

Contents

Preface.....	i
Abstract	iii
Kurzfassung.....	v
List of figures.....	ix
List of tables.....	xv
Abbreviations.....	xvii
List of symbols	xix
1 Introduction.....	1
1.1 Motivation.....	1
1.2 Objective	2
1.3 Strategy and structure of the work.....	3
2 Basics and state of research	7
2.1 Discontinuous fiber-reinforced thermoplastics	7
2.1.1 Characteristics.....	7
2.1.2 Thermoplastic injection molding	10
2.2 Continuous fiber-reinforced thermoplastics.....	12
2.2.1 Characteristics.....	12
2.2.2 Continuous fiber-reinforced semi-finished products and their processing	14
2.2.3 Load introduction mechanisms used with continuous fiber reinforcements	17
2.3 Filament winding.....	21
2.3.1 Conventional filament winding.....	22
2.3.2 Robot-based filament winding.....	23
2.4 Adhesion in thermoplastic hybrid components.....	27
2.4.1 Conventional surface pretreatments.....	27
2.4.2 Nanoporous coating based on PECVD	28
2.5 Relevant material system.....	29
2.5.1 Polyphenylene sulfide (PPS).....	30
2.5.2 Characteristic properties and processing of PPS	30
2.6 Differentiation from the state of research.....	32
3 Modular process development	35
3.1 Outline of the overall 3DSW process	35
3.2 Starting situation.....	37
3.3 Development goal and requirements	38
3.4 Sub-process "heating and impregnation"	40
3.5 Sub-process "robot-based 3D winding"	45
3.5.1 Setup of the 3D winding robot.....	46
3.5.2 Winding tools.....	48
3.5.3 Load introduction elements (inserts).....	49

3.5.4 Sequence of 3D winding.....	50
3.6 Sub-process “overmolding of fiber skeleton structures”	52
3.6.1 Tensile loop components	52
3.6.2 Generic 3D demonstrator component	53
3.7 3DSW process automation	55
3.7.1 Supply of metallic inserts prior to 3D winding	55
3.7.2 Automated strand pick-up and robot path planning	57
3.7.3 Ejection of wound fiber skeletons.....	61
4 Experimental	63
4.1 Experimental setup	63
4.2 Test materials	65
4.2.1 Matrix materials	66
4.2.2 Compounding of short glass fiber-reinforced PPS	67
4.2.3 Semi-finished fiber products.....	70
4.2.4 Metallic inserts	70
4.3 Microscopic characterization	73
4.4 Mechanical characterization	75
4.4.1 Characterization of interfacial strengths.....	75
4.4.2 Quasi-static tensile testing	80
4.4.3 3D demonstrator testing.....	83
5 Results and discussion	85
5.1 Characterization of material and process-specific parameters in 3DSW	85
5.1.1 Parameter settings for the sub-process “heating and impregnation”	85
5.1.2 Processing of semi-finished fiber products	92
5.1.3 Porosity of wound fiber skeleton structures.....	94
5.1.4 Characterization of interfacial strengths.....	96
5.1.5 Characterization of PPS/GF compounds used for the overmolding of fiber skeletons..	102
5.2 Mechanical characterization of overmolded tensile loop components.....	104
5.2.1 Influence of hybrid yarn material.....	105
5.2.2 Influence of in-mold fiber pretensioning	106
5.2.3 Influence of overmolding matrix.....	110
5.2.4 Influence of oblique load application.....	115
5.3 Process validation at 3D demonstrator level	121
5.3.1 Single arm testing with different insert geometries	122
5.3.2 Characterization of the 3D demonstrator component	125
5.3.3 Lightweight potential of 3DSW components	129
6 Conclusion and outlook	133
6.1 General 3DSW material, process, and design recommendations	135
6.2 Outlook.....	137
Publications	139
Literature.....	142