Contents

Preface — V

Cha	pter	1
-----	------	---

Toxicity	Assessment —— 1
1.1	Toxicity Measurements and Predictions —— 1
1.1.1	Dose Descriptors and In Silico Tools —— 1
1.1.2	Aquatic Toxicity —— 2
1.2	Quantitative Structure–Activity/Property/Toxicity Relationships (QSAR QSPR/QSTR)/ —— 4
1.3	Statistical Parameters for Assessment of QSAR/QSPR/QSTR
	Models — 5
1.4	Common Organic Solvents and Their Toxicities —— 6
1.4.1	Section of Solvents for Polymers with Less Toxicity —— 7
1.4.2	The Use of a Simple Approach for Selection Solvents of Polymers — 7
1.4.3	General Comments on Using Solvents —— 10
1.5	Toxicities of Polycyclic Aromatic Hydrocarbons —— 11
1.5.1	Carcinogenicity of PAHs —— 11
1.5.2	Octanol/Water Partition Coefficient (Kow) —— 12
1.6	Organophosphate Pesticides and Their Toxicities —— 12
1.7	Prediction of Henry's Law Constant of Pesticides, Solvents, Aromatic
	Hydrocarbons, and Persistent Pollutants —— 15
1.8	Common Process for Removal of Organic Compounds in the
	Environment —— 23
1.9	Summary —— 24

Chapter 2

Toxicity of Small Data Sets of Organic Compounds —— 27 2.1 Nitroaromatic Compounds —— 27

2.1	Nitroaromatic Compounds —— 27
2.1.1	QSAR/QSTR Studies on Bacteria —— 28
2.1.2	QSAR/QSTR Studies on Rodents —— 29
2.2	Aromatic Aldehydes —— 30
2.2.1	Two Descriptors log K_{ow} and the Maximum Acceptor
	Superdelocalizability in a Molecule —— 31
2.2.2	Log K _{ow} and Molecular Connectivity Index —— 32
2.2.3	Log K _{ow} as well as Electronic and Topological Descriptors —— 33
2.3	Amino Compounds —— 34
2.3.1	Estimation of ISTP —— 34
2.3.2	Prediction of DSTP 35
2.3.3	Different Effects of –OH and –N = O —— 35
2.4	Halogenated Phenols —— 36

2.4.1	The DFT-B3LYP Method with the Basis Set 6-31G (d, p), and log
	K _{OW} —— 36
2.4.2	Two-Dimensional (2D) and Two Three-Dimensional (3D) QSAR/QSTR Models —— 36
242	
2.4.3	Wastewater-Derived Halogenated Phenolic Disinfection By- Products —— 38
2.5	Organophosphate Compounds —— 39
2.6	Polychlorinated Naphthalenes —— 41
2.7	Assessment of the Agonistic Activity of Dibenzazepine Derivatives —— 43
2.8	Summary —— 48
_	
Chapter 3	
	Medium-Sized Data Sets —— 51
3.1	Polycyclic Aromatic Hydrocarbons (PAHs) —— 51
3.2	Benzene Derivatives —— 52
3.2.1	3D-QSAR/QSTPR Studies Using CoMFA, CoMSIA, and VolSurf
	Approaches —— 52
3.2.2	Atom-Based Nonstochastic and Stochastic Linear Indices —— 53
3.2.3	Semiempirical Descriptors —— 55
3.3	Phenol Derivatives —— 56
3.4	Benzoic Acid Derivatives —— 57
3.4.1	Predicting Toxicity Through Mouse via Oral <i>LD</i> ₅₀ — 57
3.4.2	Estimating Toxicity Through Rats via Oral <i>LD</i> ₅₀ — 58
3.5	Assessment of Antitrypanosomal Activity of Sesquiterpene
	Lactones —— 60
3.6	Assessment of Activities of Thrombin Inhibitors —— 65
3.7	Assessing the Psychotomimetic Activity of the Substituted
	Phenethylamines —— 75
3.8	Summary —— 79
Chapter 4	
-	Large Data Sets —— 83
4.1	Aromatic Compounds —— 83
4.1.1	Regression-Based QSTR and Read-Across Algorithm —— 83
4.1.2	Acute Toxicity of Aromatic Chemicals in Tadpoles of the Japanese
7.1.2	Brown Frog (<i>Rana japonica</i>) Using Correlation Weights —— 89
4.1.3	Chemometric Modeling of Acute Toxicity of Diverse Aromatic
4.1.5	Compounds Against Rana japonica —— 91
4.1.4	Toxicity of Different Substituted Aromatic Compounds to the Aquatic
4.1.4	· · · · · · · · · · · · · · · · · · ·
415	Ciliate Tetrahymena pyriformis —— 93 Tovisity of Aromatic Pollytonts and Photocylidative Intermediates in
4.1.5	Toxicity of Aromatic Pollutants and Photooxidative Intermediates in
	Water —— 95

4.1.6	Risk Assessment of Aromatic Compounds to <i>Tetrahymena pyriformis</i> by a Simple QSAR/QSTR Model —— 98	
4.1.7	Toxicity Toward <i>Chlorella vulgaris</i> of Organic Aromatic Compounds in Environmental Protection —— 105	
4.2	Organic Compounds —— 110	
4.2.1	Chemical Toxicity to <i>Tetrahymena pyriformis</i> with Four Descriptor	
	Models —— 110	
4.2.2	Ecotoxicological QSAR/QSTR Modeling of Organic Compounds Against	
	Fish —— 112	
4.3	Summary —— 125	
Chapter 5		
	Ionic Liquids —— 127	
5.1	Toxicity of ILs Based on Vibrio fischeri Through the Structure of	
	Cations with Specific Anions —— 141	
5.2	Relationships of the Toxicity with the Structure and	
	the 1-Octanol–Water Partition Coefficient of ILs —— 146	
5.3	Using a Simple Group Contribution Method for Some ILs —— 147	
5.4	Using Atomic Electrostatic Potential Descriptors for Predicting the	
	Ecotoxicity of ILs Toward Leukemia Rat Cell Line (ICP-81) —— 149	
5.5	Summary —— 158	
List of Symbols —— 161		
Answers to Problems —— 171		
References —— 175		
About the Author —— 195		
Index 197		