nicht um eine Pro-
grammierung zu kiimmern, die spezifisch fiir den jeweiligen Zielprozessor ist. In den meis-

2.1 Warum gerade C/C++?

ten Fallen wird es moglich sein, die auf einer Plattform entwickelte Anwendung auf einer
anderen Plattform auszufiihren. Der erforderliche Anpassungsaufwand ist in aller Regel
sehr liberschaubar.

@ Das bedeutet nicht, dass man fertige Programme von einer Plattform auf

eine andere {bertragen kann (etwa von einem Windows-PC auf einen Linux-
PC) und diese dann auf der neuen Plattform (also unter Linux) sofort wieder
funktionieren. Vielmehr ist nur die problemlose Ubertragung der Quelltexte
auf ein neues System gemeint, auf dem diese dann mit dem entsprechenden
Compiler und Linker (ein Linker oder Binder ist ein Programm, das einzelne
Programmmodule zu einem ausfiihrbaren Programm verbindet) in ein funk-
tionierendes Programm umzuwandeln sind!

Die Tatsache, dass Programme, die in C/C++ geschrieben werden, sehr klein sind (nur in
Assembler - also Maschinensprache - geschriebene Programme sind noch kleiner), macht
C/C++ zu einer wichtigen Programmiersprache im Bereich Embedded Systems (also Syste-
men, die stark einschrankenden Randbedingungen unterliegen, wie geringe Kosten, Platz-,
Energie- und Speicherverbrauch) und der Mikrocontroller-Programmierung, wo Speicher-
platz ebenfalls sehr kostbar ist.

Ein C/C++-Programm wird mit Hilfe eines Compilers (dem Ubersetzer des Quelltextes) aus
einer oder mehreren einfachen Textdateien zu Objektcodedateien iibersetzt. Diese Objekt-
codedateien werden anschlieBend von einem Linker (bzw. Linkage-Editor = Binder, Werk-
zeug fiir das Zusammenfiigen tibersetzter Programmteile) mit den erforderlichen System-
bibliotheken zu einer ausfiihrbaren Datei (der Executable - oder kurz EXE-Datei)
zusammengebunden.

@ Jedes ausfiihrbare C/C++-Programm besitzt eine Hauptfunktion. In C wird
diese Hauptfunktion als main bezeichnet.

Damit das Betriebssystem erkennen kann, wo der Einstiegspunkt fiir den Ablauf eines
C/C++-Programms zu finden ist, muss diese Namenskonvention unbedingt eingehalten
werden. Auch wenn andere Entwicklungsumgebungen als das Visual Studio von Microsoft
oder andere Compiler eingesetzt werden, dndert sich an diesem Einstiegspunkt nichts. Vari-
ieren kann allenfalls die Parametrisierung (also die Art, Anzahl oder der Datentyp der Uber-
gabeparameter) dieser Hauptfunktion. Dieser Aspekt wird spéter in Abschnitt 4.8, in dem
es um Funktionen gehen wird, noch ausfiihrlich erlautert.

Dartiber hinaus ist es natiirlich auch moglich, eigene Programme und/oder Funktionen in
eigenen Bibliotheken zusammenzufassen, um diese spater erneut benutzen zu konnen.
Diese Bibliotheken konnen bei einem spateren Bindevorgang durch den Linker wieder ver-
wendet werden, damit diese dann zu einem neuen Programm hinzugebunden werden.

29

A

Abfrage 79

abgeleitete Klasse 246
Ablauflinie 156
abstrakte Klasse 235
Abstraktion 232
abweisende Schleife 136
Achsenbeschriftung 277
Addition 69
Adressoperator 106f.
Aggregation 246
Aggregatobjekt 246
Algorithmus 163, 182, 236
Alternation 79, 124, 127f., 140, 145, 154
Anpassungshinweise 161
Anweisungen 79
Archimedes 219
arithmetischer Operator 69
Array 60, 67
ASCII-Tabelle 374
ASCII-Zeichensatz 59
Assoziation 246
Assoziativitat 78
Attribut 234, 236, 320
Attributwert 235, 271
Aufgabe 160
Aufgabenlosung 159
Aufgabenstellung 159
Ausgabesymbol 156
Ausgleichsrechnung 343
Ausnahmefehler 271
AuBerbetriebnahme 21
Aussprung 125, 139
Auswahl 118, 142

auto 369

B

Basisklasse 246
Batchdatei 108
Bedienung 161
Bedingungsoperator 76
Bemerkung 156

Betrieb 21, 23
Bezeichnung 160
Bibliotheksfunktionen 100
Bildpunkt 262

bindre Operatoren 69
Blocke 79

bool 372

Boole, Georg 353

break 82, 90, 131, 369
Briickenkonstruktion 191

c

call by reference 103
call by value 101
case 369
case-sensitiv 56
Cast 254

catch 372

char 56, 67, 369
class 372
Codierung 22, 27
const 369
const_cast 372
Container-Klasse 252
continue 89, 369
Copy-and-paste 93

D

Datentyp 55

Datentypen und ihre Wertebereiche 367

Debugger 158

default 130, 369

Default-Werte 277

Definition der Funktion 96
Dekade 211

Dekrementierung 72

delete 372

Dereferenzierung 106, 108
Designfehler 33

Deskriptoren 161

destruktives Schreiben 114
Destruktor 240

Detailkonzept 24, 26
deterministische Verfahren 164
Differenzialrechnung 340
Digitalschaltung 355
Digitaltechnik 353

DIN 66001 155

DIN 66230 159

Division 70

do 369

Dokumentation 119, 142, 159, 239
double 58, 369

do - while 88

Dualzahlen 356f.
dynamic_cast 372
dynamisches Array 225
dynamische Speicherzuweisung 231

E

Eckpunktkoordinate 182
Effektivwertberechnungen 321
eindimensionale Felder 60
einfache Abfrage 79
Eingabesymbol 156
Elemente eines Feldes 63
Elementverweis-Operator 253
else 370

else - if 80

Endlosschleife 85,131,138
Energiewirtschaft 201
EN-ISO 9001 162

Entitat 234

Entwurf 22f., 26

enum 370

Eratosthenes 227

E-Reihen 278

Erstes Programm in C 51

erweiterte Schliisselworter C++ 371
euklidischer Algorithmus 168
EVA-Prinzip 169

Exception 271

Exemplar 234

explicit 372

explizite Typumwandlungen 254
extern 370, 372

externe Operation 237
Extremstellen 340

F

Fakultatsberechnung 164
false 372

Farbcodierung nach DIN 41429 281
fclose() 115

Fehler 33
Fehlerbehandlung 161
Fehlerquadratsumme 344
Feld 60 ff.

Feld, Felder 60

fflush() 117

fgetc() 114

fgets() 114

FILE 113
Flachenberechnung nach Gauf3 182
FlieBkommazahl 58
float 58, 64, 370
Flussdiagramm 155, 157
Font 275

fopen() 114

for 83, 370

formatierte Ausgabe 112
formatierte Eingabe 111
Formelwerk 170f.
Fourier

- Analyse 292

- Koeffizient 292

- Reihen 285

- Synthese 284

fprintf() 115

fputc() 114

fputs() 114

fread() 115

friend 372

fscanf() 115

Funktion 92

Funktions

- aufruf 124, 138f., 268

- graph 273

- kopf 93f.

- rumpf 93, 95

fuBgesteuerte Schleife 88,131, 137f.
fwrite() 115

G

ganzzahlige Variablen 56
GauBscher Integralsatz 182
Geheimnisprinzip 235
Geratebedarf 160
get-Methode 240
Gleichheit 72

goto 370

Graphical User Interface (GUI) 252
Grenzstelle 156
Grobkonzept 24

groBer 73

groBer gleich 74

GUI 38, 232, 252

H

Hauptprojektdatei 98
Header-Datei 98, 376
HeiBleiter 211, 218

if 370

if - else 79

Implementierung 157
Implementierungsaufwand 93
implizite Typumwandlung 254
Include 376
Indizierungsoperator 77
Initialisierung 83
Inkludierung 100
Inkrementierung 71
Inkrementverfahren 297
inline 372

Instanz 234, 252

int 56f., 60f., 370
IntelliSense 255f.
Intervallhalbierung 298
Iteration 83,132, 154

K

Kapselung 234, 239
Kennlinie 276
Kennlinienfeld 276
Klammerungsoperator 77
Klassen 233, 235, 340

- beschreibung 235

- diagramm 235

- hierarchie 246

- operation 237

kleiner 73

kleiner gleich 73

kombinierte Zuweisung 71
Kommentar 54

Komponente 34, 246
Komposition 246

Konstante 56, 61, 68
Konstruktor 237, 239
Kontrollstruktur 79
Koordinatentransformation 263
kopfgesteuerte Schleife 86f., 136, 138
Kosinus-Koeffizient 292
Kreiszahl m 218

L

least square fit 344

Leibniz 356

logarithmische Achsenteilung 211f.
logischer Fehler 157

logisches NICHT 74

logisches ODER 74

logisches UND 74

long 56f., 112, 370

long int 56

M

malloc() 185

math.h 227
mehrdimensionale Felder 61
Mehrfachabfrage 80
Mehrfachauswahl 371
Message-Box 271
Messreihe 343

Methode 234, 236, 275, 277
Methode {iberladen 237
mode 114

Modellbildung 232
Modul 93
Modulo-Operator 70
Monte-Carlo-Methode 221
Multiplikation 70
mutable 373

N

nachpriifende Schleife 137
namespace 373
Nassi-Shneidermann 123, 157

383

new 373

Newton-Verfahren 304
nicht-abweisende Schleife 137
NTC 211
Nullstellenbestimmung 297
numerische Integration 307
Nutzungsvereinbarungen 161

0

Obersumme 309, 324
Objekt 233f., 271
Objektoperation 237

objektorientierte Programmierung (OOP) 118,

156, 232
OOP 116
Operation 236
Operator 69, 373
Ordinalwert 59f.
Overloading 237

P

Parabel 273

Paradigma 118
Parameteriibergabe 101
Planung 22

Pointer 106

Polygone 181

Postfix 71

Potenzfunktion 129

pow() 129

Prafix 71
Praprozessoranweisung 100
Primzahlen 227

printf() 111,134

Prioritat 78

private 236, 239, 247, 373
Problemanalyse 119f., 170, 175
Problemstellung 119, 175
Programm 175

- ablauf 158, 160, 254

- ablaufplan 155

- aufbau 160

- aufruf 124

- bedarf 160

- erstellung 119, 157

- lauf 119, 146, 158, 175

- test 175,185
Programmierparadigma 118
Programmiersprache 161
Projektmanagement 20f.
Projektverwaltung 20

protected 236, 240, 373
Protokoll einer Klasse 236
Prototyp 97

Prozeduren 93,118
Pseudozufallszahlen 223
public 236, 239, 247, 373

Q

Qualitditsmanagement 162
Qualitatssicherung 20, 163

R

rand() 223

Realisierung 23f., 26
Rechteckfunktion 286, 294
Referenz 103, 105

register 370

regula falsi 302
Reinitialisierung 84
reinterpret_cast 373
Rekursion 108

return 370

Riemannsche Unter- und Obersummen 307
Rotationskorper 323
RSA-Verfahren 227
Rundungsfehler 59

S

scanf() 111, 136
Schaltjahriiberpriifung 195
Schaltnetz 354

Schleifen 118, 124, 131, 148, 153, 197
- abbruch 89f.

- bedingung 86

- begrenzungssymbol 156
- kopf 86

- rumpf 86ff.

- steuerungsvariable 85

- umwandlung 92
Schliisselworter ANSI C 369
Schnittstelle 160, 236
Schriftart 275
Schrittweitenwert 273
Schwerpunktkoordinaten 188
Screenkoordinaten 261
Sequenz 118, 124, 139, 143
set-Methode 240

Shannon, Claude E. 353
short 56f., 112, 370

short int 56, 58, 354

Sieb des Eratosthenes 227
signed 57f., 370f.
Signifikanz 58

Simpsonsche Regel 316
Sinusfunktion 259, 261, 269
Sinus-Koeffizient 292

sizeof 370

Skalierung 273
Softwareengineering 19
Softwarelebenszyklus 21
SolidBrush 275
Spannungsteiler 276
Spannungsteilerkennlinie 276
Spannungsteilerwiderstand 276
Speicherbedarf 160
Speicherberechnungsoperator 75
Spezifikation 22
sprachbedingte Fehler 33
sqrt() 129, 314

srand() 223
Standardeingabe 87
Standardfunktionen 376
Stapelverarbeitungsdatei 108
Startbedingung 85
Startwertzuweisung 65
static 370

static_cast 373

stdin 87

stdio.h 113

Stilllegung 23

STL 252f.

Stream 113

string 199, 253

String 252

struct 370

Struktogramm 123, 155, 175
Struktur 113, 236, 346
strukturierte Programmierung 16, 118
Subtraktion 69

switch 371

switch-case 81
syntaktischer Fehler 157
Syntax 54, 65
Systemeinfiihrung 25
Systemtests 25

T

Tagesbelastungskurve 201
Temperatursysteme 175
template 373
Template-Klasse 252

Test 22,119, 159, 161

Test des Programms 119
TextBox 253, 320
Textstrom 113

this 373

throw 373
Top-down-Verfahren 123
Trapezregel 311
Treffpunktkoordinaten 189
true 374

try 374

try-catch 253

typecast 75

Typecasting 58

typedef 371

typeid 374

typename 374
Typkonvertierung 254
Typmodifizierer 57
Typumwandlung 254, 275
Typumwandlungsoperator 75

u

Ubergangsstelle 156
iiberladene Methode 237, 256
UML 235, 240

undre Operatoren 69
Ungleichheit 72

union 371

unsigned 56, 58, 112
Untersumme 308, 324

using 374

v

Variable 55f., 67
Vererbung 246, 258
Vergleichsoperatoren 72
Verhalten einer Klasse 235
Verschachtelung 124, 128, 143
Verzweigung 118, 124, 129f.
Verzweigungssymbol 156
virtual 374

Visual C++ 15

void 94, 371

volatile 371

Volladdierer 360
Volumenberechnung 323
vorpriifende Schleife 136
Vorstudie 24
Vorzeichenoperator 69

385

w

Wabhrheitstabelle 359, 365
Wartbarkeit 93

wchar_t 374
Weltkoordinaten 261
Wendestellen 340

while 87, 371

Whitespace 112
Widerstandsreihe 278
Wiederanlaufverfahren 161
Wiederholung 83, 118, 133
Wiederverwendbarkeit 93
Wohnfldchenberechnung 190

z

zahlergesteuerte Schleife 83, 86, 131, 149
Zeichen 59

Zeiger 106

Zufallszahlen 221

Zuweisung 70

Zwei-Punkte-Form 265

	Deckblatt_Leseprobe
	Vorworte
	Inhalt
	19-29
	Index

