

Leseprobe
zu

Technische Probleme lösen mit C/C++

von Norbert Heiderich und Wolfgang Meyer

Print-ISBN: 978-3-446-46823-8
E-Book-ISBN: 978-3-446-46896-2

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468238

sowie im Buchhandel

© Carl Hanser Verlag, München

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446468238

Was können Sie mit diesem Buch lernen?

Wenn Sie mit diesem Lernbuch arbeiten, dann erwerben Sie umfassende Erkenntnisse, die
Sie zur Problemlösungsfähigkeit beim Programmieren mit der Hochsprache C/C++ führen.
Der Umfang dessen, was wir Ihnen anbieten, orientiert sich an

�� den Studienplänen der Fachhochschulen für technische Studiengänge,
�� den Lehrplänen der Fachschulen für Technik,
�� den Anforderungen der Programmierpraxis,
�� dem Stand der einschlägigen, professionellen Softwareentwicklung.

Sie werden systematisch, schrittweise und an ausgewählten Beispielen mit der Entwick-
lungsumgebung Visual C++ (VC++) von Microsoft vertraut gemacht.
Dabei gehen Sie folgenden Strukturelementen und Verfahrensweisen nach:

�� Wie stellt sich die Entwicklungsumgebung dar?
�� Welche grundlegenden Sprach- und Steuerungswerkzeuge gilt es kennenzulernen und an
einfachen Beispielen anzuwenden?

�� Wie wird ein Problem strukturiert programmiert?
�� Wie muss die Software dokumentiert und getestet werden?
�� Was meint objektorientierte Programmierung?

Wer kann mit diesem Buch lernen?

Jeder, der
�� sich weiterbilden möchte,
�� die Grundlagen der elektronischen Datenverarbeitung beherrscht,
�� Kenntnisse in den Grundlagen der elementaren Mathematik besitzt,
�� bereit ist, sich mit technischen, mathematischen und kommerziellen Fragestellungen
auseinanderzusetzen.

Vorwort des
Herausgebers

Autoren:
Dipl.-Math. Norbert Heiderich
Berufskolleg des Kreises Kleve, Kleve

Dipl.-Ing. Dipl.-Ing. Wolfgang Meyer
Heinz-Nixdorf-Berufskolleg, Essen
Beauftragter für Ingenieur-Studiengänge der FOM Hochschule

FSC® C083411
vollen Quellen

PPapier aus verantwortungs-

Alle in diesem Buch enthaltenen Informationen wurden nach bestem Wissen zusammengestellt
und mit Sorgfalt geprüft und getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem
Grund sind die im vorliegenden Buch enthaltenen Informationen mit keiner Verpflichtung oder
Garantie irgendeiner Art verbunden. Autor(en, Herausgeber) und Verlag übernehmen infolgedessen
keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf
irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht.
Ebenso wenig übernehmen Autor(en, Herausgeber) und Verlag die Gewähr dafür, dass die
beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von
Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne
besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen-
und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt
werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.
Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen
daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner
Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) – auch nicht für Zwecke der Unterrichts-
gestaltung – reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt
oder verbreitet werden.

© 2021 Carl Hanser Verlag München
Internet: www.hanser-fachbuch.de

Lektorat: Frank Katzenmayer
Herstellung: Anne Kurth
Covergestaltung: Max Kostopoulos
Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München
Titelbild: © shutterstock.com/TRUNCUS
Satz: Eberl & Kœsel Studio GmbH, Krugzell
Druck und Bindung: CPI books GmbH, Leck
Printed in Germany

Print-ISBN 978-3-446-46823-8
E-Book-ISBN 978-3-446-46896-2

6  ﻿Vorwort des Herausgebers

Das können sein:
�� Studenten an Fachhochschulen und Berufsakademien,
�� Studenten an Fachschulen für Technik,
�� Schüler an beruflichen Gymnasien und Berufsoberschulen,
�� Schüler in der Assistentenausbildung,
�� Meister, Facharbeiter und Gesellen während und nach der Ausbildung,
�� Umschüler und Rehabilitanden,
�� Teilnehmer an Fort- und Weiterbildungskursen,
�� Autodidakten.

Wie können Sie mit diesem Buch lernen?

Ganz gleich, ob Sie mit diesem Buch in Hochschule, Schule, Betrieb, Lehrgang oder zu
Hause lernen, es wird Ihnen Freude machen!
Warum?
Ganz einfach, weil wir Ihnen ein Buch empfehlen, das in seiner Gestaltung die Grund-
gesetze des menschlichen Lernens beachtet.
– Ein Lernbuch also! –
Sie setzen sich kapitelweise mit den Lehr-, Lerninhalten auseinander. Diese sind in über-
schaubaren Lernsequenzen schrittweise dargestellt. Die zunächst verbal formulierten
Lehr-, Lerninhalte werden danach in die softwarespezifische Darstellung umgesetzt. An
ausgewählten Beispielen konkretisiert und veranschaulichen die Autoren diese Lehr- bzw.
Lerninhalte.
– Also auch ein unterrichtsbegleitendes Lehr-/Lernbuch mit Beispielen! –
Für das Suchen bestimmter Inhalte steht Ihnen das Inhaltsverzeichnis am Anfang des
Buches zur Verfügung. Sachwörter finden Sie am Ende des Buches. Bücher zur vertiefenden
und erweiterten Anwendung sind im Literaturverzeichnis zusammengestellt.
– Selbstverständlich mit Sachwortregister, Inhalts-und Literaturverzeichnis! –
Sicherlich werden Sie durch intensives Arbeiten mit diesem Buch Ihre „Bemerkungen zur
Sache“ unterbringen und es so zu Ihrem individuellen Arbeitsmittel ausweiten:
– So wird am Ende Ihr Buch entstanden sein! –
Möglich wurde dieses Buch für Sie durch die Bereitschaft der Autoren und die intensive
Unterstützung des Verlages mit seinen Mitarbeitern. Ihnen sollten wir herzlich danken.
Beim Lernen wünsche ich Ihnen viel Freude und Erfolg!
Ihr Herausgeber
Manfred Mettke

Die vierte Auflage war schon nach kurzer Zeit vergriffen. Das ist ein deutliches Indiz für die
zunehmende Digitalisierung unseres Alltags. Neben der alltäglichen digitalen Kommunika-
tion und der beruflichen wie privaten Nutzung des Internets rückt die Lösung von Problem-
stellungen mit Hilfe der Programmierung immer mehr in den schulischen, studentischen
und beruflichen Fokus. C/C++ ist eine in der Wirtschaft sehr weit verbreitete, problemori-
entierte Programmiersprache. Das Erlernen anhand konkreter Problemstellungen ist eine
praxisorientierte Investition in die eigene berufliche Zukunft.
Der pädagogische Ansatz so wenig Theorie wie nötig, so viel Praxis wie möglich kommt bei
den Leserinnen und Lesern offensichtlich gut an. Aber nichtsdestotrotz ist ein theoretischer
Hintergrund für das Schreiben guter Programme weiterhin unverzichtbar.
Wie in den bisherigen Auflagen legen wir als Autoren besonderen Wert auf die Problemana-
lyse, also auf die theoretische Durchdringung der Aufgabenstellung, ohne die beispiels-
weise ein späterer Programmtest nicht möglich wäre. Syntaktische Fehler zeigt der Compi-
ler an, für die logischen Fehler ist allein der Programmierer verantwortlich. Die Vorstufe zur
Umsetzung der Problemanalyse in ein C/C++-Programm ist das Struktogramm nach Nassi-
Shneiderman, das sich in der strukturierten Programmierung gegenüber dem Programm
ablaufplan durchgesetzt hat und auch in diesem Buch durchgängig Verwendung findet.
Zusätzlich zu den umfangreichen Aufgaben, Beispielen und den nach Schwierigkeitsgrad
gestaffelten Problemstellungen haben wir in die fünfte Auflage die Monte-Carlo-Methode,
die Volumenberechnung von Rotationskörpern und einen Primzahlalgorithmus aufgenom-
men, wie er in vielen Sicherungsverfahren digitaler Codierung verwendet wird. Und zur
Steigerung der Motivation haben wir schon weit vorne „Ein erstes Programm in C“ einge-
baut, denn wir wissen, dass nichts motivierender ist als der Erfolg.
Wir wünschen Ihnen also viel Freude und gute Ergebnisse beim Programmieren mit C/C++!
Norbert Heiderich
Wolfgang Meyer

Vorwort der Autoren

Einleitung . 	 15

1	 Systematik der Problemlösung . 	 19
1.1	 Phasen der Programmentwicklung . 	 19
1.2	 Software-Lebenszyklus . 	 21
1.3	 Software-Entwicklungsverfahren . 	 23

2	 Erste Gehversuche mit C/C++ . 	 28
2.1	 Warum gerade C/C++? . 	 28
2.2	 Compiler und Interpreter . 	 30
2.3	 Übersetzen eines C/C++-Programms . 	 32
2.4	 Programmstart . 	 33

3	 Die Entwicklungsumgebung Visual C++ . 	 34
3.1	 Installation von VC++ . 	 34
3.2	 Starten von VC++ . 	 36
3.3	 Erstellen eines neuen Projektes . 	 38

3.3.1	 Win32-Projekte . 	 39
3.3.1.1	 Variante 1 – VC++ leistet Vorarbeit . 	 40
3.3.1.2	 Variante 2 – leeres Projekt . 	 41

3.3.2	 CLR-Projekte . 	 44
3.4	 Übersetzen eines eigenen Programms . 	 46
3.5	 Ausführen eines eigenen Programms . 	 49
3.6	 Paradigmen der Projektorganisation . 	 49
3.7	 Ein erstes Programm in C/C++ . 	 51

4	� Grundlegende Sprach- und Steuerungselemente 	 54
4.1	 Kommentare . 	 54
4.2	 Datentypen und Variablen . 	 55

4.2.1	 Variablennamen . 	 56
4.2.2	 Ganzzahlige Variablen . 	 56
4.2.3	 Fließkommazahlen . 	 58
4.2.4	 Zeichen . 	 59

Inhalt

10  Inhalt

4.2.5	 Felder . 	 60
4.2.5.1	 Eindimensionale Felder . 	 60
4.2.5.2	 Mehrdimensionale Felder . 	 61
4.2.5.3	 Zugriff auf die Elemente eines Feldes 	 63
4.2.5.4	 Startwertzuweisung für ein- und

mehrdimensionale Arrays . 	 65
4.2.6	 Zeichenketten . 	 67

4.3	 Konstanten . 	 68
4.4	 Operatoren . 	 69

4.4.1	 Vorzeichenoperatoren . 	 69
4.4.2	 Arithmetische Operatoren . 	 69

4.4.2.1	 Addition + . 	 69
4.4.2.2	 Subtraktion − . 	 69
4.4.2.3	 Multiplikation * . 	 70
4.4.2.4	 Division / . 	 70
4.4.2.5	 Modulo % . 	 70
4.4.2.6	 Zuweisung = . 	 70
4.4.2.7	 Kombinierte Zuweisungen . 	 71
4.4.2.8	 Inkrementierung ++ . 	 71
4.4.2.9	 Dekrementierung -- . 	 72

4.4.3	 Vergleichsoperatoren . 	 72
4.4.3.1	 Gleichheit == . 	 72
4.4.3.2	 Ungleichheit != . 	 72
4.4.3.3	 Kleiner < . 	 73
4.4.3.4	 Größer > . 	 73
4.4.3.5	 Kleiner gleich <= . 	 73
4.4.3.6	 Größer gleich >= . 	 74

4.4.4	 Logische Operatoren . 	 74
4.4.4.1	 Logisches NICHT ! . 	 74
4.4.4.2	 Logisches UND && . 	 74
4.4.4.3	 Logisches ODER || . 	 74

4.4.5	 Typumwandlungsoperator . 	 75
4.4.6	 Speicherberechnungsoperator . 	 75
4.4.7	 Bedingungsoperator . 	 76
4.4.8	 Indizierungsoperator . 	 77
4.4.9	 Klammerungsoperator . 	 77

4.5	 Anweisungen und Blöcke . 	 79
4.6	 Alternationen . 	 79

4.6.1	 Einfache Abfragen (if – else) . 	 79
4.6.2	 Mehrfachabfragen (else – if) . 	 80
4.6.3	 Die switch-case-Anweisung . 	 81

4.7	 Iterationen . 	 83
4.7.1	 Zählergesteuerte Schleifen (for) . 	 83
4.7.2	 Kopfgesteuerte Schleifen (while) . 	 87
4.7.3	 Fußgesteuerte Schleifen (do – while) . 	 88
4.7.4	 Schleifenabbruch (continue) . 	 89

Inhalt  11

4.7.5	 Schleifenabbruch (break) . 	 90
4.7.6	 Schleifenumwandlungen . 	 92

4.8	 Funktionen . 	 92
4.8.1	 Formaler Aufbau einer Funktion . 	 93

4.8.1.1	 Der Funktionskopf . 	 94
4.8.1.2	 Der Funktionsrumpf . 	 95

4.8.2	 Datentyp und Deklaration einer Funktion – Prototyping 	 96
4.8.3	 Das Prinzip der Parameterübergabe . 	 101

4.8.3.1	 Aufrufverfahren call by value . 	 101
4.8.3.2	 Aufrufverfahren call by reference . 	 103
4.8.3.3	 Adressoperator, Zeiger und Dereferenzierung 	 106

4.8.4	 Regeln für ein erfolgreiches Prototyping . 	 107
4.8.5	 Die exit()-Funktion . 	 108
4.8.6	 Rekursive Funktionen . 	 108

4.9	 Ein- und Ausgabe . 	 111
4.9.1	 Formatierte Eingabe mit scanf() . 	 111
4.9.2	 Formatierte Ausgabe mit printf() . 	 112
4.9.3	 Arbeiten mit Dateien . 	 113

4.9.3.1	 Öffnen der Datei . 	 114
4.9.3.2	 Verarbeiten der Datensätze . 	 114
4.9.3.3	 Schließen der Datei . 	 115
4.9.3.4	 stdio.h . 	 115
4.9.3.5	 fflush() und stdin . 	 117

5	 Strukturierte Programmierung . 	 118
5.1	 Problemstellung . 	 119
5.2	 Problemanalyse . 	 120
5.3	 Struktogramm nach Nassi-Shneiderman . 	 123

5.3.1	 Sequenz . 	 125
5.3.2	 Alternation . 	 127
5.3.3	 Verschachtelung . 	 128
5.3.4	 Verzweigung . 	 129
5.3.5	 Schleifen . 	 131

5.3.5.1	 Zählergesteuerte Schleife . 	 131
5.3.5.2	 Kopfgesteuerte Schleife . 	 135
5.3.5.3	 Fußgesteuerte Schleifen . 	 137
5.3.5.4	 Endlosschleifen . 	 138
5.3.5.5	 Kriterien zur Schleifenauswahl . 	 138

5.3.6	 Programm- oder Funktionsaufruf . 	 138
5.3.7	 Aussprung . 	 139
5.3.8	 Rechnergestützte Erstellung von Struktogrammen 	 140

5.3.8.1	 StruktEd . 	 140
5.3.8.2	 hus-Struktogrammer . 	 147

5.4	 Flussdiagramm nach DIN 66001 . 	 155
5.5	 Programmerstellung . 	 157
5.6	 Programmtest . 	 157

12  Inhalt

5.7	 Programmlauf . 	 158
5.8	 Dokumentation nach DIN 66230 . 	 159

5.8.1	 Funktion und Aufbau des Programms . 	 159
5.8.2	 Programmkenndaten . 	 160
5.8.3	 Betrieb des Programms . 	 161
5.8.4	 Ergänzungen . 	 161

5.9	 Aspekte des Qualitätsmanagements EN-ISO 9000 . 	 162
5.10	Algorithmus – was ist das? . 	 163
5.11	EVA-Prinzip . 	 169
5.12	Programmierung von Formelwerken . 	 170

6	 Lösung einfacher Probleme . 	 175
6.1	 Umrechnung von Temperatursystemen . 	 175
6.2	 Flächenberechnung geradlinig begrenzter Flächen (Polygone) 	 181

6.2.1	 Erste Problemvariation: Berechnung der Schwerpunktkoordinaten
S(xS ; yS) von polygonförmig begrenzten Flächen 	 188

6.2.2	 Zweite Problemvariation: Suche nach
einem „günstigen“ Treffpunkt . 	 189

6.2.3	 Eine Projektidee: Wohnflächenberechnung . 	 190
6.3	 Berechnung einer Brückenkonstruktion . 	 191
6.4	 Schaltjahrüberprüfung . 	 195
6.5	 Ein Problem aus der Energiewirtschaft . 	 201
6.6	 Logarithmische Achsenteilung . 	 211
6.7	 Berechnung der Kreiszahl π . 	 218

6.7.1	 Berechnung nach Archimedes (287 – 212 v. Chr.) 	 219
6.7.2	 Berechnung mit der Monte-Carlo-Methode . 	 221
6.7.3	 π in C/C++-Programmen . 	 226

6.8	 Primzahlen – Sieb des Eratosthenes . 	 227

7	 Objektorientierte Programmierung (OOP) . 	232
7.1	 Modellbildung mittels Abstraktion . 	 232
7.2	 Klassen und Objekte . 	 233
7.3	 Attribute und Methoden einer Klasse . 	 236
7.4	 Bruchrechnung mit OOP . 	 237
7.5	 Vererbung . 	 246
7.6	 Strings . 	 252
7.7	 Typumwandlungen . 	 254
7.8	 Strukturierte Programmierung vs. OOP . 	 257

8	 Lösung fortgeschrittener Probleme . 	259
8.1	 Grafische Darstellung funktionaler Abhängigkeiten 	 259

8.1.1	 Welt- und Screenkoordinaten . 	 261
8.1.2	 Koordinatentransformationen . 	 263
8.1.3	 Darstellung der Sinusfunktion . 	 269
8.1.4	 Darstellung quadratischer Parabeln . 	 273
8.1.5	 Spannungsteilerkennlinien . 	 276

Inhalt  13

8.2	 Lösung technisch-wissenschaftlicher Probleme . 	 278
8.2.1	 Widerstandsreihen E6 bis E96 . 	 278
8.2.2	 Farbcodierung von Widerständen nach DIN 41429 	 281
8.2.3	 Fourier-Synthese periodischer empirischer Funktionen 	 284
8.2.4	 Fourier-Analyse empirischer Funktionen . 	 292

8.3	 Nullstellenbestimmung von Funktionen . 	 297
8.3.1	 Inkrementverfahren und Intervallhalbierung 	 297
8.3.2	 Die regula falsi . 	 302
8.3.3	 Das Newton-Verfahren . 	 304

8.4	 Numerische Integration . 	 307
8.4.1	 Riemannsche Unter- und Obersummen . 	 307
8.4.2	 Trapezregel . 	 311
8.4.3	 Simpsonsche Regel . 	 316
8.4.4	 Effektivwertberechnungen . 	 321
8.4.5	 Volumenberechnung . 	 323

8.5	 Einbindung eigener Klassen . 	 331
8.5.1	 Das „Platinenproblem“ als objektorientierte Konsolenanwendung . 	 331
8.5.2	 Das „Platinenproblem“ in der Erweiterung mit grafischer

Benutzeroberfläche . 	 336

9	 Lösung komplexer Probleme . 	340
9.1	 Kurvendiskussion und Funktionsplotter am Beispiel
	 ganzrationaler Funktionen bis 3. Ordnung . 	 340
9.2	 Ausgleichsrechnung – Bestimmung der „besten“ Geraden
	 in einer Messreihe . 	 343
9.3	 Digitaltechnik . 	 353

10	 Tabellen und Übersichten . 	367
10.1	Datentypen und ihre Wertebereiche . 	 367
10.2	Vergleich der Symbole nach DIN 66 001 und
	 der Nassi-Shneiderman-Darstellung . 	 368
10.3	Schlüsselwörter ANSI C . 	 369
10.4	Erweiterte Schlüsselwörter C++ . 	 371
10.5	ASCII-Tabelle . 	 374
10.6	Standardfunktionen und ihre Zuordnung zu
	 den Header-Dateien (Include) . 	 376

Literatur . 	380

Index . 	381

1
Einst löste Alexander der Große den Gordischen Knoten sehr unkonventionell mit dem
Schlag seines Schwertes. An den kunstvoll geknoteten Stricken, die einen Streitwagen un
trennbar mit seinem Zugjoch verbinden sollten, waren zuvor die Gelehrten gescheitert. Sie
versuchten, ihn ohne Beschädigung zu entfernen, quasi die Verknotungen umzukehren.
Dies zeigt deutlich, dass ein Problem komplex und damit sogar unlösbar werden kann,
wenn man nicht fähig ist, es unvoreingenommen zu betrachten, wenn man sich nicht von
unvermeidbar erscheinenden Lösungswegen trennen kann. Die Lösung des Problems soll
das Ziel sein – aber auch der Weg dorthin!
Zur Lösung eines Problems mit Hilfe eines Rechners geht man üblicherweise in mehreren
Einzelschritten vor. Diese Vorgehensweise ist sinnvoll, weil die in jedem Schritt anfallenden
Probleme häufig so speziell sind, dass Fachleute des jeweiligen Gebietes sie lösen müssen.
So muss z. B. ein Betriebsführer, der eine Problemstellung sehr genau aus der Sicht des
Betriebsablaufes beschreiben und sicherlich aus dieser Sicht auch erste Strategien ent
wickeln kann, nicht notwendigerweise auch derjenige sein, der mögliche Auswirkungen auf
die Buchführung und Abrechnung des Unternehmens beurteilen, oder zur Auswahl geeig-
neter Programmierelemente und einzusetzender Hardware einen Beitrag leisten kann.

■■ 1.1 �Phasen der Programmentwicklung

In den Anfängen der Datenverarbeitung waren Systemanalyse und methodisches Vorgehen
bei der Entwicklung von Software beinahe bedeutungslos und der heute gebräuchliche
Begriff Softwareengineering war noch nicht geprägt. Die erste Phase des Softwareerstel-
lungsprozesses ist die Systemanalyse. Der Systemanalytiker beschreibt hier die für seine
Fragestellung relevanten Elemente und deren Beziehungen zueinander.
Die ersten Rechner waren von den Abmessungen her groß und von der Leistungsfähigkeit
aus heutiger Sicht sehr bescheiden. Hardware war so teuer, dass kleinere Unternehmen in
der Regel die Verarbeitung ihrer Daten Service-Rechenzentren übergaben. Diese Rechen-
zentren entwickelten und warteten auch die individuellen Programme ihrer Kunden. Die
eigene Datenverarbeitung im Hause bedeutete immense Investitionen, und die Software
wurde dann mehr oder weniger individuell um die vorhandene Hardware „gestrickt“.

Systematik der
Problemlösung

20  1 Systematik der Problemlösung

Die steigende Leistungsfähigkeit und der Preisverfall mit jeder neuen Generation von Rech-
nern eröffneten nach und nach immer neue Einsatzgebiete. So konnte man zunehmend
integrierte Systeme entwickeln. Allerdings wurden mit dem wachsenden Integrationsgrad
der Software die Programme und Programmsysteme komplexer.
Betrachtet man zu den Anfängen der Datenverarbeitung in mittleren bis großen Unter
nehmen das Verhältnis der Kosten von Hard- zur Software, so lag die bei etwa 85 : 15. Die
gleiche Bewertung liefert heute ein Verhältnis von 10 : 90. Vergleicht man das Kostenver-
hältnis der Hard- zur Software im PC-Bereich, so ergibt sich für einen normalen Anwender
in einem kleinen bis mittleren Betrieb ein ganz anderes Bild. Hier liegt das Verhältnis
nahezu bei 50 : 50.
Der Einsatz von Datenverarbeitung in neuen Anwendungsgebieten ist primär ein Problem
der Qualität, Funktionalität und Verfügbarkeit der Software zum richtigen Zeitpunkt und zu
einem vertretbaren Preis. Damit wird deutlich, dass die Entwicklung von Software ein hoch-
komplexes Unterfangen ist und ein abgestimmtes, methodisches Verfahren und organisa
torisches Vorgehen verlangt. Zusammengefasst wird dies unter dem Begriff Softwareengi-
neering.
Softwareengineering wurde als Vorgehensweise zur Verbesserung der bis dahin unbefrie
digenden Situation bei der Softwareentwicklung und -wartung betrachtet. Software sollte
produziert werden können wie Produkte aus der industriellen Fertigung: solide, zuverlässig
und kontrollierbar. Aus diesen Anfängen entwickelte sich die heutige Definition:

Unter Softwareengineering versteht man die Anwendung von Strategien,
Methoden, Werkzeugen und Kontrollinstrumenten im gesamten Prozess der
Softwareentwicklung und -wartung einschließlich des Managements.



Die Beschäftigung mit Softwareengineering setzt nun einen gewissen Erfahrungsschatz in
der Softwareentwicklung voraus. Bei der Softwareentwicklung im Kleinen geht es um die
Umsetzung überschaubarer Problemstellungen in rechnergestützte Lösungen. Dem Anwen-
der der fertigen Software sollen möglichst viele, von ihm bisher evtl. mit anderen Hilfs
mitteln erledigte Arbeitsschritte durch einen Rechner abgenommen werden. Dabei stehen
die Auswahl und das Design einzelner Konstrukte im Vordergrund, was für die korrekte
Funktionsweise und das spätere Verständnis eines Bausteins absolut wesentlich ist. Bei der
Softwareentwicklung im Großen geht es um die zweckmäßige, fast generalstabsmäßige
Organisation eines Arbeitsvolumens von vielen Mann-Jahren. (In der Informatik wird der
Begriff Mann-Tage, Mann-Monate oder Mann-Jahre als Aufwandsmaß eines abstrakten
Wesens verwendet, das während seiner Arbeitszeit weder männlich noch weiblich ist.)
In manchem ist das Softwareengineering mit der Arbeitsorganisation in herkömmlichen
Produktions- und Konstruktionsprozessen vergleichbar. Softwareengineering beschäftigt
sich mit Arbeitsabläufen in und um die Softwareentwicklung herum. Neben dem eigent
lichen Entwicklungsprozess sind dies:

�� Projektmanagement,
�� Qualitätssicherung und
�� Projektverwaltung.

1.2 Software-Lebenszyklus  21

Unter Projektmanagement versteht man die Gesamtheit von Führungsauf-
gaben bei der Abwicklung eines Projekts, z. B. Fragen der Projektorganisation.
Bei der Qualitätssicherung geht es einerseits um formelle, konstruktive und
analytische Kontrollmaßnahmen während des gesamten Entwicklungspro
zesses, andererseits um interpersonelle Techniken, also darum, dafür Sorge
zu tragen, dass alle Aufgaben von möglichst geeigneten Mitarbeitern erledigt
werden.
Die Projektverwaltung (auch: Konfigurationsmanagement) beschäftigt sich
mit der Bereitstellung und Verwaltung aller Ressourcen für den Softwareent-
wicklungsprozess sowie mit allen nebengelagerten Prozessen. Dazu gehören
u. a. die Organisation der Speicherung aller Programmvarianten einschließlich
der Dokumentationen sowie die notwendigen Update-Dienste.



■■ 1.2 �Software-Lebenszyklus

Der Software-Lebenszyklus ist ein abstraktes Modell für den Lebenslauf einer jeden Soft-
ware und die Grundlage für alle weiteren Betrachtungen zur Softwaretechnologie. Die meis-
ten Aktivitäten, Methoden und Werkzeuge der Softwaretechnologie lassen sich anhand
dieses Modells ein- und zuordnen. Für den konkreten Ablauf der Arbeit ist das Projekt
management verantwortlich.
Der Software-Lebenszyklus stellt ein Modell für alle Aktivitäten während der Existenz
einer Software dar. Man kann im Wesentlichen drei Teile unterscheiden:

�� die eigentliche Softwareentwicklung, bei der das neue System aufgebaut wird;
�� den laufenden Betrieb, währenddessen das System produktiv arbeitet, und
�� die Außerbetriebnahme des Systems mit der Sicherstellung der Datenbestände für
Nachfolgesysteme und der Entsorgung von Altdaten.

Während des laufenden Betriebs werden immer wieder ungeplante und geplante Unter
brechungen durch Wartung der eigentlich verschleißfreien Software erfolgen. Diese War-
tungsarbeiten sind notwendig, um während des laufenden Betriebs festgestellte Fehler oder
Effizienzverluste in den Programmen zu beheben oder die Software an geänderte Bedingun-
gen des Umfeldes, in dem sie abläuft, anzupassen. Die Außerbetriebnahme einer Software
erfolgt ebenso in der Regel aus dem laufenden Betrieb heraus. Schematisch lässt sich der
Software-Lebenszyklus darstellen wie in Bild 1.1.

22  1 Systematik der Problemlösung

Planung

Spezifikation

Entwurf

Codierung

Stilllegung

Betrieb

Test

Bild 1.1 Software-Lebenszyklus

Bei der Entwicklung eines Systems werden die Zyklen Planung bis Test als Abfolge von
einzelnen Phasen durchlaufen. In jeder Phase können unterschiedliche Mitarbeiter an der
Realisierung des Projektes beteiligt sein, die ihre Ergebnisse jeweils für die nächste Phase
zur Verfügung stellen. Der Betriebszyklus umfasst während der gesamten Lebensdauer des
Systems dessen Unterhalt und Weiterentwicklung bis zur Außerbetriebnahme des Systems.
Betrachtet man nun die Kostenseite, so verursachen die ersten vier Zyklen etwa 40 % der
Gesamtsystemkosten; die restlichen 60 % der Kosten entfallen auf den Betrieb des Systems.
Die einzelnen Zyklen lassen sich inhaltlich folgendermaßen beschreiben:

�� Die Planung umfasst eine Voruntersuchung des künftigen Systems mit den entsprechen-
den Wirtschaftlichkeitsberechnungen und bildet die Entscheidungsgrundlage die Recht-
fertigung und somit die Freigabe zur Entwicklung des neuen Systems. In der Praxis wird
dazu zunächst eine Studie beauftragt, über deren Ergebnis ein sog. Lenkungsausschuss
befindet.

�� Bei der Spezifikation werden die wesentlichen Anforderungen und Leistungsparameter
des neuen Systems festgelegt. Dies ist gleichzeitig der Zeitpunkt der Erstellung eines sog.
Pflichtenheftes, das eine exakte Beschreibung des zu erstellenden Systems liefert und die
Basis bildet für die Programmdokumentation und das Anwenderhandbuch.

�� Der Entwurf des Systems schlüsselt die Anforderungen und Leistungsparameter schritt-
weise auf bis ein Detaillierungsgrad erreicht ist, bei dem die fachlichen Anforderungen
und der fachliche Lösungsweg in Form von Elementarprozessen umfassend beschrieben
sind. Am Ende müssen alle fachlichen und datenverarbeitungstechnischen (kurz: DV-
technischen) Anforderungen festgelegt sein. Zu diesem Zeitpunkt ist eine umfassende
Problemanalyse abgeschlossen, das Pflichtenheft liegt in seiner endgültigen Form vor
und alle an der Erstellung der neuen Software beteiligten Personen verfügen über aus
reichende Fachkenntnis, um den nächsten Schritt angehen zu können.

�� Die Codierung umfasst die eigentliche Programmkonstruktion mit der Programmierung
der neu zu erstellenden Software.

�� Der Test dient der Aufdeckung von Entwurfs- und Codierungsfehlern. Werden Fehler
entdeckt, so wird die Software zur Korrektur an die Codierungsphase zurückgewiesen.
Lassen sich Fehler nicht lokal beheben, z. B. weil ihre Ursache bereits im Entwurf liegt, so
wird die Software bis in die Entwurfsphase zurückverwiesen. Diese Testphase blockiert
die weitere Entwicklung, bis eine sachlich und fachlich richtige Ausführung der einzel-
nen Programmkomponenten sowie des Gesamtsystems gesichert werden kann. Dabei

1.3 Software-Entwicklungsverfahren  23

sollten Testhilfen eingesetzt werden, die sicherstellen, dass alle möglichen Fälle, die auf-
treten können, auch tatsächlich einmal durchlaufen worden sind.

�� Der Betrieb einer Software wird bis zur Außerbetriebnahme immer wieder durch kor
rigierende oder geplante Wartung der Software unterbrochen. Das reicht von Eingriffen
in die Konfigurationsdateien über das selektive Einspielen neuer Systemkomponenten
(sog. Patches) bis hin zur Modifikation oder Neuentwicklung ganzer Systemteile. Beson-
ders kritisch wird der Betrieb, wenn aus Sicherheitsgründen eine alte und eine neue
Softwareversion parallel gefahren werden müssen.

�� Bei der Stilllegung einer Software kommt es schließlich darauf an, wesentliche Nutzdaten
sicherzustellen, die für die Konfiguration und Initialisierung von Nachfolgesystemen sonst
erst aufwendig akquiriert werden müssten, möglicherweise datenschutzrelevante Daten
zuverlässig aus dem System zu entfernen und alle Arten von Datenmüll zu beseitigen.
Dies ist nicht nur eine Frage der vorbeugenden Hygiene im Rechnersystem, sondern wegen
möglicher Fernwirkungen auf später zu installierende Software dringend notwendig.

■■ 1.3 �Software-Entwicklungsverfahren

Alle EDV-Projekte (EDV = elektronische Datenverarbeitung) haben einen typischen und
gleichartigen im Software-Lebenszyklus bezeichneten Ablauf, der in einzelne Abschnitte
unterteilt werden kann. Diese einzelnen Abschnitte oder Phasen lassen sich in einer sehr
stark standardisierten Form darstellen und führen zu den Phasenmodellen. Prinzipiell
kann jedes EDV-Projekt in zwei große Bearbeitungsbereiche, Entwurf und Realisierung,
zerlegt werden. Jeder dieser beiden Blöcke muss für die weitere Bearbeitung in einzelne
Abschnitte aufgesplittet werden. Ein Phasenmodell entsteht im Prinzip durch genaue Defi-
nition und Abgrenzung der einzelnen Abschnitte des Software-Lebenszyklus.
Eine zu grobe Unterteilung der einzelnen Phasen lässt einen großen Spielraum innerhalb
der einzelnen Phase zu und erhöht damit die Fehlerwahrscheinlichkeit. Eine zu feine Unter-
teilung der Phasen verzögert die Bearbeitung wegen der häufigen Unterbrechungen durch
externe Entscheidungen. Sinnvolle Phasenmodelle unterscheiden zwischen drei und sechs
Phasen, in Abhängigkeit vom Projektumfang. Hier soll von einem 6-Phasenmodell wie in
Bild 1.2 ausgegangen werden.

Realisierung

DV-Projekt

Entwurf

Vorstudie

Grobkonzept

Detailkonzept

Systemtest

Systemeinführung

Realisierung

Bild 1.2 Das 6-Phasenmodell

24  1 Systematik der Problemlösung

Die einzelnen Phasen lassen sich wie folgt beschreiben:
�� Die Vorstudie ist ein Abklärungsprozess, dem unmittelbar eine Entscheidung bezüglich
der möglichen Lösungsvarianten folgt. Dabei wird die Zielrichtung für die Gestaltung des
neuen Projektes festgelegt. Folgende Punkte müssen in einer Vorstudie enthalten sein:

�� Beschreibung der Ausgangslage und Begründung für die Entwicklung einer neuen
Lösung

�� Konkrete Zielvorstellung
�� Vollständige Beschreibung des Ist-Zustandes und Schwachstellenanalyse
�� Vor- und Nachteile der heutigen Lösung mit Schwachstellenbeschreibung
�� Gestellte Anforderungen und Wünsche an die neue Lösung
�� Beschreibung der Lösung mit möglichen Alternativen
�� Bewertung der Lösung und der möglichen Alternativen
�� Wirtschaftlichkeitsüberlegungen
�� Planung und Freigabe der nächsten Phase

�� Auf der Basis der in der Vorstudie favorisierten Lösungsmöglichkeit muss eine generelle
Lösung mit den möglichen Varianten in einem betrieblichen und DV-technischen Grob-
konzept erarbeitet werden. Die Lösung muss hier so detailliert sein, dass eine fachliche
und sachliche Beurteilung und Bewertung möglich ist. Inhalt dieser Phase ist:

�� EDV-technische Konzeption der Funktionen, Abläufe, Transaktionen, Datenstruktu-
ren, Festlegung der Verarbeitungsmodalitäten und des weiteren Vorgehens

�� Betriebliche Konzeption der Funktionen, Abläufe, Transaktionen, Layouts, Ausfallver-
fahren, Verarbeitungsmodalitäten und weiteres Vorgehen

�� Definition der betrieblichen Einführungsstufen
�� Test- und Einführungskonzeption
�� Überprüfung der Lösung
�� Wirtschaftlichkeitsberechnungen
�� Planung und Freigabe für die nächste Phase

�� In der Phase Detailkonzept ist das komplette fachliche und technische Systemdesign defi-
nitiv und abschließend zu erarbeiten. Ungelöste Probleme sind in dieser Phase nicht mehr
zulässig. Die EDV-technische und betriebliche Machbarkeit muss sichergestellt sein.

�� Detaillierung und Komplettierung der EDV-technischen Konzeption
�� Detaillierung und Komplettierung der betrieblichen Konzeption
�� Detaillierung und Komplettierung der betrieblichen Einführungsstufen
�� Detaillierung und Komplettierung der Test- und Einführungskonzeption
�� Überprüfung aller Konzeptionen
�� Wirtschaftlichkeitsberechnungen
�� Planung und Freigabe für die nächste Phase

�� Die Phase Realisierung stellt die reine Umsetzung der erstellten Konzeption in Pro-
gramme dar. Zu diesem Zeitpunkt muss die komplette Dokumentation, wie Benutzer-
handbücher und Operatorhandbuch, vorliegen.

1.3 Software-Entwicklungsverfahren  25

�� Erstellung der Programme
�� Erstellung der JOB-Control/Shell-Skripte
�� Einzel- und Integrationstest der Programme
�� Erstellung des Einführungsplans
�� Planung und Freigabe für die nächste Phase

�� Die realisierten Teile aus der vorhergegangenen Phase werden während des Systemtests
auf ihre Richtigkeit und Vollständigkeit unter betrieblichen Gesichtspunkten überprüft.
Es muss dabei vorausgesetzt werden, dass die einzelnen Komponenten bereits für sich
alleine ausführlich getestet und abgenommen worden sind. Alle durchgeführten Tests
müssen dokumentiert werden:

�� Dokumentation der Testergebnisse
�� Dokumentation des betrieblichen Tests
�� Einzel- und Integrationstest der Programme
�� Überarbeitung des Einführungsplans
�� Planung und Freigabe für die nächste Phase

�� In der Phase Systemeinführung wird das fertiggestellte und komplett abgenommene
System in die laufende EDV-Produktion integriert. Ein abschließender Funktionstest mit
dem GO-Entscheid stellt allen involvierten Benutzern das neue System zur Verfügung.

�� Systemeinführung und Pilotbetrieb
�� Systemübergabe in die laufende Produktion
�� Konsolidierung und Optimierung des Systems
�� Überarbeiten des Einführungsplans
�� Planung und Freigabe für die nächste Phase

Den Ablauf des klassischen 6-Phasenmodells kann man wie in Bild 1.3 zeitlich darstellen.
Jede Phase schließt normalerweise mit einer Freigabe für die nächste Phase ab.
Wird die Freigabe nicht erteilt, sind solange Korrekturen innerhalb der aktuellen Phase
notwendig, bis eine Freigabe dieser Phase erfolgt (Ablaufpfeile rechts).
Bei sehr gravierenden Fehlern muss im Extremfall mehrere Phasen zurückgesprungen wer-
den, um diese Fehler zu bereinigen. Unter Umständen kann dies sogar zu einem Abbruch
des Projektes führen (Ablaufpfeil links).
Theoretisch besteht in einem solchen Fall (Abbruch) natürlich die Möglichkeit, bis zum
Projektstart zurückzuspringen, aber in der Praxis sind in aller Regel bis zu einem Abbruch-
zeitpunkt bereits erhebliche Kosten verursacht worden, ohne dass entsprechende Fort-
schritte erzielt wurden, so dass die Frage, ob ein solches Projekt noch wirtschaftlich sinn-
voll weitergeführt werden kann eher zu verneinen sein wird.
Die Entscheidung über mögliche weitere Vorgehensweisen bei jedem Rücksprung trifft in
jedem Fall der Lenkungsausschuss, dem von den beteiligten Partnern die Personen angehö-
ren, die die wirtschaftlichen Entscheidungen treffen können.

26  1 Systematik der Problemlösung

Projektstart

Produktion und Wartung

Vorstudie

Grobkonzept

Detailkonzept

Realisierung

Systemtest

Systemeinführung

ok?
neinnein

ja

ok?
neinnein

ok?
neinnein

ok?
neinnein

ok?
neinnein

ok?
neinnein

ja

ja

ja

ja

ja
 �Bild 1.3 

Ablauf des 6-Phasenmodells

Für die Bearbeitung der einzelnen Phasen sollte in etwa mit folgenden prozentualen An
teilen des Gesamtentwicklungsaufwands kalkuliert werden:

Entwurf Realisierung
Vorstudie 10 % Realisierung 25 %
Grobkonzept 25 % Systemtest 10 %
Detailkonzept 20 % Systemeinführung 10 %
Summe Anteil 55 % Summe Anteil 45 %

Aus dieser Aufstellung der Aufwände der einzelnen Phasen bei der Umsetzung eines Soft-
wareprojektes wird sehr deutlich, dass die Vorarbeiten, die der eigentlichen Program
mierung vorausgehen, den größten Teil (nämlich 55 %) des Aufwands des Gesamtprojekts
einnehmen. Nur, wenn diese Arbeiten mit der gebotenen und erforderlichen Sorgfalt durch-

1.3 Software-Entwicklungsverfahren  27

geführt werden, besteht die Aussicht, dass das Projekt in der Praxis auch Bestand haben
wird. Und das ist ja schließlich das Ziel der Umsetzung eines jeden Ablaufes in ein „Stück“
Software!
Die eigentliche Codierung des Programms, also die Realisierung, nimmt gerade ein Viertel
des zu kalkulierenden Aufwands ein. Dieser Ansatz kollidiert in der Praxis oftmals mit dem
Anspruch der beteiligten Programmierer, eine „perfekte“ Lösung umzusetzen und an der
einen oder/und (!) anderen Stelle über das in der Entwurfsphase festgelegte und mit dem
Auftraggeber abgesprochene Leistungsmaß der zu entwickelnden Software hinauszuschie-
ßen. Hier besteht die Aufgabe des Projektmanagements darin, solche vermeintlichen Leis-
tungssteigerungen frühzeitig zu erkennen und in angemessener Form zu reagieren. Ein
erfahrener Projektmanager wird die beteiligten Programmierer so frühzeitig wie möglich
an der Entwurfsphase teilhaben lassen, um ihren Erfahrungen und Bedenken schon in
dieser Phase Rechnung tragen zu können. Andererseits kann ein detailverliebter Pro
grammierer eine wichtige Besprechung zwischen Auftraggeber und -nehmer durch seine
Rolle als Bedenkenträger natürlich auch völlig aus dem Ruder laufen lassen, indem er das
Gesamtprojekt ausschließlich aus seinem Blickwinkel als der, der für eine lauffähige Um
setzung zu sorgen haben wird, betrachtet, ohne den nötigen und oftmals erforderlichen
Abstand zu den technischen Anforderungen zu besitzen – also eine echte Gradwanderung
für das Projektmanagement. Werden die Programmierer nämlich erst sehr spät mit dem
Projekt vertraut gemacht, kann nur noch sehr schwer auf tatsächliche Probleme, die aus der
technischen Umsetzung resultieren, reagiert werden. Und das kann natürlich eine rei-
bungslose und termingerechte Umsetzung eines Datenverarbeitungsprojektes massiv ge
fährden.

2
Dieses Kapitel beschäftigt sich mit einigen grundlegenden Aspekten der Programmierspra-
che C/C++. Neben der Frage, warum es sinnvoll ist, gerade mit C/C++ zu arbeiten, werden
Funktionsweisen der Komponenten der Entwicklungsumgebung betrachtet und erläutert.
In den folgenden Kapiteln werden zunächst Beispiele in klassischem C als Konsolenanwen-
dungen realisiert, bevor später objektorientiert mit C++ weitergearbeitet wird. Dann sind
die Beispiele auch mit grafischen Oberflächen ausgestattet.

■■ 2.1 �Warum gerade C/C++?

Wer C/C++ erlernen will, hat sich für eine Programmiersprache entschieden, die auf fast
allen Rechnertypen und unter fast allen Betriebssystemen verfügbar ist. Es steht Ihnen,
anders als bei vielen anderen Programmiersprachen, auf den verschiedensten Entwick-
lungsplattformen eine genormte Standard-Bibliothek zur Verfügung. Damit gelingt eine
einheitliche Implementierung der mit dieser Programmiersprache erstellten Programme
mit sehr hoher Geschwindigkeit.
C wird auch als Highlevel-Assembler bezeichnet, also als Programmiersprache, die sehr nah
an der Maschinensprache ist. Dies beruht auf der Tatsache, dass der Kern (bzw. Kernel)
aller gängigen Betriebssysteme in C geschrieben wurde. Damit eignet sich C/C++ auch in
besonderem Maße für die Systemprogrammierung, also für Programme, die für den Betrieb
von Rechenanlagen erforderlich sind.
Dank der relativ einfachen Struktur und dem geringen Umfang der eigentlichen Sprache,
d. h. der verfügbaren Schlüsselworte der Programmiersprache, war es möglich, C-Compi-
ler, also spezielle Programme zur Übersetzung des vom Programmierer erstellten Codes in
eine maschinenverständliche Sprache, für alle Arten von Prozessorplattformen zu entwi-
ckeln, so dass die Programmiersprache C/C++ heute für die gesamte Leistungspalette vom
Mikrocontroller bis zu High-End-Rechnern verfügbar ist. Für den Entwickler von Software
bedeutet dies: Egal für welche Prozessorplattform programmiert wird, einen C-Compiler
wird man für das relevante Zielsystem bekommen. Man braucht sich nicht um eine Pro-
grammierung zu kümmern, die spezifisch für den jeweiligen Zielprozessor ist. In den meis-

Erste Gehversuche
mit C/C++

2.1 Warum gerade C/C++?  29

ten Fällen wird es möglich sein, die auf einer Plattform entwickelte Anwendung auf einer
anderen Plattform auszuführen. Der erforderliche Anpassungsaufwand ist in aller Regel
sehr überschaubar.

Das bedeutet nicht, dass man fertige Programme von einer Plattform auf
eine andere übertragen kann (etwa von einem Windows-PC auf einen Linux-
PC) und diese dann auf der neuen Plattform (also unter Linux) sofort wieder
funktionieren. Vielmehr ist nur die problemlose Übertragung der Quelltexte
auf ein neues System gemeint, auf dem diese dann mit dem entsprechenden
Compiler und Linker (ein Linker oder Binder ist ein Programm, das einzelne
Programmmodule zu einem ausführbaren Programm verbindet) in ein funk
tionierendes Programm umzuwandeln sind!



Die Tatsache, dass Programme, die in C/C++ geschrieben werden, sehr klein sind (nur in
Assembler – also Maschinensprache – geschriebene Programme sind noch kleiner), macht
C/C++ zu einer wichtigen Programmiersprache im Bereich Embedded Systems (also Syste-
men, die stark einschränkenden Randbedingungen unterliegen, wie geringe Kosten, Platz-,
Energie- und Speicherverbrauch) und der Mikrocontroller-Programmierung, wo Speicher-
platz ebenfalls sehr kostbar ist.
Ein C/C++-Programm wird mit Hilfe eines Compilers (dem Übersetzer des Quelltextes) aus
einer oder mehreren einfachen Textdateien zu Objektcodedateien übersetzt. Diese Objekt-
codedateien werden anschließend von einem Linker (bzw. Linkage-Editor = Binder, Werk-
zeug für das Zusammenfügen übersetzter Programmteile) mit den erforderlichen System
bibliotheken zu einer ausführbaren Datei (der Executable – oder kurz EXE-Datei)
zusammengebunden.

Jedes ausführbare C/C++-Programm besitzt eine Hauptfunktion. In C wird
diese Hauptfunktion als main bezeichnet.



Damit das Betriebssystem erkennen kann, wo der Einstiegspunkt für den Ablauf eines
C/C++-Programms zu finden ist, muss diese Namenskonvention unbedingt eingehalten
werden. Auch wenn andere Entwicklungsumgebungen als das Visual Studio von Microsoft
oder andere Compiler eingesetzt werden, ändert sich an diesem Einstiegspunkt nichts. Vari-
ieren kann allenfalls die Parametrisierung (also die Art, Anzahl oder der Datentyp der Über-
gabeparameter) dieser Hauptfunktion. Dieser Aspekt wird später in Abschnitt 4.8, in dem
es um Funktionen gehen wird, noch ausführlich erläutert.
Darüber hinaus ist es natürlich auch möglich, eigene Programme und/oder Funktionen in
eigenen Bibliotheken zusammenzufassen, um diese später erneut benutzen zu können.
Diese Bibliotheken können bei einem späteren Bindevorgang durch den Linker wieder ver-
wendet werden, damit diese dann zu einem neuen Programm hinzugebunden werden.

Index

A
Abfrage 79
abgeleitete Klasse 246
Ablauflinie 156
abstrakte Klasse 235
Abstraktion 232
abweisende Schleife 136
Achsenbeschriftung 277
Addition 69
Adressoperator 106 f.
Aggregation 246
Aggregatobjekt 246
Algorithmus 163, 182, 236
Alternation 79, 124, 127 f., 140, 145, 154
Anpassungshinweise 161
Anweisungen 79
Archimedes 219
arithmetischer Operator 69
Array 60, 67
ASCII-Tabelle 374
ASCII-Zeichensatz 59
Assoziation 246
Assoziativität 78
Attribut 234, 236, 320
Attributwert 235, 271
Aufgabe 160
Aufgabenlösung 159
Aufgabenstellung 159
Ausgabesymbol 156
Ausgleichsrechnung 343
Ausnahmefehler 271
Außerbetriebnahme 21
Aussprung 125, 139
Auswahl 118, 142
auto 369

B
Basisklasse 246
Batchdatei 108
Bedienung 161
Bedingungsoperator 76
Bemerkung 156
Betrieb 21, 23
Bezeichnung 160
Bibliotheksfunktionen 100
Bildpunkt 262
binäre Operatoren 69
Blöcke 79
bool 372
Boole, Georg 353
break 82, 90, 131, 369
Brückenkonstruktion 191

C
call by reference 103
call by value 101
case 369
case-sensitiv 56
Cast 254
catch 372
char 56, 67, 369
class 372
Codierung 22, 27
const 369
const_cast 372
Container-Klasse 252
continue 89, 369
Copy-and-paste 93

382  Index

D
Datentyp 55
Datentypen und ihre Wertebereiche 367
Debugger 158
default 130, 369
Default-Werte 277
Definition der Funktion 96
Dekade 211
Dekrementierung 72
delete 372
Dereferenzierung 106, 108
Designfehler 33
Deskriptoren 161
destruktives Schreiben 114
Destruktor 240
Detailkonzept 24, 26
deterministische Verfahren 164
Differenzialrechnung 340
Digitalschaltung 355
Digitaltechnik 353
DIN 66001 155
DIN 66230 159
Division 70
do 369
Dokumentation 119, 142, 159, 239
double 58, 369
do – while 88
Dualzahlen 356 f.
dynamic_cast 372
dynamisches Array 225
dynamische Speicherzuweisung 231

E
Eckpunktkoordinate 182
Effektivwertberechnungen 321
eindimensionale Felder 60
einfache Abfrage 79
Eingabesymbol 156
Elemente eines Feldes 63
Elementverweis-Operator 253
else 370
else – if 80
Endlosschleife 85, 131, 138
Energiewirtschaft 201
EN-ISO 9001 162
Entität 234
Entwurf 22 f., 26
enum 370
Eratosthenes 227
E-Reihen 278
Erstes Programm in C 51

erweiterte Schlüsselwörter C++ 371
euklidischer Algorithmus 168
EVA-Prinzip 169
Exception 271
Exemplar 234
explicit 372
explizite Typumwandlungen 254
extern 370, 372
externe Operation 237
Extremstellen 340

F
Fakultätsberechnung 164
false 372
Farbcodierung nach DIN 41429 281
fclose() 115
Fehler 33
Fehlerbehandlung 161
Fehlerquadratsumme 344
Feld 60 ff.
Feld, Felder 60
fflush() 117
fgetc() 114
fgets() 114
FILE 113
Flächenberechnung nach Gauß 182
Fließkommazahl 58
float 58, 64, 370
Flussdiagramm 155, 157
Font 275
fopen() 114
for 83, 370
formatierte Ausgabe 112
formatierte Eingabe 111
Formelwerk 170 f.
Fourier
–– Analyse 292
–– Koeffizient 292
–– Reihen 285
–– Synthese 284

fprintf() 115
fputc() 114
fputs() 114
fread() 115
friend 372
fscanf() 115
Funktion 92
Funktions
–– aufruf 124, 138 f., 268
–– graph 273
–– kopf 93 f.
–– rumpf 93, 95

Index﻿  383

fußgesteuerte Schleife 88, 131, 137 f.
fwrite() 115

G
ganzzahlige Variablen 56
Gaußscher Integralsatz 182
Geheimnisprinzip 235
Gerätebedarf 160
get-Methode 240
Gleichheit 72
goto 370
Graphical User Interface (GUI) 252
Grenzstelle 156
Grobkonzept 24
größer 73
größer gleich 74
GUI 38, 232, 252

H
Hauptprojektdatei 98
Header-Datei 98, 376
Heißleiter 211, 218

I
if 370
if – else 79
Implementierung 157
Implementierungsaufwand 93
implizite Typumwandlung 254
Include 376
Indizierungsoperator 77
Initialisierung 83
Inkludierung 100
Inkrementierung 71
Inkrementverfahren 297
inline 372
Instanz 234, 252
int 56 f., 60 f., 370
IntelliSense 255 f.
Intervallhalbierung 298
Iteration 83, 132, 154

K
Kapselung 234, 239
Kennlinie 276
Kennlinienfeld 276
Klammerungsoperator 77
Klassen 233, 235, 340
–– beschreibung 235

–– diagramm 235
–– hierarchie 246
–– operation 237

kleiner 73
kleiner gleich 73
kombinierte Zuweisung 71
Kommentar 54
Komponente 34, 246
Komposition 246
Konstante 56, 61, 68
Konstruktor 237, 239
Kontrollstruktur 79
Koordinatentransformation 263
kopfgesteuerte Schleife 86 f., 136, 138
Kosinus-Koeffizient 292
Kreiszahl π 218

L
least square fit 344
Leibniz 356
logarithmische Achsenteilung 211 f.
logischer Fehler 157
logisches NICHT 74
logisches ODER 74
logisches UND 74
long 56 f., 112, 370
long int 56

M
malloc() 185
math.h 227
mehrdimensionale Felder 61
Mehrfachabfrage 80
Mehrfachauswahl 371
Message-Box 271
Messreihe 343
Methode 234, 236, 275, 277
Methode überladen 237
mode 114
Modellbildung 232
Modul 93
Modulo-Operator 70
Monte-Carlo-Methode 221
Multiplikation 70
mutable 373

N
nachprüfende Schleife 137
namespace 373
Nassi-Shneidermann 123, 157

384  Index

new 373
Newton-Verfahren 304
nicht-abweisende Schleife 137
NTC 211
Nullstellenbestimmung 297
numerische Integration 307
Nutzungsvereinbarungen 161

O
Obersumme 309, 324
Objekt 233 f., 271
Objektoperation 237
objektorientierte Programmierung (OOP) 118,

156, 232
OOP 116
Operation 236
Operator 69, 373
Ordinalwert 59 f.
Overloading 237

P
Parabel 273
Paradigma 118
Parameterübergabe 101
Planung 22
Pointer 106
Polygone 181
Postfix 71
Potenzfunktion 129
pow() 129
Präfix 71
Präprozessoranweisung 100
Primzahlen 227
printf() 111, 134
Priorität 78
private 236, 239, 247, 373
Problemanalyse 119 f., 170, 175
Problemstellung 119, 175
Programm 175
–– ablauf 158, 160, 254
–– ablaufplan 155
–– aufbau 160
–– aufruf 124
–– bedarf 160
–– erstellung 119, 157
–– lauf 119, 146, 158, 175
–– test 175, 185

Programmierparadigma 118
Programmiersprache 161
Projektmanagement 20 f.
Projektverwaltung 20

protected 236, 240, 373
Protokoll einer Klasse 236
Prototyp 97
Prozeduren 93, 118
Pseudozufallszahlen 223
public 236, 239, 247, 373

Q
Qualitätsmanagement 162
Qualitätssicherung 20, 163

R
rand() 223
Realisierung 23 f., 26
Rechteckfunktion 286, 294
Referenz 103, 105
register 370
regula falsi 302
Reinitialisierung 84
reinterpret_cast 373
Rekursion 108
return 370
Riemannsche Unter- und Obersummen 307
Rotationskörper 323
RSA-Verfahren 227
Rundungsfehler 59

S
scanf() 111, 136
Schaltjahrüberprüfung 195
Schaltnetz 354
Schleifen 118, 124, 131, 148, 153, 197
–– abbruch 89 f.
–– bedingung 86
–– begrenzungssymbol 156
–– kopf 86
–– rumpf 86 ff.
–– steuerungsvariable 85
–– umwandlung 92

Schlüsselwörter ANSI C 369
Schnittstelle 160, 236
Schriftart 275
Schrittweitenwert 273
Schwerpunktkoordinaten 188
Screenkoordinaten 261
Sequenz 118, 124, 139, 143
set-Methode 240
Shannon, Claude E. 353
short 56 f., 112, 370
short int 56, 58, 354

Index  385

Sieb des Eratosthenes 227
signed 57 f., 370 f.
Signifikanz 58
Simpsonsche Regel 316
Sinusfunktion 259, 261, 269
Sinus-Koeffizient 292
sizeof 370
Skalierung 273
Softwareengineering 19
Softwarelebenszyklus 21
SolidBrush 275
Spannungsteiler 276
Spannungsteilerkennlinie 276
Spannungsteilerwiderstand 276
Speicherbedarf 160
Speicherberechnungsoperator 75
Spezifikation 22
sprachbedingte Fehler 33
sqrt() 129, 314
srand() 223
Standardeingabe 87
Standardfunktionen 376
Stapelverarbeitungsdatei 108
Startbedingung 85
Startwertzuweisung 65
static 370
static_cast 373
stdin 87
stdio.h 113
Stilllegung 23
STL 252 f.
Stream 113
string 199, 253
String 252
struct 370
Struktogramm 123, 155, 175
Struktur 113, 236, 346
strukturierte Programmierung 16, 118
Subtraktion 69
switch 371
switch-case 81
syntaktischer Fehler 157
Syntax 54, 65
Systemeinführung 25
Systemtests 25

T
Tagesbelastungskurve 201
Temperatursysteme 175
template 373
Template-Klasse 252
Test 22, 119, 159, 161

Test des Programms 119
TextBox 253, 320
Textstrom 113
this 373
throw 373
Top-down-Verfahren 123
Trapezregel 311
Treffpunktkoordinaten 189
true 374
try 374
try-catch 253
typecast 75
Typecasting 58
typedef 371
typeid 374
typename 374
Typkonvertierung 254
Typmodifizierer 57
Typumwandlung 254, 275
Typumwandlungsoperator 75

U
Übergangsstelle 156
überladene Methode 237, 256
UML 235, 240
unäre Operatoren 69
Ungleichheit 72
union 371
unsigned 56, 58, 112
Untersumme 308, 324
using 374

V
Variable 55 f., 67
Vererbung 246, 258
Vergleichsoperatoren 72
Verhalten einer Klasse 235
Verschachtelung 124, 128, 143
Verzweigung 118, 124, 129 f.
Verzweigungssymbol 156
virtual 374
Visual C++ 15
void 94, 371
volatile 371
Volladdierer 360
Volumenberechnung 323
vorprüfende Schleife 136
Vorstudie 24
Vorzeichenoperator 69

386  Index

W
Wahrheitstabelle 359, 365
Wartbarkeit 93
wchar_t 374
Weltkoordinaten 261
Wendestellen 340
while 87, 371
Whitespace 112
Widerstandsreihe 278
Wiederanlaufverfahren 161
Wiederholung 83, 118, 133
Wiederverwendbarkeit 93
Wohnflächenberechnung 190

Z
zählergesteuerte Schleife 83, 86, 131, 149
Zeichen 59
Zeiger 106
Zufallszahlen 221
Zuweisung 70
Zwei-Punkte-Form 265

	Deckblatt_Leseprobe
	Vorworte
	Inhalt
	19-29
	Index

