Contents

Preface V	
List of contributing	authors —— XIII

Samuel Tetteh

The Cambridge structural database (CSD): important resources for teaching concepts in structural chemistry and intermolecular interactions — 1
 Introduction — 1

1.1 Introduction — 1
1.2 Methodology — 3
1.2.1 ConQuest Program — 3
1.2.2 Mercury Program — 4
1.3 Results and discussion — 4
1.4 Conclusions — 12
References — 13

Reagan Lehlogonolo Mohlala and Elena Mabel Coyanis

2 The vital use of isocyanide-based multicomponent reactions (MCR) in

Conclusions ---- 45

References — 46

chemical synthesis —— 15 Introduction to multicomponent reactions —— 15 2.1 Strecker reaction (S-3CR) ---- 17 22 Hantzsch reaction (H-3CR) —— 18 2.3 2.4 Biginelli reaction (B-3CR) ---- 19 Mannich three component reaction (M-3CR) —— 21 2.5 2.6 Passerini reaction (P-3CR) --- 21 Substrate scope in the Passerini reactions ---- 22 2.6.1 Chirality in Passerini reactions ---- 26 2.6.2 Ugi reaction: U-4CR and U-3CR — 27 2.7 Ugi-four component reaction (U-4CR) —— 27 2.7.1 Ugi-three component reaction (U-3CR) ---- 29 2.7.2 2.8 van leusen reaction (V-3CR) ---- 32 The application of dimethyl acetylenedicarboxylate in organic synthesis —— 33 2.9 DMAD and isocyanides in multicomponent reactions — 34 2.9.1 DMAD in Michael reactions — 41 2.9.2 DMAD in cycloaddition reactions --- 44 2.9.3

2.10

Abdul Nashirudeen Mumuni, John McLean and Gordon Waiter

Spectral peak areas do not vary according to spectral averaging scheme 3 used in functional MRS experiments at 3 T with interleaved visual stimulation ---- 53

3.1	Introduction —— 54
3.2	Methodology —— 55
3.2.1	Study volunteers —— 55
3.2.2	Presentation of visual stimulus —— 55
3.2.3	Functional MRI —— 56
3.2.4	Functional MRS —— 57
3.2.5	Spectral analysis —— 59
3.2.6	Quantification of the BOLD effects on the spectra —— 59
3.2.7	Statistical analysis —— 60
3.3	Results —— 60
3.3.1	Single stimulation experiments —— 60
3.3.2	Interleaved stimulation experiments —— 62
3.4	Discussion —— 64
3.5	Conclusions —— 66
	References —— 67

Adeleke Adeniyi, Mayowa Ibidokun and Ojo Oluwole

A comparative assessment of potentially harmful metals in the Lagos Lagoon and Ogun river catchment — 69

```
Introduction — 70
4.1
            Materials and methods --- 70
4.2
            Materials and reagents ---- 70
4.2.1
4.2.2
            Study area — 71
            Sampling and sample preparation — 71
4.2.3
4.3
            Results and discussion — 73
            Conclusions — 76
4.4
            References — 77
```

Enrico Daniel R. Legaspi, Ma. Stefany Daennielle G. Sitchon, Sonia D. Jacinto, Blessie A. Basilia, and Imee Su Martinez

XRD and cytotoxicity assay of submitted nanomaterial industrial samples in 5 the Philippines —— 79

- Introduction ---- 80 5.1 Methods — 81 5.2 X-ray diffraction ---- 81 5.2.1 MTT cytotoxicity assay ---- 81 5.2.2 Discussion --- 81
- 5.3

Analysis of X-ray diffraction patterns for select nanoparticle samples —— 81 5.3.1 MTT cytotoxicity assay ---- 86 5.3.2 5.4 Conclusions --- 89 References --- 90 Agnes Pholosi, Saheed O. Sanni, Samson O. Akpotu and Vusumzi E. Pakade Pine bark crosslinked to cyclodextrin for the adsorption of 2-nitrophenol 6 from an aqueous solution —— 93 Introduction --- 93 6.1 Experimental --- 95 6.2 Materials --- 95 6.2.1 Procedures --- 95 6.2.2 Results and discussion --- 96 6.3 Adsorbent characterization ---- 96 6.3.1 Adsorption studies --- 98 6.3.2 6.4 Conclusions — 105 References ---- 106 Daniel O. Omokpariola, Patrick L. Omokpariola, Patrice A. C. Okoye, Victor U. Okechukwu, Joseph S. Akolawole and Ogochukwu Ifeagwu Concentration evaluation and risk assessment of pesticide residues in 7 selected vegetables sold in major markets of Port Harcourt South-South Nigeria ---- 109 Introduction —— 110 7.1 Methodology —— 111 7.2 Sample collection and preparation —— 111 7.2.1 Chemicals —— 111 7.2.2 Extraction of pesticide residues from samples —— 112 7.2.3 Clean-up —— 112 7.2.4 Analysis of organochlorine and organophosphate pesticides —— 112 7.2.5 Quality control — 113 7.2.6 Statistical analysis --- 113 7.2.7 7.2.8 Risk assessment —— 113 Carcinogenic assessment —— 114 7.2.8.2 Results and discussion —— 115 7.3 Concentration of organochlorine and organophosphate pesticides in 7.3.1 vegetables --- 115 Noncarcinogenic assessment —— 119 7.3.2 Carcinogenic risk assessment —— 119 7.3.3 Conclusions —— 124 7.4 References --- 124

Rafia Azmat, Rohi Bano, Sumeira Moin, Tahseen Ahmed, Ailyan Saleem and Waseem Ahmed

Detection of iodine in aqueous extract of plants through modified Mohr's 8 method —— 127 Introduction —— 127 8.1 8.2 Materials and methods —— 129 Collection of Ipomoea pes-caprae from three coastal sites —— 129 8.2.1 8.2.2 Preparation of plant samples for analysis of bioactive iodine —— 129 Standard curve of KI - 129 8.2.3 8.2.4 Chemical analysis of iodine —— 130 Separation of iodine — 130 8.2.5 8.2.6 Determining LOD and LOQ - 130 Results and discussion — 130 8.3 Conclusions --- 135 8.4 References —— 135

Uche E. Ekpunobi, Fabian M. Onyekwere, Rosemary U. Arinze, Daniel N. Enenche, Daniel O. Omokpariola and Victor U. Okechukwu

9 Appraisal and health risk assessment of potential toxic element in fruits and vegetables from three markets in Anambra state, Nigeria —— 137

9.1	Introduction —— 137
9.2	Materials and methods —— 138
9.2.1	Study area —— 138
9.2.2	Sample collection —— 139
9.2.3	Digestion of soil samples —— 139
9.2.4	Digestion of fruits and vegetables samples —— 139
9.2.5	Health risk assessment —— 139
9.2.6	Statistical analysis —— 140
9.3	Results and discussion —— 140
9.3.1	Concentrations of potential toxic elements in soil —— 140
9.3.2	Concentrations of potential toxic elements (mg/kg) in fruits and vegetables in
	Atani market —— 142
9.3.3	Concentrations of potential toxic elements (mg/kg) in fruits and vegetables in
	Omor market —— 143
9.3.4	Concentrations of potential toxic element (mg/kg) in fruits and vegetables in
	Eke Awka market —— 143
9.3.5	Implication of potential toxic element concentration in plants —— 145
9.3.6	Health risk assessment —— 147
9.4	Conclusions —— 150
	Supplementary Material —— 150
	References —— 150

	าล			

Liliana	
10	Complexes of a model trimeric acylphloroglucinol with a Cu ²⁺ ion: a DFT
	study —— 153
10.1	Introduction —— 153
10.2	Computational details —— 156
10.3	Results —— 157
10.3.1	Selection and geometry of the calculated complexes —— 157
10.3.2	Energetics of the calculated complexes —— 160
10.3.3	Properties of the ion in the complexes —— 163
10.3.4	How closely the ion approaches the molecule —— 164
10.3.5	Effects of complexation on the intramolecular hydrogen bonds —— 165
10.3.6	Other molecular properties of the complexes —— 166
10.3.7	Discussion and conclusions —— 168
	References —— 169
Davor M	largetić
11	Mechanochemistry as a green method in organic chemistry and its
	applications —— 171
11.1	Introduction —— 171
11.2	Mechanochemistry —— 172
11.3	Synthetic applications —— 173
11.4	Future prospects —— 180
11.5	Conclusions —— 180
	References —— 181
Liliana N	/lammino
12	Maximizing advantages and minimizing misinterpretation risks when using
	analogies in the presentation of chemistry concepts: a design
	challenge —— 183
12.1	Introduction —— 184
12.1.1	Analogies as an expression, emphasising and clarification tool —— 184
12.1.2	Analogies in education and in chemistry education —— 186
12.2	Analogies in chemistry teaching: examples and reflections — 189
12.2.1	Models, visualization and analogies —— 189
12.2.2	When an analogy fails its purpose —— 191
12.2.3	Designing analogies in the classroom —— 192
12.3	Discussion —— 202
12.4	Conclusions —— 205
	References —— 206

Index — 209