Contents

Preface — V			
List of	List of contributing authors —— XVII		
_			
-	Oyegoke, Fadimatu N. Dabai, Saidu M. Waziri, Adamu Uzairu and Baba Y. Jibril		
1	Computational study of propene selectivity and yield in the dehydrogenation		
	of propane via process simulation approach —— 1		
1.1	Introduction —— 2		
1.2	Materials and methods —— 3		
1.2.1	Process modeling and simulations —— 3		
1.2.2	Process optimization studies —— 4		
1.2.3	Impact of feed purity on the dehydrogenation process —— 5		
1.3	Results and discussions —— 5		
1.3.1	Modeling the propane dehydrogenation process —— 5		
1.3.2	Process optimization studies —— 9		
1.3.3	Impact of feed purity on the dehydrogenation process —— 12		
1.4	Conclusions —— 13		
	References —— 14		
John P.	Canal		
2	Computational chemistry in the undergraduate inorganic curriculum —— 17		
2.1	Introduction —— 17		
2.2	Computational chemistry module —— 18		
2.2.1	Module Goals/Plan — 18		
2.2.2	Instructional Videos and Manual —— 19		
2.2.3	Assignments —— 22		
2.3	Results and discussion —— 26		
2.4	Conclusions —— 31		
	References —— 32		
Francis	ca Claveria-Cádiz and Aleksey E. Kuznetsov		
3	Computational design of the novel building blocks for the metal-organic		
	frameworks based on the organic ligand protected Cu ₄ cluster —— 35		
3.1	Introduction — 36		
3.2	Computational details —— 37		
3.3	Results and discussion —— 38		

Energetics and structural features —— 38

GRP analysis —— 46

Frontier molecular orbitals and NPA charge —— 42 Molecular electrostatic potential (MEP) plots —— 45

3.3.1 3.3.2

3.3.3

3.3.4

3.4 Conclusions and perspectives —— 47 References —— 48

Nadjah Belattar, Ratiba Mekkiou, Adel Krid and Abdelhamid Djekoun

4	Computational investigation of Arbutus serratifolia Salisb molecules as new
	potential SARS-CoV-2 inhibitors —— 51

- 4.1 Introduction —— **52**
- 4.2 Part 1: Materials and methods —— 53
- 4.2.1 Phytochemical study 53
- 4.2.2 In-silico assessment 69
- 4.2.3 Ligand optimization —— **69**
- 4.3 Results and discussions —— 71
- 4.3.1 Drug likeness and ADMET calculations 71
- 4.3.2 Docking study —— **71**
- 4.4 Conclusions **79**References **79**

Rudo Zhou, Pamhidzai Dzomba and Luke Gwatidzo

Formulation of a herbal topical cream against *Tinea capitis* using flavonoids glycosides from *Dicerocaryum senecioides and Diospyros mespiliformis* —— 81

- 5.1 Introduction —— **81**
- 5.2 Materials and methodology —— 82
- 5.2.1 47 Chemicals and reagents —— 82
- 5.2.2 Plant material —— **83**
- 5.2.3 Preparation of cream formulations —— 83
- 5.2.4 Preliminary stability tests —— 83
- 5.2.5 Accelerated stability test —— 84
- 5.2.6 Long term stability tests 84
 5.2.7 In vitro antifungal assav 85
- 5.2.8 Microbiological assessment 85
- 5.2.9 Clinical trials —— **85**
- 5.2.10 Data analysis —— **86**
- 5.3 Results —— **86**
- 5.3.1 Stability tests results —— 86
- 5.3.2 In vitro antifungal assay —— **86**
- 5.3.3 Microbial assessment 865.3.4 Clinical trials results 86
- 5.4 Discussion —— **87**
- 5.5 Conclusion —— **95**
 - References 95

Yetunde Bunmi Oyeyiola and Beatrice Olutoyin Opeolu

6 Immediate effects of atrazine application on soil organic carbon and selected macronutrients and amelioration by sawdust biochar pretreatment —— 99 Introduction —— 100 6.1 Materials and methods --- 102 6.2 6.2.1 Description of the experimental soil —— 102 6.2.2 Biochar preparation —— 102 6.2.3 Treatments, design, and experimental set up —— 103 6.2.4 Data collection ---- 104 6.2.5 Data analysis —— 105 6.3 Results --- 105 6.3.1 The pH and nutrient characteristics of the biochar produced and tested —— 105 6.3.2 Immediate effects of atrazine and biochar pretreatment on soil organic carbon —— 106 633 Immediate effects of atrazine and biochar pretreatment on soil pH —— 107 6.3.4 Immediate effects of atrazine and biochar pretreatment on soil available P — 108 6.3.5 Immediate effects of atrazine and biochar pretreatment on exchangeable bases in the soil --- 109 6.3.6 Immediate effects of atrazine and biochar pretreatment on dry biomass weight of maize seedlings --- 110 6.3.7 Regression analysis indicating contributions of selected biochar nutrient properties to organic carbon and macronutrient contents in the atrazine-treated soil - 110 6.4 Discussion —— 115 6.5 Conclusions — 117 References —— 118 Benton Otieno, Mervyn Khune, John Kabuba and Peter Osifo 7 Process configuration of combined ozonolysis and anaerobic digestion for wastewater treatment ---- 121 Abbreviations — 122 Introduction —— 122 7.1 7.2 Methodology --- 123 7.2.1 Materials — 123 7.2.2 Distillery wastewater and waste activated sludge —— 124 7.2.3 Ozonolysis pre-treatment process for WAS and DWW ---- 124 7.2.4 Anaerobic digestion of WAS and DWW — 125 7.2.5 Ozonolysis post-treatment of anaerobically digested DWW —— 126 7.2.6 Physical and chemical analysis — 126 7.3 Results and discussion —— 126

7.3.1	Characteristics of WAS and DWW before and after ozonolysis
700	pre-treatment —— 126
7.3.2	Effect of ozone pre-treatment on anaerobic digestion of WAS —— 127
7.3.3	Effect of ozone pre-treatment on anaerobic digestion of DWW —— 128
7.3.4	Ozonolysis of anaerobically digested DWW (post-treatment) —— 130
7.4	Conclusions —— 133
	References —— 134
Patric	k Leonard Omokpariola, Patrice A. C. Okoye, Victor U. Okechukwu and Daniel
Omeo	disemi Omokpariola
8	Concentration levels and risk assessment of organochlorine and
	organophosphate pesticide residue in selected cereals and legumes sold in
	Anambra State, south-eastern Nigeria —— 137
8.1	Introduction —— 138
8.2	Materials and methods —— 139
8.2.1	Sample collection and preparation —— 139
8.2.2	Chemicals —— 140
8.2.3	Extraction of pesticide residues from samples —— 140
8.2.4	Clean-up —— 140
8.2.5	Analysis of organochlorine and organophosphate pesticides —— 140
8.2.6	Quality control —— 141
8.2.7	Statistical analysis —— 141
8.2.8	Pesticide toxicity Index —— 141
8.2.9	Health and exposure risk assessment —— 142
8.3	Results and discussion —— 143

Babasanmi Oluwole Abioye, Aderonke Adetutu Okoya and Abimbola Bankole Akinyele

8.3.1

8.3.2

8.3.3

8.4

residues --- 143

Conclusions —— 153

References —— 154

Pesticide toxicity index —— 148

Health risk assessment ---- 150

9 Adsorption of trichloroacetic acid from drinking water using polyethylene terephthalate waste carbon and periwinkle shells-based chitosan —— 159

Mean Concentration of organochlorine and organophosphate pesticides

	ter aprilitation transfer current una per interior succession succ
9.1	Introduction —— 160
9.2	Material and methods —— 161
9.2.1	Collection of materials —— 161
9.2.2	Preparation of caustic alkali from cocoa husk ash —— 161
9.2.3	Chemical activation of the carbon —— 162
9.2.4	Preparation of chitosan from Periwinkle shell —— 163

9.2.5	Determination of chitosan yield —— 163	
9.2.6		
9.2.7		
9.2.8 Modification of PET activated carbon —— 164		
9.2.9	Characterization of activated PET and chitosan modified activated PET	
	carbon —— 165	
9.2.10	Trichloroacetic acid analysis —— 165	
9.2.11	Batch adsorption experiment —— 166	
9.2.12	Water sampling for TCA analysis —— 166	
9.2.13	Recovery experiment for photometry determination of TCA standard —— 166	
9.2.14	Reusability potential of the adsorbent —— 167	
9.3	Results and discussion —— 167	
9.3.1	Cocoa husk ash —— 167	
9.3.2	Caustic alkali from cocoa husk ash —— 167	
9.3.3	Physicochemical properties of polyethylene terephthalate activated carbon	
	(PETAC) —— 168	
9.3.4	Physico-chemical properties of chitosan from periwinkle shell —— 168	
9.3.5	Characterization of PET activated carbon and chitosan modified activated	
	carbon with SEM-EDX before adsorption —— 168	
9.3.6	Functional groups of polyethylene terephthalate activated carbon (PETAC) and	
	polyethylene terephthalate modified activated carbon (PETMAC) —— 170	
9.3.7	Characterization of water samples —— 170	
9.3.8	Recovery experiment for TCA photometric determination —— 170	
9.3.9	Parametric studies on the TCA removal from aqueous solution —— 170	
9.3.10	Adsorption of TCA from raw water and conventionally treated water —— 174	
9.3.11	Characterization of PETAC and PETMAC with SEM-EDX after adsorption —— 175	
9.3.12	Adsorption equilibrium isotherm —— 177	
9.3.13	Reusability potential of the adsorbent —— 177	
9.4	Conclusions —— 178	
	References —— 178	
Saheed	O. Sanni, Samson O. Akpotu, Agnes Pholosi and Vusumzi E. Pakade	
10	Comparative study of the photocatalytic degradation of tetracycline under	
	visible light irradiation using Bi ₂₄ O ₃₁ Br ₁₁ -anchored carbonaceous and	
	silicates catalyst support —— 181	
10.1	Introduction —— 182	
10.2	Materials and methods —— 183	
10.2.1	Preparation of activated carbon from zinc chloride, and phosphoric acid	
	(ACZ, and ACH) from carbonized material (CM) —— 183	
10.2.2	Preparation of MCM-41 and SBA-15 —— 183	

Preparation of BOB photocatalysts —— **184**

10.2.3

10.2.4	Materials characterization —— 184	
10.3	.3 Result and discussion —— 185	
10.3.1	Structural, morphological, and optical characteristics —— 185	
10.3.2	Charge transfer properties —— 188	
10.3.3	Photocatalytic activity —— 188	
10.4	Conclusions —— 189	
	References —— 190	
Siphum	elele T. Mkhondwane and Viswanadha Srirama Rajasekhar Pullabhotla	
11	Synergistic effect in bimetallic gold catalysts: recent trends and	
	prospects —— 193	
11.1	Introduction —— 193	
11.2	Synthesis of Au bimetallic catalysts —— 194	
11.2.1	Controlling the particle size and composition —— 195	
11.2.2	Controlling the morphology of the catalyst —— 196	
11.2.3	The role of the support material —— 201	
11.3	Catalysts characterization —— 201	
11.4	Applications —— 207	
11.4.1	Oxidation of hydrocarbons —— 207	
11.4.2	Fuel cell processes —— 209	
11.4.3	Oxidation of biomass derived products —— 210	
11.4.4	Photocatalytic oxidation —— 212	
11.5	Conclusion and outlook —— 213	
	References —— 214	
Ntandol	kazi Mabungela, Ntaote David Shooto, Fanyana Mtunzi and Eliazer Bobby Naidoo	
12	Simultaneous removal of methylene blue, copper Cu(II), and cadmium Cd(II)	
	from synthetic wastewater using fennel-based adsorbents —— 223	
12.1	Introduction —— 223	
12.2	Resources and procedures —— 224	
12.2.1	Resources —— 224	
12.2.2	Method used to produce the adsorbents —— 225	
12.2.3	Methods of adsorption preparation —— 225	
12.2.4	Point zero charge process —— 226	
12.2.5	Reusability procedure —— 226	
12.2.6	Adsorption data management —— 226	
12.3	Characterization of the adsorbents —— 227	
12.4	Results and discussion —— 227	
12.4.1	Ultraviolet–Visible spectroscopy results —— 227	
12.4.2	X-ray crystallography results —— 228	

12.4.3	Scanning electron microscope and energy dispersive X-ray analysis results —— 228
12.4.4	Fourier transform infrared spectroscopy results —— 229
12.4.5	Point zero charge (pH(pzc)) —— 230
12.4.6	Effect of concentration —— 231
12.4.7	Isotherm studies —— 232
12.4.8	Effect of time —— 232
12.4.9	Kinetic model studies —— 234
12.4.10	Effect of temperature —— 234
12.4.11	Thermodynamics studies —— 234
12.4.12	Effect of pH —— 234
12.4.13	Proposed mechanism reaction —— 236
12.4.14	Reusability studies —— 236
12.4.15	Comparison studies of the qe _{max} of the current adsorbents with previous
	studies —— 238
12.5	Post adsorption results —— 238
12.5.1	FTIR results after adsorption —— 238
12.6	Conclusions —— 239
	References —— 240

Uche Eunice Ekpunobi, Uzochukwu Abraham Onuigbo, Ifeyinwa Tabugbo, Emma Amalu, Christopher Ihueze, Caius Onu, Philomena Igbokwe, Azubike Ekpunobi, Sunday Agbo and Happiness Obiora-Ilouno

The investigation of the physical properties of an electrical porcelain insulator manufactured from locally sourced materials —— 243

13.1	Introduction —— 244
13.2	Materials —— 245
13.2.1	Characterization —— 245
13.2.2	Method —— 245
13.2.3	Water absorption —— 246
13.2.4	Linear shrinkage —— 247
13.2.5	Apparent porosity —— 247
13.2.6	Bulk density —— 247
13.3	Result and discussion —— 248
13.3.1	X-ray fluorescence and X-ray diffraction analysis of the clay —— 248
13.3.2	Apparent porosity —— 249
13.3.3	Water absorption —— 250
13.3.4	Linear shrinkage —— 251
13.3.5	Bulk density —— 251
13.4	Conclusion —— 252
	References —— 253

Edwige Anagued Haman, Valéry Paul Moumbon, spce Abdourahman Fadimatou, Jean Momeni and Bathelemy Ngameni

14 A new sphingoid derivative from <i>Acacia hockii</i> De Wild (Fabacea		
	antimicrobial and insecticidal properties —— 255	
14.1	Introduction —— 256	
14.2	Material and methods —— 257	
14.2.1		
14.2.2		
14.2.3	2.3 Extraction and isolation —— 257	
14.2.4	Evaluation of the antimicrobial activity —— 258	
14.2.5	Insecticidal test of the hexane, acetone, methanol extracts and	
	compound 1 —— 259	
14.3	Results and discussion —— 259	
14.3.1	Identification of compound 1 —— 259	
14.3.2	Result of the insecticide test on <i>C. maculatus</i> —— 262	
14.3.3	Results of the antimicrobial test —— 263	
14.4	Conclusion —— 267	
	References —— 267	
Kazeem	A. Alabi, Ibrahim O. Abdulsalami, Kazeem O. Ajibola, Nusirat A. Sadiku,	
Mariam	D. Adeoye, Abdul Azeez T. Lawal and Rasheed A. Adigun	
15	Protection of wood against bio-attack and research of new effective and	
	environmental friendly fungicides —— 269	
15.1	Introduction —— 270	
15.2	Materials and methods —— 271	
15.3	Preparation of soluble soap —— 272	
15.4	Production of metallic soap [copper (II) soap] —— 272	
15.5	Synthesis of urea complexes from metallic soap —— 272	
15.6	Synthesis of thiourea complexes from metallic soap —— 273	
15.7	Physicochemical parameters of the synthesized compounds —— 273	
15.7.1	Melting point —— 273	
15.7.2	Moisture content —— 274	
15.7.3	Determination of ash content —— 274	
15.7.4	Determination of sulphated ash contents —— 274	
15.7.5	Solubility test —— 275	
15.7.6	Colour —— 275	
15.7.7	Absorption spectral analysis —— 275	
15.7.8	Infrared spectroscopy analysis —— 275	
15.7.9	Scanning electron microscope coupled with energy-dispersive X-ray	
	spectroscopy (SEM/EDS) —— 275	

Antifungal assay —— 276

15.8

15.9	Results and discussions —— 277
15.9.1	Physical properties of synthesized compounds —— 277
15.10	UV-visible spectra of synthesized compounds —— 278
15.11	Infra-red spectra of syntthesized compounds —— 278
15.11.1	Energy-dispersive X-ray analysis (EDX) with Scanning electron microscope
	(SEM) —— 279
15.12	Anti fungi assay —— 283
15.13	Conclusions —— 283
	References —— 284
Cheriya	n Ebenezer and Rajadurai Vijay Solomon
16	Exploring the solvation of water molecules around radioactive elements in
	nuclear waste water treatment —— 287
16.1	Introduction —— 287
16.2	Computational details —— 289
16.3	Results and discussion —— 289
16.3.1	Coordination environment —— 289
16.3.2	Interactions between water molecules and metals/metal oxides —— 291
16.3.3	Strength of interactions among water molecules and metal/metal
	oxides —— 293
16.4	Conclusions —— 296
	References —— 297
Nitish S	ookool and Marie Chan Sun
17	Changing our outlook towards vulnerable women for societal
	resilience —— 301
17.1	Introduction —— 301
17.2	Methods —— 303
17.2.1	Study design overview —— 303
17.2.2	Inclusion and exclusion criteria —— 303
17.2.3	Consent and confidentiality —— 303
17.2.4	Topic guide for interview —— 303
17.2.5	Data analysis —— 304
17.3	Results —— 304
17.3.1	Theme 1: drug injection scenario —— 305
17.3.2	Theme 2: sex work interplay —— 308
17.3.3	Theme 3: sexual behaviour screenplay —— 309
17.3.4	Additional data —— 310
17.4	Discussion —— 310
17.4.1	Background and setting —— 310
17.4.2	Injection practices of WIDUs —— 311

17.4.3	Sexual behaviours of WIDUs —— 311
17.4.4	Participants' insight —— 311
17.4.5	Strengths and limitations —— 312
17.4.6	Recommendations —— 312
17.5	Conclusions —— 312
	References —— 313

Index —— 317