Contents

Volume	1
Preface	xix

1	Resource Recovery and Reuse for Sustainable Future
	Introduction and Overview 1
	Wenshan Guo, Huu Hao Ngo, Lijuan Deng, Rao Y. Surampalli,
	and Tian C. Zhang
1.1	Introduction 1
1.2	Background 2
1.2.1	Hierarchy of Resource Use 2
1.2.2	Analyzing the Needs for Resource and Energy Recovery
	and Reuse 2
1.2.2.1	Population Growth 2
1.2.2.2	Resource Scarcity 4
1.2.2.3	Environmental Impacts 4
1.2.2.4	Economical Aspect 4
1.3	Current Status of Resource Recovery and Reuse 5
1.3.1	Wastewater 5
1.3.1.1	Nutrient Recovery 6
1.3.1.2	Organic Carbon Recovery 6
1.3.1.3	Heat Recovery 7
1.3.2	Waste 7
1.4	Research Needs 9
1.4.1	Development of Novel Technologies 9
1.4.2	Social and Economic Feasibility of Resource Recovery and
	Reuse 9
1.4.3	Development of Internationally Coordinated Framework
	and Strategy 10
1.5	Book Overview 10
	References 17

2	Hydrothermal Liquefaction of Food Waste: A Potential
	Resource Recovery Strategy 21
	Ranaprathap Katakojwala, Hari Shankar Kopperi, Althuri Avanthi,
	and S. Venkata Mohan
2.1	Introduction 21
2.1.1	Global Food Waste Production 22
2.1.2	Conventional Food Waste Management Practices 23
2.1.2.1	Land Filling 23
2.1.2.2	Fertilizer/Animal Feed 23
2.1.2.3	Incineration 23
2.1.2.4	Composting 24
2.1.3	Advanced Food Waste Management Methods 24
2.1.3.1	Acidogenesis 24
2.1.3.2	Solventogenesis 24
2.1.3.3	Biodiesel 25
2.1.3.4	Bioplastics 26
2.2	Significance of Hydrothermal Liquefaction of Food Waste 26
2.2.1	HTL Reactor Operation 27
2.2.2	Isothermal HTL and Fast HTL 30
2.2.3	HTL Products 30
2.2.4	Greenhouse Gas Emissions 31
2.3	Factors Influencing HTL During FW Treatment 32
2.3.1	Temperature 34
2.3.2	Reaction Time 35
2.3.3	Solid-to-Solvent Ratio 35
2.3.4	Composition of Food Waste 36
2.3.5	Catalyst Concentration 36
2.4	HTL of Food Waste: Case Studies 37
2.5	Conclusions and Future Scope 39
	Acknowledgement 40
	References 40
3	Coping with Change: (Re) Evolution of Waste
,	Management in Local Authorities in England 47
	Pauline Deutz and Anne Kildunne
3.1	Introduction 47
3.1	Sustainability Transitions Literature 48
3.3	
	Waste Management in England 51
3.4	Research Design and Methods 52
3.4.1	Research Design 53
3.4.2	Methods 53 Selection of Interviewees 54
3.4.3	Selection of Interviewees 54
3.4.4	Secondary Data 58

3.5	Results and Discussion 58
3.5.1	English Waste in the Context of the EU 58
3.5.2	Influences in the UK Context for LAs 64
3.5.3	Implementation of the 2000 Waste Strategy 66
3.5.3.1	LA Implementation of Waste Policy 67
3.5.3.2	Targets 70
3.5.3.3	Financial Instruments 70
3.5.3.4	Regional Governance 72
3.5.4	Local Authorities and the Public 72
3.5.5	Legacy of the Strategy 74
3.6	Conclusions 75
	Acknowledgements 77
	References 77
4	Lhydysthormal Lieusfastion of Lieuses Huloria
4	Hydrothermal Liquefaction of Lignocellulosic Biomass for Bioenergy Production 83
4.1	Huihui Chen, Gang Luo, and Shicheng Zhang
4.1	Introduction 83
4.2	Composition of Lignocellulosic Biomass and their Degradation in HTL Processes 85
421	
4.2.1	Composition of Lignocellulosic Biomass 85 Brief Review on the Development of HTL Technology 85
4.2.2	1
4.2.3	Main Components Degradation of the Lignocellulosic Biomass During HTL 87
4.2.3.1	Cellulose and its Degradation in HTL Processes 87
4.2.3.2	Hemicellulose and its Degradation in HTC Process 88
4.2.3.3	Lignin and its Degradation in HTC Processes 88
4.3	Research Status in HTL of Lignocellulosic Biomass 90
4.3.1	Products Description 90
4.3.1.1	Bio-oil 90
4.3.1.2	Solid Residue 90
4.3.1.3	Other By-products 91
4.3.2	Operating Parameters for Bio-oil Production by HTL 91
4.3.2.1	Bio-oil 92
4.3.2.2	Temperature 93
4.3.2.3	Heating Rate 93
4.3.2.4	Residence Time 94
4.3.2.5	Pressure 94
4.3.2.6	Catalysts 95
4.3.2.7	Liquid-to-Solid Ratio 96
4.4	Limitations and Prospects for Bioenergy Production from
	Lignocellulosic Biomass by HTL 97
4.4.1	Poor Quality of Crude Bio-oil 97

viii	Contents	
	4.4.2	Aqueous By-products Utilization 97
	4.4.3	Prospects 98
	4.5	Conclusion and Future Work 98 References 99
	5	Resource Recovery-Oriented Sanitation and Sustainable Human Excreta Management 109
		Sudheer Salana, Tuhin Banerji, Aman Kumar, Ekta Singh, and Sunil Kumar
	5.1	Introduction 109
	5.2	Present Scenario 111
	5.2.1	Ecological Sanitation 112
	5.2.1.1	
	5.2.1.2	
	5.2.2	Failure, Success, and Lessons 115
	5.3	Resource Recovery Options in Rural Areas 116
	5.3.1	Nutrient Recovery from Urine 117
	5.3.2	Anaerobic Digestion or Composting? 119
	5.3.3	Community-Scale or Household Models? 121
	5.4	Resource Recovery Sanitation in Urban Context 121
	5.4.1	Energy Matters 121
	5.4.2	Johkasou Systems 123
	5.4.3	Possibilities of Industrial-Scale Units 124
	5.5	Life Cycle Assessment of Sanitation Systems 125
	5.6	Human Excreta and Sustainable Future 127
	5.6.1	Economics of Resource Recovery Sanitation 127
	5.6.2	Sanitation Access and Resource Recovery 128
	5.7	Conclusion and Recommendations 130
		References 131
	6	Resource Recovery and Recycling from Livestock
		Manure: Current Statue, Challenges, and Future
		Prospects for Sustainable Management 137
		Tao Liu, Hongyu Chen, Junchao Zhao, Parimala Gnana Soundari,
		Xiuna Ren, Sanjeev Kumar Awasthi, Yumin Duan,
		Mukesh Kumar Awasthi, and Zengqiang Zhang
	6.1	Introduction 137
	6.2	Present Scenario and Global Perspective of Manure Generation and Recycling 139

Sanitization and Hygiene in Manure Management 139

Importance and Significance of Resource Recovery 141

Aerobic Composting 139

6.2.1

6.2.2

6.2.1.1

6.2.2.1	Nitrogen and Phosphorus Recovery from Livestock Manure 1	41
6.2.2.2	Heavy Metal Recovery from Livestock Manure 142	
6.3	Resource Recovery Technologies and Logistics for Handling,	
	Transport, and Distribution of Manures 142	
6.3.1	Nutrient Recovery from Manure 142	
6.3.2	Bioenergy Production by Anaerobic Digestion/Co-digestion 1	47
6.3.3	Composting/Co-composting 147	
6.3.4	Centralized and De-centralized Models? 148	
6.4	Energy Matters and Economic Feasibility 149	
6.4.1	Energy Production 149	
6.4.2	Mineral Reutilization 150	
6.4.2.1	Ammonia Stripping 150	
6.4.2.2	Struvite Crystallization 150	
6.4.2.3	Mineral Concentrates 150	
6.5	Resource Recovery Sanitation in Developed and Developing	
	Countries 151	
6.5.1	Operational Guidelines for Septage Treatment and Disposal 1	53
6.5.1.1	Storage 154	
6.5.1.2	Pasteurization 154	
6.5.1.3	Chemical Treatments 154	
6.5.1.4	Anaerobic Treatments 154	
6.5.1.5	Composting 155	
6.5.2	Testing the Possibilities of Commercial-Scale Resource	
	Recovery 155	
6.6	Life Cycle Assessment of Sustainable Manure Management	
	Systems 156	
6.7	Innovation in Sustainable Manure Management Systems and	
	Recycling 157	
6.7.1	Economics of Resource Recovery from Manure and	
	Sanitation 157	
6.7.2	Business Models for a Circular Economy 158	
6.7.3	Enabling Environment Sanitation and Financing for Resource	
	Recovery 159	
6.8	Challenges and Limitation 160	
6.9	Conclusion and Future Prospects 160	
	Acknowledgements 161	
	References 161	
7	Utilization of Microalgae and Thraustochytrids for the	
,	Production of Biofuel and Nutraceutical Products 167	
	Ying Liu and Jay J. Cheng	
7.1	Introduction 167	
, . .	111000000001 107	

x	Contents	
	7.1.1	Microalgae 167
	7.1.2	Thraustochytrids 167
	7.1.3	Biodiesel and Biobased Jet Fuel 168
	7.1.4	Docosahexaenoic Acid (DHA) and Eicosapentaenoic
		Acid (EPA) 168
	7.2	Microalgae for Biodiesel and Jet Fuel Production 169
	7.2.1	Selection of Microalgae 169
	7.2.2	Processes of Microalgae to Biofuel 170
	7.2.2.1	Microalgae Cultivation 170
	7.2.2.2	Microalgae Harvesting 172
	7.2.2.3	Extraction of Oil from Microalgae 174
	7.2.2.4	Biodiesel Production from Microalgal Oil 175
	7.2.2.5	Jet Fuel Production from Microalgal Oil 176
	7.3	Thraustochytrids for Biodiesel Production 177
	7.4	Challenges of Microalgae and Thraustochytrids to Biofuel 178
	7.5	Microalgae and Thraustochytrids for DHA and EPA
		Productions 179
	7.6	Future Perspectives 183
	7.6.1	Integrated Microalgae/Thraustochytrids Cultivation and
		Harvesting System 183
	7.6.2	Genetically Modified Microalgae/Thraustochytrids for High Oil
		and Easy Extraction of Lipids 184
	7.6.3	Integrated Microalgae/Thraustochytrids System for Biofuel and
		DHA/EPA Production 186
		References 186
	8	Pertinent Issues of Algal Energy and Bio-Product
		Development A Biorefinery Perspective 199
		Goldy De Bhowmick and Ajit K. Sarmah
	8.1	Introduction 199
	8.2	Current Status of Algal Energy and Bio-product Formation 200
	8.3	Analysis of Conversion Methods 202
	8.3.1	Dynamics of Algal Biomass Composition 202
	8.3.2	Conversion Routes 203
	8.3.3	Product Yield and Market Value 204
	8.4	Competent Applications of Algae 205
	8.5	Biorefinery and Integrated Approaches 207
	8.6	Technological Issues: Pros and Cons 208
	8.7	Life Cycle Assessment 210

Techno-Economic Analysis (TEA) 211

Futuristic Options 212

References 213

8.8

8.9

9	Resource Utilization of Sludge and Its Potential Environmental Applications for Wastewater 217
	Dong Wei, Bin Du, and Qin Wei
9.1	Introduction 217
9.2	Types of Sludge in Wastewater Treatment Process 218
9.2.1	Activated Sludge 218
9.2.2	Granular Sludge 219
9.2.2.1	Anaerobic Granular Sludge 219
9.2.2.2	Aerobic Granular Sludge 220
9.3	Sludge-Based Activated Carbon for Wastewater
	Treatment 222
9.3.1	Production Method 222
9.3.1.1	$ZnCl_2$ 223
9.3.1.2	H_3PO_4 223
9.3.2	Treatment of Dye Wastewater 224
9.3.2.1	MG Sorption onto Sludge-Based ACs 224
9.3.2.2	Mineral Acid Modification of AGS-Derived AC for MG
	Sorption 225
9.3.3	Treatment of Heavy Metal-Contained Wastewater 226
9.3.3.1	Heavy Metal Sorption onto Sludge-Based AC 226
9.3.3.2	Cu(II) Sorption onto AGS-AC in the Presence of HA
	and FA 227
9.4	Granular Sludge Biosorbent Applied for Wastewater
	Treatment 229
9.4.1	Treatment of Dye Wastewater 229
9.4.1.1	Role of EPS in Aerobic Granular Sludge for MB Sorption 229
9.4.1.2	Biosorption of Dye Wastewater and Photocatalytic Regeneration
	of AGS 230
9.4.2	Treatment of Heavy Metal-Contained Wastewater 232
9.4.2.1	Zn(II) Sorption onto AGS 232
9.4.2.2	Cu(II) Sorption onto AGS 232
9.4.2.3	Ni(II) Sorption onto AGS/AnGS 233
9.4.2.4	Magnetic Modification of AnGS for Pb(II) and Cu(II)
	Removal 234
9.4.3	Treatment of Multicomponent Contaminants 235
9.5	Applications of EPS Extracted from Sludge for Wastewater
	Treatment 236
9.5.1	Bioflocculant 236
9.5.2	Biosorbent for the Removal of Various Pollutants 237
9.6	Conclusion 238
	References 238

10	Thermal-Chemical Treatment of Sewage Sludge
	Toward Enhanced Energy and Resource
	Recovery 247
	Mian Hu, Dabin Guo, Yingqun Ma, and Yu Liu
10.1	Introduction 247
10.2	Sewage Sludge and Its Impact on Environmental
	Sustainability 248
10.3	Characterization of Sewage Sludge 250
10.4	Thermal-Chemical Treatment of Sewage
	Sludge 250
10.4.1	Incineration 250
	Typical Incineration Processes 250
10.4.1.2	Performance-Cost-Benefit Analysis of Incineration
	Technology 253
10.4.2	Pyrolysis 253
10.4.2.1	Typical Pyrolysis Processes 253
10.4.2.2	Performance–Cost–Benefit Analysis of Pyrolysis
	Technology 255
10.4.3	Gasification 255
10.4.3.1	Typical Gasification Processes 255
10.4.3.2	Performance–Cost–Benefit Analysis of Gasification
	Technology 257
10.4.4	1
	Typical Liquefaction Processes 257
10.4.4.2	Performance-Cost-Benefit Analysis of Liquefaction
	Technology 258
10.5	Recovery of Energy and Resource from Sewage
	Sludge 258
10.5.1	
10.5.2	
10.5.3	
10.5.4	
10.5.5	Nutrient Recovery 261
10.5.6	Heavy Metals Removal and Recovery 263
10.6	Technology Limitations and Challenges 264
10.6.1	Deactivation of Catalyst 264
10.6.2	Tar Formation 264
10.6.3	NO_x and SO_x Emission 265
10.6.4	High Moisture Content 265
10.7	Conclusions and Perspectives 266
	References 267

11	Improving Bioenergy Recovery from Anaerobic Digestion of Sewage Sludge 275
	Qilin Wang, Jing Wei, Huan Liu, Dongbo Wang, Long D. Nghiem,
	and Zhiyao Wang
11.1	Introduction 275
11.2	Characteristics of Sewage Sludge 276
	Primary Sludge 276
	Waste Activated Sludge 276
11.3	
11.3.1	
11.3.2	
11.4	Technologies for Enhancing Methane Production
	from Sludge 280
11.4.1	6
	Thermal Hydrolysis Pretreatment 280
	Mechanical Pretreatment 281
	Ultrasonic Pretreatment 282
	Microwave Pretreatment 282
11.4.1.5	Focused Pulsed Pretreatment 282
11.4.2	Chemical Pretreatment or Dosage 283
	Ozonation Pretreatment 283
11.4.2.2	Alkaline Pretreatment 283
11.4.2.3	Free Nitrous Acid Pretreatment 283
11.4.2.4	Free Ammonia Pretreatment 283
11.4.3	Biological Pretreatment 284
11.5	Technologies for Enhancing Hydrogen Production
	from Sludge 284
11.5.1	Physical Pretreatment 284
11.5.1.1	Thermal Pretreatment 284
11.5.1.2	Freezing/Thawing Pretreatment 288
11.5.1.3	Sterilization Pretreatment 288
11.5.1.4	Microwave Pretreatment 288
11.5.1.5	Ultrasonic Pretreatment 288
11.5.1.6	Gamma Irradiation Pretreatment 288
11.5.2	Chemical Pretreatment 289
11.5.2.1	Acid Pretreatment 289
11.5.2.2	Alkaline Pretreatment 289
11.5.2.3	Free Ammonia and Free Nitrous Acid Pretreatment 289
11.5.2.4	Ozone Pretreatment 289
11.5.2.5	Wet Oxidation Pretreatment 289
11.5.2.6	Calcium Peroxide Pretreatment 290

11.5.2.7	Triclocarban Pretreatment 290
11.5.3	Biological Pretreatment 290
11.6	Evaluation and Comparison of Technologies 290
11.7	Summary and Future Outlook 294
	References 294
12	Recovery of Phosphorus from Wastewater
	and Sludge 305
	Ruo-hong Li, Lin Lin, and Xiao-yan Li
12.1	Introduction 305
12.1.1	P Recovery Technologies 306
12.1.1.1	Wet-Chemical Approach 306
12.1.1.2	Thermal Treatment 307
12.1.1.3	Chemical Precipitation 307
12.1.2	P Recovery Based on CEPS 307
12.1.3	P Recovery Based on Chemically Enhanced Membrane
	Bioreactors 308
12.2	Chemical Coagulation and Flocculation for Enhanced P Removal
	from Wastewater 309
12.2.1	Experimental Methods 309
12.2.2	Results and Discussion 310
12.3	Acidogenic Fermentation for P Release and Recovery from
	Sludge 312
12.3.1	Experimental Methods 312
12.3.2	Results and Discussion 312
12.3.2.1	Influence of Fe Dosage on Acidogenic Sludge Fermentation 312
12.3.2.2	Influence of Al Dosage on Acidogenic Sludge Fermentation 315
12.3.2.3	Recovery of Organic Carbon and P from the Semicontinuous
	Fermentation of CEPS Sludge 316
12.3.3	Summary 317
12.4	A Membrane Bioreactor with Fe Dosing and Sludge Fermentation
	for Enhanced P Removal and Recovery 317
12.4.1	Experimental Work 317
12.4.2	Results and Discussion 319
12.4.2.1	P Removal from Wastewater by Chemical Flocculation and
	MBR 319
12.4.2.2	Sludge Fermentation and P Recovery 321
12.4.2.3	Comparison of Acidification and Acidogenesis 325
12.4.3	Summary 326
12.5	Mechanisms of P Removal and Recovery from Wastewater Using
	an Fe-dosing Bioreactor and Co-fermentation 326
12.5.1	Experimental Work 326

12.5.2 12.5.3	P Speciation in the Aerobic MBR and Anaerobic Fermenters 327 Fe Speciation in the Aerobic MBR and Anaerobic
12.3.3	Fermenters 329
12.5.4	P Extraction and Release from Sludge During Acidogenic Fermentation 330
12541	Acidogenic Fermentation 330
	Microbial Iron Reduction 331
	Solubility of the Fe—P Complex 331
12.6	Conclusions 333
12.0	References 333
13	Magnetic Iron-Based Oxide Materials for Selective
	Removal and Recovery of Phosphorus 339
	Irene Man Chi Lo, Baile Wu, and Jun Wan
13.1	Introduction 339
13.1.1	Phosphorus Sources, Speciation, and Properties in Water 339
13.1.2	Phosphorus Pollution and Eutrophication 340
13.1.3	Phosphorus Removal and Recovery Technologies 340
13.1.4	Selective Removal and Recovery of Phosphorus from Water by Using Adsorption 341
12111	Phosphate Adsorption Processes and Mechanisms 341
	Current Adsorbents for Phosphate Removal 341
	Selective Removal and Recovery of Phosphate from Water by
13.1.4.3	Magnetic Iron Based-Oxide Materials 342
13.2	Development and Material Synthesis 343
13.2.1	Synthesis of Fe ₃ O ₄ Nanoparticles 343
	Fe ₃ O ₄ Nanoparticles Synthesized by the Solvothermal
13.2.1.1	Method 343
13 2 1 2	Fe ₃ O ₄ Nanoparticles Synthesized by the Coprecipitation
13.2.1.2	Method 343
13.2.2	$Synthesis of SiO_2@Fe_3O_4, ZrO_2@SiO_2@Fe_3O_4 \ and \ ZrO_2@Fe_3O_4$
	Nanoparticles 343
	Synthesis of SiO ₂ @Fe ₃ O ₄ Nanoparticles 343
13.2.2.2	Synthesis of ZrO ₂ @SiO ₂ @Fe ₃ O ₄ Nanoparticles 344
13.2.2.3	Synthesis of ZrO ₂ @Fe ₃ O ₄ Nanoparticles 344
13.2.3	Synthesis of La(OH) ₃ /Fe ₃ O ₄ Nanocomposites 344
13.2.4	Synthesis of Fe ⁰ /Fe ₃ O ₄ Composites 344
13.3	Material Characteristics 345
13.3.1	Characterization Methods for Magnetic Iron-Based Oxide
	Materials 345
13.3.2	Characteristics of Fe_3O_4 , $SiO_2@Fe_3O_4$, $ZrO_2@SiO_2@Fe_3O_4$, and
	ZrO ₂ @Fe ₃ O ₄ Nanoparticles 345

•				
	13.3.3	Characteristics of Fe ₃ O ₄ and La(OH) ₃ /Fe ₃ O ₄		
		Nanocomposites 348		
	13.3.4	Characteristics of Fe ⁰ /Fe ₃ O ₄ Composites 350		
	13.4	Batch Adsorption Kinetics, Isotherms, and Affecting Factors 351		
	13.4.1	Phosphorus Removal by ZrO ₂ @SiO ₂ @Fe ₃ O ₄ and ZrO ₂ @Fe ₃ O ₄		
		Nanoparticles 351		
	13.4.1.1	Phosphate Adsorption Kinetics of ZrO ₂ @SiO ₂ @Fe ₃ O ₄ and		
		ZrO ₂ @Fe ₃ O ₄ Nanoparticles 351		
	13.4.1.2	Phosphate Adsorption Isotherms of ZrO ₂ @SiO ₂ @Fe ₃ O ₄ and		
		ZrO ₂ @Fe ₃ O ₄ Nanoparticles 351		
	13.4.1.3	Effects of pH and Zeta Potential Analysis 352		
	13.4.2	Phosphorus Removal by La(OH) ₃ /Fe ₃ O ₄ Nanocomposites 353		
13.4.2.1 Phosphate Adsorption Kinetics of La(OH) ₃ /Fe ₃ O ₄				
		Nanocomposites 353		
	13.4.2.2	Phosphate Adsorption Isotherms of La(OH) ₃ /Fe ₃ O ₄		
		Nanocomposites 353		
	13.4.2.3	Effect of pH, Ionic Strength, and Zeta Potential Analysis 353		
	13.4.3	Phosphorus Removal by Fe ⁰ /Fe ₃ O ₄ /Fe ²⁺ System 355		
	13.5	Selective Removal and Recovery 357		
	13.5.1	Selective Phosphorus Removal and Recovery by		
		ZrO ₂ @SiO ₂ @Fe ₃ O ₄ and ZrO ₂ @Fe ₃ O ₄ Nanoparticles and Their		
		Reusability 357		
	13.5.1.1	Selective Phosphate Adsorption of ZrO ₂ @SiO ₂ @Fe ₃ O ₄ and		
		ZrO ₂ @Fe ₃ O ₄ Nanoparticles 357		
	13.5.1.2	Phosphate Recovery and Reusability of ZrO ₂ @Fe ₃ O ₄		
		Nanoparticles 357		
	13.5.2	Selective Phosphorus Removal and Recovery by La(OH) ₃ /Fe ₃ O ₄		
		Nanocomposites 358		
	13.5.2.1	Selective Phosphate Adsorption of La(OH) ₃ /Fe ₃ O ₄		
	10.0.2.1	Nanocomposites 358		
	13 5 2 2	Phosphate Recovery and Reusability of La(OH) ₃ /Fe ₃ O ₄		
	13.3.2.2	Nanocomposites 360		
	13.5.3	Selective Phosphorus Removal and Recovery by Fe ⁰ /Fe ₃ O ₄ /Fe ²⁺		
	13.3.3	System 360		
	13.5.3.1			
		Phosphate Recovery and Reusability of Fe ⁰ /Fe ₃ O ₄		
	13.3.3.2	Composite 361		
	13.6	Comparison with Other Adsorbents 362		
	13.6.1	Phosphorus Removal Capacity 362		
	13.6.2 13.6.3	Phosphorus Removal Kinetics 363 Adsorbents Reusability and Phosphorus Recovery 364		
	1303	Ausordenis kensadiniy and Phosphorus Recovery 364		

13.7	Potential Environmental Applications and Perspectives . References 366					
	Volume 2					
	Preface xvii					
14	Forward Osmosis for Nutrients Recovery from Wastewater 373					
15	Removal and Recovery of Nutrients Using Low-Cost Adsorbents from Single-Component and Multicomponent Adsorption Systems 397					
16	Use and Development of Biochar-Based Materials for Effective Capture and Reuse of Phosphorus 437					
17	Recovery of Gold and Other Precious Metals by Biosorption 463					
18	Bioelectrochemical System in Wastewater Treatment: Resource Recovery from Municipal and Industrial Wastewaters 489					
19	Trends in Using Electron Beam for Treating Textile and Dyeing Wastewater 525					
20	Approaches Toward Resource Recovery from Breeding Wastewater 559					
21	Resources Recovery and Reuse from Liquid and Solid Wastes Generated from Electrolytic Manganese Production 601					
22	Recovery of Thermal Energy from Wastewater by Heat Pump Technology 635					
23	Hydrocyclone-Separation Technologies for Resource Recovery and Reuse 663					
24	Methane Recovery from Landfills 699					
25	Resource Recovery from Electronic Waste 723					
	Index 755					