Contents

1	Linked Landscapes and Conformational Conversions:				
	Hov	v Prote	ins Fold and Misfold	1	
	Gare	eth J. M	lorgan and Sheena E. Radford		
	1.1		uction	1	
	1.2	The U	Infolded Ensemble Under Native Conditions	4	
	1.3	Foldir	ng and Misfolding Intermediates	6	
	1.4	Protof	fibrils, Oligomers and Toxicity	8	
	1.5	Amyle	oid Structure	ç	
	1.6	From	the Test Tube to the Cell	11	
	1.7	Concl	usions	13	
	Refe	erences		13	
2	A ()	mantite	ntive Reconstruction of the Amide I Contour		
_	in the IR Spectra of Peptides and Proteins: From				
			o Spectrum	17	
			Brauner and Richard Mendelsohn		
	2.1	•			
		2.1.1	- -	17	
		2.1.2	Historical Background	18	
		2.1.3	Normal Coordinate Calculations	19	
		2.1.4	Ab Initio Force Field Calculations	20	
		2.1.5	The Modified GF Matrix Method	21	
		2.1.6	Constructing the G and F Matrices in the Coupled		
			Oscillators of One Kind Method	22	
		2.1.7	Simulating the Amide I Contour	31	
	· ·		cations	32	
		2.2.1	Isotopic Labeling	33	
		2.2.2	Modeling the Early Stages of Thermal Denaturation	39	
		2.2.3	Amide I Structure-Frequency Correlations		
			in Globular Proteins	41	
		2.2.4	IRRAS Simulations	45	

ix

X Contents

	2.3 Refe		usions and Future Prospects	50 51		
3	NA:11	Millisecond-to-Minute Protein Folding/Misfolding Events				
3			by FTIR Spectroscopy	53		
			an and Dieter Naumann	33		
	3.1		al Considerations	52		
				53 55		
	3.2		Spectroscopy, Experimental Aspects			
		3.2.1	Proteins in Aqueous Solutions	55		
		3.2.2	Measurements in D_2O	56		
		3.2.3	FTIR Spectra of Chemical Denaturants	60		
	3.3		ic FTIR Experiments Applying Rapid Mixing			
			emperature-Jump Approaches	61		
		3.3.1	Rapid-Scan FTIR Spectroscopy: Advantages			
			and Limitations	61		
		3.3.2	Design and Operation of a Stopped-Flow			
			Apparatus for Measurements in Heavy Water	62		
		3.3.3	A Stopped-Flow Apparatus for Measurements			
			of H_2O -Protein Solutions	63		
		3.3.4	T-Jump Experiments in Heavy Water	64		
	3.4	Exam	ples of Applying T-Jumps onto a Protein Solution	66		
		3.4.1	Refolding of Wild-Type Ribonuclease T1			
			and Some of Its Mutants	66		
		3.4.2	Unfolding of the λ-Cro Repressor	72		
	3.5	Exam	ples Making Use of Rapid-Mixing Methods	74		
		3.5.1	Refolding of α-Lactalbumin Studied			
			by Stopped-Flow Infrared Spectroscopy			
			After a pH-Jump	74		
		3.5.2	Misfolding of β ₂ -Microglobulin	78		
		3.5.3	The α -to- β Conversion Process of the Prion Protein	85		
	Refe			87		
				٠.		
4			Dynamical Events in Protein Folding			
	in the Time Domain from Submilliseconds to Seconds:					
			s-Flow Rapid-Mixing Infrared Spectroscopy	91		
	Sato	Satoshi Takahashi and Tetsunari Kimura				
	4.1		luction	91		
	4.2	The C	Collapse and Search Mechanism of Protein Folding	92		
		4.2.1	The Protein Folding Mechanism Depends			
			on the Chain Length	92		
		4.2.2	Kinetic Investigation of Protein Folding			
			for Intermediate Proteins	93		
	4.3	Devel	opment of Continuous-Flow Time-Resolved			
			ed Spectrometer	94		
		4.3.1	Comparison of Different Methods for Triggering			
			Protein Folding Events	94		

Contents xi

		4.3.2	Development of a Continuous-Flow Cell			
			with a T-Shaped Flow Channel	95		
		4.3.3	Construction of the Time-Resolved Spectrometer			
			Based on Infrared Microscopy	98		
	4.4	Praction	cal Issues for Kinetic Infrared Investigations			
		of Pro	tein Folding	101		
		4.4.1	Selection of the Initial Unfolded State	101		
		4.4.2	Suppression of the Aggregate Formation	101		
		4.4.3	Method of Spectral Analysis	102		
	4.5	Applic	cation to Protein Folding	103		
		4.5.1	Pioneering Investigations of Rapid-Mixing			
			Infrared Spectroscopy	103		
		4.5.2	Apomyoglobin	104		
		4.5.3	Single-Chain Monellin	107		
	4.6	Summ	nary and Perspective	110		
	Refe	rences		113		
_	TTial	b Dwaga	www. Whatianal Chastagasana Ctudios			
5			ure Vibrational Spectroscopy Studies	117		
			ing, Misfolding and Amyloidogenesis of Proteins	117		
			ater, Matthias Pühse, and Jonas Markgraf	117		
	5.1 5.2		uction to High-Pressure Bioscience	117		
	5.3		mental Concepts: Stability Diagram of Proteins	120		
	3.3	-	imental Methods	120		
		5.3.1	High-Pressure FTIR Spectroscopy	120		
		5.3.2	Diamond Anvil Cell Technology	122		
	<i>5</i> 1	5.3.3	Pressure Calibrants for Infrared Spectroscopy	123		
	5.4		ples of Pressure Studies on Proteins and Polymers Pressure-Induced Protein un- and Refolding Reactions	124		
		5.4.1		124		
		5.4.2	Protein Folding Kinetics	130		
		5.4.3		130		
		5.4.4	Pressure Effects on Oligomeric Proteins and Chaperones	132		
		5.4.5	Cosolvent Effects	135		
		5.4.6	Aggregation/Fibrillation Reactions of Proteins	133		
		5.4.7	Enzymatic Reactions			
		5.4.8	Synthetic Polymers as Protein Mimetics	139 143		
	5.5		usions and Outlook			
	Refe	rences		144		
6	Dyn	amics o	of α-Helix and β-Sheet Formation Studied			
	by I	aser-Ir	nduced Temperature-Jump IR Spectroscopy	147		
	Kari	Karin Hauser				
	6.1		le Folding Dynamics	147		
		6.1.1	Secondary-Structure Formation	147		
		6.1.2	The Amide I Band as Structural Probe	148		
		6.1.3	Equilibrium vs. Kinetic Data	149		
		6.1.4	Rate Constants	150		

xii Contents

	6.2	Laser-	Induced T-Jump Technique	151
		6.2.1	Generation of the Heating Pulse	152
		6.2.2	Photo-Acoustic Effects, Cavitation and Thermal Lensing	156
		6.2.3	Experimental Setup	157
	6.3	T-Jum	p Relaxation Kinetics	158
		6.3.1	Two-State and Multistate Folders	158
		6.3.2	Helix Dynamics	161
		6.3.3	Hairpin Formation	161
	6.4	Site-S	pecific Dynamics with Isotopic Editing	162
		6.4.1	Site-Specific Frequency Shifts	162
		6.4.2	Insights into Folding Mechanisms on the Residue Level	163
		6.4.3	Single and Multiple Isotope Labels	166
	Refe	rences .		168
7	Ligh	t_Trice	gered Peptide Dynamics	171
•			inth and Josef Wachtveitl	1/1
	7.1		uction	171
	7.2		Triggered Peptides	172
	7.2	7.2.1	The Photochromic Switching Unit	172
		7.2.2	The Linking Group	175
		7.2.3	The Peptide Moiety	177
	7.3		cterization of Light-Triggered Peptides	1,,,
	7.5		tionary Spectroscopy	177
	7.4		ods for the Study of Ultrafast Structural Dynamics	180
	7.5		cations	183
		7.5.1	Ultrafast Spectroscopy on Cyclic Azobenzene Peptides	183
		7.5.2	Unfolding and Folding of a Light Switchable	
			Hairpin Model Compound	184
		7.5.3	Toward Light Switchable Tertiary Structures:	
			(I) Azo-maquettes	185
		7.5.4	Toward Light Switchable Tertiary Structures:	
			(II) Azo-collagens	187
	7.6	Concl	usion	190
	Refe	rences		191
o	Т:	o Dogol	lead ETID Constructions of all Induced	
8			lved FTIR Spectroscopy of pH-Induced n of Peptides	193
			orrie, Alex Perálvarez-Marín, and Andreas Barth	193
	8.1		uction to Infrared Difference Spectroscopy	193
	0.1	8.1.1	Principles	193
		8.1.2	Triggering Protein Reactions	193
		8.1.3	Interpreting Difference Spectra	194
	8.2		Compounds	198
	0.2	8.2.1	Introduction to Caged Compounds	198
		8.2.2	Caged Protons	202
		8 2 3	Difference Spectrum of Caged Sulfate Photolysis	202
		0.4.3	Difference Spectrum of Cased Sulfate Flightists	404

Contents xiii

	8.3	Acidification-Induced Unfolding of Myoglobin	206	
	8.4	Acidification-Induced Aggregation of the Alzheimer's Peptide	207	
		8.4.1 Introduction to the Alzheimer's Peptide	207	
		8.4.2 Time-Resolved Infrared Difference Spectroscopy		
		of the Aggregation of the Alzheimer's Peptide	208	
	8.5	Outlook	212	
	Refe	erences	213	
9	Exa	mining Amyloid Structure and Kinetics with 1D		
	and	2D Infrared Spectroscopy and Isotope Labeling	217	
	Lau	ren E. Buchanan, Emily B. Dunkelberger,		
	and Martin T. Zanni			
	9.1	Introduction	217	
	9.2	Vibrational Modes of Amyloids	220	
	9.3	Isotope Labeling Schemes	225	
	9.4	Vibrational Dynamics of Amyloids	228	
	9.5	Experimental Methods	229	
	9.6	Experimental Data	230	
	9.7	Summary	236	
	Refe	erences	236	
In	dav		239	
	uca		-57	