Contents

Part I Microscopic Classical Theory

1	Surv	ey of the	e Classical Theory	3
	1.1	Why is	the Classical Theory Needed?	3
	1.2	Classic	al Electrodynamics: Macroscopic	
		vs. Mic	croscopic Theory	4
	1.3	Maxwe	ell-Lorentz Electrodynamics	6
	1.4		andard Green Functions (Not Propagators)	
	1.5		scent Electromagnetic Fields	
	1.6	Multip	ole Electrodynamics: A Richly Faceted Subject	11
	1.7		Electromagnetic Fields and Resonances	
	1.8		ion Reaction in a Classical Perspective	
2	Max	well-Lo	rentz Electrodynamics in Space-Time	17
	2.1		axwell-Lorentz Equations	
	2.2		and Scalar Potentials: Gauge Invariance	
	2.3		plicit Solution of the Maxwell-Lorentz Equations	
	2.4		ewton-Lorentz Equation	
	2.5		énard-Wiechert Potentials and Fields	
	2.6	Some 1	Important Global Conservation Laws	28
		2.6.1	Global Energy Conservation	
		2.6.2	Global Momentum Conservation	
		2.6.3	Global Angular Momentum Conservation	32
	2.7	Some 1	Local Conservation Laws	
		2.7.1	Charge Conservation	
		2.7.2	Local Energy Conservation: Microscopic	
			Poynting Vector	34
		2.7.3	Local Momentum Conservation: Maxwell	
			Stress Tensor	35
		2.7.4	Local Angular Momentum Conservation:	
			Angular Momentum Flow	37

xii Contents

3	Elec	tromagn	etic Green Functions in Spectral Representation	39
	3.1		faxwell-Lorentz Equations in the	
		Space-	-Frequency Domain	39
	3.2	Dyadio	Green Functions in the Space-Frequency Domain	40
		3.2.1	Green Function for the Electric Field	40
		3.2.2	Green Function for the Magnetic Field	42
	3.3	Near-,	Mid-, and Far-Field Parts of G and G_M	
		3.3.1	Green Functions in Spherical Coordinates	43
		3.3.2	Far-Field Zone	
		3.3.3	Mid-Field Terms	
		3.3.4	Near-Field Zone	45
	3.4	Green	Functions and Wave Equations	
			Space-Frequency Domain	46
	3.5		al Representation of the Electromagnetic Field	
			n Assembly of Moving Point Particles	48
			•	
4	Ang	ular Spe	ctrum Representation of the Green Functions	
		_	*	51
	4.1	Maxw	ell-Lorentz Equations in Mixed Representation	51
	4.2		de: Monochromatic Plane-Wave Representation	
			Maxwell–Lorentz Equations and Green Functions	53
	4.3		Functions in Mixed Representation	
		4.3.1	Scalar Propagator, $g(Z; q_{\parallel}, \omega)$	
		4.3.2	Dyadic Green Function, $G(Z; q_{\parallel}, \omega)$	58
		4.3.3	Dyadic Green function, $G_{M}(Z; q_{\parallel}, \omega)$	59
	4.4	Evanes	scent Electromagnetic Fields	60
		4.4.1	Electromagnetic Fields from a Sheet Source	
		4.4.2	Transfer Matrices	
		4.4.3	Mixed Current Density of a Moving Point Charge	
		4.4.4	Cycle-Averaged Field Momentum Density	
	4.5	Nonret	rarded $(c_0 \to \infty)$ Electrodynamics in Vacuum	
	4.6	Wevl F	Representation of the Green Functions	68
		4.6.1	Integrals Over Propagating and Evanescent Waves	
		4.6.2	Integrals Over Generalized Inhomogeneous Waves	
			5	
5	Mult	tipole El	ectrodynamics	75
	5.1	Mome	nt Expansion of Localized Current Density Distribution	75
	5.2		c and Magnetic Dipole Fields	
	5.3		c Quadrupole Fields	
	5.4		erse Electromagnetic Multipole Waves	
		5.4.1	Spherical Scalar Waves	
		5.4.2	Interlude: Angular Field Momentum Operator \hat{J}	
		5.4.3	Electric and Magnetic Multipole Fields	
	5.5		scopic Sources of Multipole Fields	
		5.5.1	Microscopic Maxwell Equations	
			with a New Electric-Field Variable	89

Contents xiii

		5.5.2	Interlude: Spherical Wave Expansion	
			of the Huygens Propagator	91
		5.5.3	Multipole Coefficients	
	5.6	Mesos	copic Particle in a Prescribed External	
			omagnetic Field	94
		5.6.1	Rate of Energy Transfer	
		5.6.2	Rate of Momentum Transfer	95
		5.6.3	Angular Momentum Transfer	
6			mic Interaction Between Point	
	Dipo		al Fields	
	6.1		le ED-Scattering to Infinite Order	
	6.2		attering in a Born Series Approach	
	6.3		Field Resonances	
	6.4		article Interaction	
	6.5	Multip	le MD- and EQ-Scattering	108
7	Radi	ation Re	eaction	111
	7.1		onrelativistic Abraham-Lorentz Equation of Motion	
	7.2	Dampi	ng Force on Electric and Magnetic Dipoles	
		7.2.1	Bare and Dressed Electric-Dipole Polarizability	116
		7.2.2	Near-Zone Electric Green Function:	
			Radiation Damping	
		7.2.3	Magnetic Radiation Damping	
	7.3	The Re	elativistic Lorentz-Dirac Equation of Motion	120
		7.3.1	Manifestly Covariant Expression	
			for the Energy-Momentum Radiation Rate	120
		7.3.2	Rest-Mass Preserving Interactions	
		7.3.3	Abraham Four-Vector of Radiation Reaction	124
		7.3.4	Lorentz–Dirac Equation	
			on Integro-Differential Form	125
	7.4	Self-Fi	ield Distortions	126
Par	t II	Quantui	m Theory with Classical Fields	
8	Abo	ut Local	-Field Theory Based on Electron–Photon	
	Wav	e Mecha	nics	131
	8.1	Dynan	nical Variables and Redundancy: Rim Zone	132
	8.2		Response Theory in a Microscopic Perspective	
	8.3		Quantum Mechanical Calculation	
			roscopic Conductivity Tensors	136
	8.4		ed-Antenna Theory	
	8.5		omagnetic Propagators and Nonretarded	
			verse Response	138

xiv Contents

	8.6	Photon	Wave Mechanics: A Reinterpretation of	
		Maxwe	ells Theory	139
	8.7	Near-F	ield and Gauge Photons: Photon Embryo	141
	8.8	Photon	Spin and Helicity	142
	8.9	Superlo	ocalization: One-Particle Position Operators	143
	8.10	Transv	erse Photon Mass: Eikonal Theory for Photons	143
9	Tran	sverse a	nd Longitudinal Electrodynamics	145
	9.1	Soleno	idal and Irrotational Vector Fields	
		9.1.1	Helmholtz Theorem	
		9.1.2	Decomposition in Reciprocal Space	
		9.1.3	Transverse and Longitudinal Delta-Function Dyadics	147
	9.2		erse and Longitudinal Parts	
		of the N	Maxwell–Lorentz Equations	
		9.2.1	Field Equations in Direct Space	149
		9.2.2	Rim Zone of Matter	151
		9.2.3	Field Equations in Reciprocal Space	152
		9.2.4	Potential Description	152
	9.3	Role of	the Longitudinal Electric Field	154
		9.3.1	Instantaneous Coulomb Field	154
		9.3.2	Coulomb Interaction and Self-Energy	155
		9.3.3	Particle Momentum Associated	
			with the Longitudinal Electric Field	157
		9.3.4	Particle Angular Momentum Associated	
			with the Longitudinal Electric Field	160
	9.4	Dynam	ical State of the Coupled Field-Particle System	162
10	Linea	ır Nonlo	cal Response Theory	163
	10.1	Respon	se Theory for Transverse External Excitations	163
		10.1.1	Many-Body Constitutive Relation	163
		10.1.2	Integral Equation for the Transverse	
			Electric Field	165
		10.1.3	Causal Response Tensors: Microscopic Conductivity	166
	10.2	Causali	ity and Dispersion Relations	167
		10.2.1	Einstein Causality and Microcausality	167
		10.2.2		160
		10.2.2	Invariance in Time	
	10.2	10.2.3	1 7 1	
	10.3		and Near-Local Microscopic Response Tensors	
		10.3.1	Spatial Correlation Range in Constitutive Equations	
	10.4	10.3.2	Local Dynamics with Hidden Nonlocality	
	10.4		copic "Polarization" and "Magnetization" Dynamics	
		10.4.1	Generalized Polarization and Magnetization Concepts	175
		10.4.2	Generalized Electric Displacement	
		10 : *	and Magnetic Vector Fields	
		10.4.3	Central Field Equations	178

Contents xv

	10.5				
		and Per	meability Tensors for Transverse Dynamics	179	
		10.5.1	Flexibility	179	
		10.5.2	Response Theory Based on the Choice		
			$\mu_{\mathrm{T}}(\mathbf{r},\mathbf{r}',t,t') = U\delta(\mathbf{r}-\mathbf{r}')\delta(t-t')\dots$	180	
		10.5.3	Response Theory Based on the Choice		
			$D_{\mathrm{T}}(\mathbf{r},t) = \epsilon_0 E_{\mathrm{T}}^{\mathrm{ext}}(\mathbf{r},t) \dots$		
	10.6		se to External Longitudinal Fields		
	10.7	The Ge	neral Constitutive Relation	183	
	10.8		se Tensors for Media with Finite		
		and Infi	initesimal Translational Invariance in Space	184	
		10.8.1	Lattice Periodicity	184	
		10.8.2	Slowly Varying External Fields	185	
11	Dens	ity Matr	ix Formalism: Hamilton and Current		
	Dens	ity Oper	ators - Gauge Invariance	187	
	11.1		Matrix Operator		
		11.1.1			
		11.1.2	Statistical Mixture of States	190	
	11.2	The Lic	ouville Equation	193	
	11.3		nfiguration Space Representation		
	11.4		on Operator in Minimal Coupling Form		
		11.4.1	= "		
		11.4.2	Pauli and Nonrelativistic Hamiltonians	199	
		11.4.3	Canonical Quantization	200	
	11.5		Probability Current Density		
		11.5.1	Probability Current Density in Wave Function Space	204	
		11.5.2	Para- and Diamagnetic Current Densities		
		11.5.3	Transition Current Density		
		11.5.4	Orbital Current Density Operator	207	
	11.6	Gauge	Invariance in Quantum Mechanics		
		11.6.1	Transformation of the Mechanical Momentum Operator		
		11.6.2	Unitary Transformation of the State Vector		
		11.6.3	Form Invariance of the Schrödinger Equation		
		11.6.4	Electromagnetic Forces and Local Phase Invariance		
12	Quar	tum Th	eory of the Generalized Nonlocal		
		ar Respo	nse	217	
	12.1	Mean V	Value of the Orbital Current Density Operator		
		in a We	ak External Electromagnetic Field	217	
		12.1.1	Gauge Choices for the External and Induced		
			Potentials: Interaction Hamiltonian	217	
		12.1.2	Iterative Solution of the Liouville Equation		
		12 1 3	Linearized Orbital Current Density		

xvi Contents

		12.1.4	Calculation of the Mean Current Density	
			in the \hat{H}_0 -Basis	222
	12.2	The No	nlocal Linear Response Tensor	
			One-Electron Approximation	
		12.2.2	Many-Body Approach	227
	12.3	Tensor	Product Structure of the Orbital Response Tensor	
	12.4		Invariance of the Linearized Response	
	12.5		ss on the Low- and High-Frequency Responses	
13			Ewald-Oseen Extinction Theorem:	
	_		enna Theory	
	13.1		ion Theorem for Transverse Dynamics	
			Integral Relation Between Field and Current Density	
			Ewald-Oseen Extinction Theorem	
	13.2		Equations	
	13.3		d-Antenna Theory	
			Matrix Equation Problem for the Local Field	
			Local-Field Resonances	
	13.4	Two-Le	evel System: Single Antenna Dynamics	251
14			nd Covariant Electromagnetic Propagators:	
	Princ		ume and Self-Field Dyadics	
	14.1	Transve	erse Propagator for the Electric Field	
		14.1.1	Spectral Representation	
		14.1.2	Genuine Transversality	257
		14.1.3	Space-Time Form: Causality and Space-Like	
			Near-Field Coupling	
	14.2	Eigenve	ector Expansion of Propagators	263
		14.2.1		263
		14.2.2	Transverse Eigenvector Expansion	
			over a Finite Domain	264
		14.2.3	Plane-Wave Eigenvector Expansion	
			Over an Infinite Domain	266
	14.3	Contrac	ction Geometry and Transverse	
		Self-Fie	eld Dynamics	267
		14.3.1	Volume and Surface Integral Contributions	
			to the Transverse Electric Field	268
		14.3.2	The Connection Between the Volume Integral	
			and the Exterior Solution for the Transverse Field	273
		14.3.3	Self-Field Dyadic	
	14.4	Propaga	ator Plus Self-Field Electrodynamics	
			Rim Zone and Source Region	276
	14.5		ield Electrodynamics in Spherical	
			ction Geometry	279
	14.6		istic Covariance of the Huygens Propagator	

Contents xvii

15	Photo	on Wave	Mechanics: Complex Field Theory	283
	15.1	Wave N	Mechanics and the Einstein-de Broglie Relations	283
	15.2	Landau	ı–Peierls Theory	285
	15.3	Interlu	de: Complex Analytical Signals	287
	15.4	Comple	ex Field Theory in the Momentum-Time Domain	290
		15.4.1	Photon Helicity Unit Vectors	290
		15.4.2		
			and Wave Equations	292
		15.4.3	Photon Spinor Description	
		15.4.4	Quantum Mechanical Mean Values	
			of the Photon Energy and Momentum	295
	15.5	Comple	ex Field Theory in the Space-Time Domain	297
		15.5.1	Cartesian Photon Spin Operator: Helicity Operator	297
		15.5.2	The Nonlocal Hamilton Operator	
			of the Photon	300
	15.6	Photon	Probability Current Density and the Associated Operator	302
	15.7	The No	onlocal Relation Between Field Vectors	
		and Phe	oton Wave Function	304
14	Dhat	- Wor	Machanica Francy Ways Function	
16			Mechanics: Energy Wave Function tential Theories	207
	16.1		Energy Wave Function Formalism	
	10.1	16.1.1	•	507
		10.1.1	Electromagnetics in Free Space	307
		16.1.2		507
		10.1.2	Wave Function	300
		16.1.3		507
		10.1.3	of the Photon Energy–Momentum Operator	
			in Reciprocal Space	212
		16.1.4	Lorentz-Invariant Integration on the Light Cone	
	16.2		on Between the Energy Wave Function	
	10.2		mplex Field Formalisms in Direct Space	217
	16.3		Mechanics of Longitudinal and Scalar Photons:	517
	10.5		rd Theory	310
		16.3.1		519
		10.5.1	of the Transverse Vector Potential	310
		1622	Longitudinal and Scalar Photon Wave	519
		10.5.2	Functions, and Their Related Wave Equations	320
		1622	Identity of the Longitudinal and Scalar Photons	
		16.3.3		322
		16.3.4		323
	16 4	Wass 1	of the Longitudinal and Scalar Photon Energies Mechanics of Gauge and Near-Field Photons	
	16.4			324
		16.4.1	Equations in Direct and Reciprocal Space	225
		16.40	Longitudinal and Scalar Photons Once More	
		10.4.2	Lunghuunnan anu scaran x mutuns Unice miute	

xviii Contents

		16.4.3	Gauge and Near-Field Photons	327
		16.4.4	Gauge Transformations Within the Lorenz Gauge	328
		16.4.5	Elimination of the Gauge Photon	
17	Photo	on Angu	lar Momentum	333
	17.1	Bodily	Rotation of Scalar and Vector Fields	334
	17.2	Orbital	and Spin Parts of the Photon Angular Momentum	337
		17.2.1	Division of the Angular Momentum	
			of the Transverse Electromagnetic Field	337
		17.2.2	Quantum Mechanical Mean Values	
			of the Orbital and Spin Angular Momenta	
			in the Complex Field Theory	339
		17.2.3	Quantum Mechanical Mean Values	
			of the Orbital and Spin Angular Momenta	
			in the Energy Wave Function Formalism	341
	17.3	More o	n the Photon Spin and Helicity	
		17.3.1	Are \hat{L} and \hat{S} Separate Observables	
			for a Photon?	342
		17.3.2	Quantum Mechanical Mean Value	
			of the Cartesian Photon Spin Operator	343
		17.3.3	Projected Photon Spin Operator	345
		17.3.4	Eigenvectors and Eigenvalues of the	
			Photon Helicity Operator	346
18	Photo	on Emiss	sion from Micro- and Mesoscopic Sources:	
	Near-	-Field As	spects	349
	18.1		copic Electrodynamics Based	
		on D - a	and <i>H</i> -Fields	
		18.1.1	New Microscopic Field Equations	350
		18.1.2	Duality Between Old and New Transverse	
			Electrodynamics: New Wave Equations	
	18.2	The Ph	oton Embryo Concept	
		18.2.1	Dynamical Photon Wave Function Variables	352
		18.2.2	Dynamical Equations for the Photon	
			Wave Function Variables	
		18.2.3	Photon Embryo in Momentum Space	
	18.3		noton Sources	357
	18.4	Propaga	ator Description of Photon Embryo	
			re-Time	
			Remarks on the Classical Source Term $W(r,t)$	
		in Spac	Remarks on the Classical Source Term $W(r,t)$ Propagator Solutions of the Wave Equations	359
		in Spac 18.4.1	Remarks on the Classical Source Term $W(r,t)$ Propagator Solutions of the Wave Equations for $D(r,t)$ and $H(r,t)$	359

Contents xix

	18.5	Gauge a	and Near-Field Photon Embryos	361
		18.5.1	Dynamical Equations for G- and NF-Photon Variables	
		18.5.2	Time Reversal: Solution of the Dynamical	
			Equations for the G- and NF-Variables	363
19	Eikor	ıal Theo	ry for Transverse Photons and Massive	
1/			ero Spin	365
	19.1		tions of Geometrical Optics	
	17.1	19.1.1	Macroscopic Maxwell Equations	
		19.1.2		
	19.2		Transverse Photon	
	17.2	19.2.1		
		17.2.1	at High Frequencies	. 370
		19.2.2	Quantum Mechanical Photon Wave Equation	
		17.2.2	in a Homogeneous Medium	372
		19.2.3	Energy-Momentum Relation: Mass	
		17.2.0	of Transverse Photon	373
		19.2.4	Photon Mass in the Energy Wave Function Formalism	
	19.3		Eikonal Gradient: Local Particle Momentum	
		19.3.1	Photon Eikonal Equation	
		19.3.2	Local Photon Momentum	
	19.4	Hamilto	on–Jacobi Formulation of Classical Mechanics	380
		19.4.1	The Hamilton Equations and Their Derivation	
			from a Variational Principle	381
		19.4.2	A Particular Canonical Transformation	
		19.4.3	Hamilton-Jacobi Equation for Hamilton's	
			Principal Function	384
		19.4.4	Hamilton-Jacobi Equation for Hamilton's	
			Characteristic Function	385
	19.5	Eikonal	Theory of Charged Particles in Quantum Mechanics	386
		19.5.1	Nonrelativistic Hamilton–Jacobi Equation	
		19.5.2	Quantum Potential and Probability Fluid Flow	
		19.5.3	Relativistic Hamilton–Jacobi Equation:	
			Particle of Zero Spin	390
20	Snin_	1/2 Curr	rents: Spatial Photon Localization	
20	in Fn	niccion fr	om a Pure Spin Transition	395
	20.1		2 Current Density	
	20.1	20.1.1	Dirac Equation in Minimal Coupling Form	396
		20.1.2	Fully Relativistic Dirac Current Density	
		20.1.2	Weakly Relativistic Pauli Spin Current Density	
	20.2		urce for Photons: Absence of the Rim Zone	
	20.3		Emission from Spin-1/2 Transitions	
	20.0	20.3.1	Electromagnetic Far Field	
		20.3.2	Emission from an Isotropic Microscopic Source	

xx Contents

21	One-	Particle	Position Operators and Spatial Localization	411
	21.1		ativistic Particle	
	21.2	Massiv	e Relativistic Particle of Zero Spin	412
		21.2.1	Position Operator	412
		21.2.2	Eigenstates of the Position Operator:	
			Localization in Configuration Space	413
	21.3	Massle	ss Spin-One Particle (Photon)	
		21.3.1	Transverse Eigenstates in Momentum Space	417
		21.3.2	Dyadic Photon Position Operator	418
		21.3.3	The Photon Position Operator Problem	
			in Configuration Space	419
Par	t III	Quantu	m Electrodynamic Theory	
22	Near	Fields a	nd QED	423
	22.1		o of Photons	
		22.1.1		
	22.2	Near-F	ield Commutators	
	22.3		ell-Lorentz Operator Equations: Coulomb	
			ncaré Gauges	426
	22.4		ant Field Propagators	
	22.5		Emission from Atoms and Mesoscopic Objects	
	22.6		Transverse Photon Exchange in Near-Field	
		Electro	dynamics	432
	22.7	Exchan	ge of Scalar Photons	433
	22.8	Cohere	nt States of Evanescent Fields	433
23	The l	Route to	the Maxwell-Lorentz Operator Equations	
			nb Gauge	435
	23.1		Vave Quantization of the Transverse	
			magnetic Field	435
		23.1.1	The Classical Field Vectors	435
		23.1.2	The Classical Field Energy and Momentum	
			in Free Space	438
		23.1.3	The Classical Spin of the Free Field	
		23.1.4	Quantization Scheme for the Radiation Field:	
			Transverse Field Observables	442
		23.1.5	Hamilton, Momentum and Spin Operators	
			for the Transverse Electromagnetic Field	
		23.1.6	Monochromatic Plane-Wave Photons: A Brief Review.	
	23.2	Tempor	ral Evolution of the Global Field-Matter System	448
		23.2.1	State Space	
		23.2.2	Total Nonrelativistic Hamiltonian	
			in the Coulomb Gauge	448
		23.2.3	The Schrödinger Picture	

Contents xxi

		23.2.4	The Heisenberg Picture	450
		23.2.5	The Interaction Picture	
	23.3	The Qu	antized Newton-Lorentz Equation	
	23.4		antized Maxwell-Lorentz Equations	
		in the C	Coulomb Gauge	455
		23.4.1	Equation of Motion for the Annihilation	
			Operator, \hat{a}_{qs}	455
		23.4.2	Equations of Motions for the Transverse	
			Electric (\hat{E}_T) and Magnetic (\hat{B}) Field Operators	458
		23.4.3	Longitudinal Electric Field Operator	
24	Field	Commu	tators and Integral Representation	
			ovariant Propagators	461
	24.1		dan–Pauli and Feynman Scalar Propagators	
	24.2		eld Commutators for Fields Taken at Different	
			Time Points	463
	24.3		ommutators in the Presence of Field-Matter Interaction.	
			Equal-Time Commutators	
			Weighted Average Values of Fields	
			and Commutators	469
		24.3.3	Quantum Mechanical Mean Value	
			and Variance of the Mean Field	470
	24.4	Contou	r Integral Representations of Covariant Scalar	
			ators	472
		24.4.1	The Jordan–Pauli Propagator	
		24.4.2		
25	Elect	rodynan	nics in the Poincaré Gauge	477
	25.1	The Po	incaré Gauge	478
	25.2	A Spec	ific Choice for the Generalized Polarization	
		and Ma	gnetization	480
		25.2.1	Polarization Field	480
		25.2.2	Magnetization Field	482
	25.3	Lagran	gians in the Coulomb and Poincaré Gauges	484
		25.3.1	Nonrelativistic Standard Lagrangian	
			and Its Gauge Transformation	484
		25.3.2	The Power–Zienau–Woolley Transformation	
		25.3.3	On the Elimination of the Redundancy	
			from the Standard Lagrangian	486
		25.3.4	Coulomb Lagrangian: Regrouping of Parts	
		25.3.5	Poincaré Interaction Lagrangian	
		25.3.6	Multipole Interaction Lagrangian	
	25.4		ate Momenta: Coulomb and Poincaré Hamiltonians	
		25.4.1	Conjugate Particle Momentum	
		25.4.2	Conjugate Field Momentum	
		25.4.3	3 6	

xxii Contents

	25.5	Quantu	ım Description in the Poincaré Gauge	493
		25.5.1	Quantum Representations Related	
			by a Unitary Transformation:	
			A Brief Review	493
		25.5.2	The Unitary Transformation Relating	
			the Quantum Descriptions in the Coulomb	
			and Poincaré Gauges	495
		25.5.3	Transformation of Various Physical Quantities	496
		25.5.4	Canonical Quantization: Hamilton Operator	499
26	Photo	on-Field	Operators: Wave-Packet Photons	501
	26.1		noton-Field Operators	
	26.2		Photon States: Relation to Photon Wave Mechanics	
	26.3	Local a	and Global Bilinear Operators: Nonstationary	
			noton States	
	26.4		Packet Photon Operators and States	
	26.5		ell-Lorentz Operator Equations in the Poincaré Gauge	
	26.6	Matter-	Coupled Photon-Field Operators	511
	26.7	Photon	Embryo in Spontaneous Emission	512
27	Photo	on Emiss	sion From Atoms: Elements	
	of the	e Nonrel	ativistic QED Description	515
	27.1	Integra	Relations Between Field and Particle Operators	516
		27.1.1	On the Nonrelativistic Lamb Shift	
			and Spontaneous Emission	516
		27.1.2	Propagator Connection Between	
			the Photon-Field and Source-Particle Operators	518
	27.2	Field R	adiation from Single-Particle Source	520
		27.2.1	Second-Quantization of Source Current	
			Density: Flip Operators	520
		27.2.2	The Retarded Relation Between Field	
			and Flip Operators	522
		27.2.3	Single-Electron Spontaneous Emission:	
			Neglect of Diamagnetism	
	27.3	The Ele	ectric Dipole Hamiltonian and the Associated Operator	525
		27.3.1	Long-Wavelength Approximation	
			of the Classical Poincaré Hamiltonian	525
		27.3.2	Long-Wavelength Unitary Transformation	
			of the Coulomb Hamilton Operator	
	27.4	Two-Le	evel Atom	
		27.4.1	Raising and Lowering Operators	
		27.4.2	Pauli Operators	
		27.4.3	Electron-Field Operators	533
		27.4.4	Electric-Dipole Hamiltonian	535

Contents xxiii

	27.5	· · · · · · · · · · · · · · · · · · ·		
		Atom F	Plus Field System	537
		27.5.1	Heisenberg Equation of Motion	
			for the Atomic Flip Operator, \hat{b}	537
		27.5.2	Heisenberg Equation of Motion for the Field	
			Annihilation Operator, \hat{a}_{qs}	538
	27.6	Sponta	neous Emission and Lamb Shift: Heuristic Approach	
		27.6.1	Rotating-Wave Approximation	
		27.6.2	Markov Approximation	540
		27.6.3	The Spontaneous Decay Rate	542
		27.6.4	The Lamb-Shift Parameter	544
		27.6.5	The Radiated Transverse Field	546
		27.6.6	The $\{\hat{b}, \hat{b}^{\dagger}\}$ -Anticommutator Problem	549
		27.6.7	Relation Between the Spontaneous Decay	
			Rate and the Transverse Propagator	550
28	Parti	cle_Part	icle Interaction by Transverse Photon Exchange	553
	28.1		ble Expansion of the Coulomb Interaction Energy	
	28.2		ation by an Effective Electronic Hamiltonian	
	28.3		Photon Exchange Between Two Charged Particles	
		28.3.1	Qualitative Analysis of the Effective	
			Hamiltonian to Second Order	561
		28.3.2	Delay and Magnetic Corrections	
			to the Coulomb Interaction	566
		28.3.3	Momentum Exchange	
	28.4	Van dei	Waals Interaction Between Two Neutral Particles	571
		28.4.1	Interaction from the Power–Zienau–Woolley	
			Point of View	571
		28.4.2	Exchange of Virtual Transverse Photons	
	28.5	Casimi	r Effect: Particle-Surface Interaction	578
	28.6	Remarks on the Casimir-Polder Effect		
29	Photo	ons in a l	Manifestly Lorentz-Covariant Theory	583
	29.1		ant Formulation of Classical Free-Field Dynamics	
		29.1.1	Covariant Notation	584
		29.1.2	The Free Maxwell Equations in Covariant Form	
		29.1.3	Lagrange Equations for the Free Field:	
			Standard Approach	586
		29.1.4	Modified Field Lagrangian Density	587
	29.2		Wave Expansion of the Four-Potential	
		29.2.1	Four-Component Polarization Vectors	
		29.2.2	Gauge, Near-Field, and Transverse	
			Four-Component Potentials	590
		29.2.3	Lorenz Condition: Gauge Arbitrariness	
			Electromagnetic Field Hamiltonian	

xxiv Contents

	29.3	Covaria	ant Field Quantization	595	
		29.3.1	Hamilton Operator and Commutator Relations		
		29.3.2	Scalar Photons: The Problem of Negative Norms	597	
		29.3.3	Gupta-Bleuler-Lorenz Condition	598	
		29.3.4	Near-Field and Gauge Photon Quanta:		
			Commutators and Hamilton Operator	600	
	29.4	Covaria	ant Quantization with an Indefinite Metric		
		29.4.1	New Scalar Product and New Adjoining		
			Operator, $\bar{\mathcal{O}}$	602	
		29.4.2	Choice of New Metric	603	
		29.4.3	Near-Field and Gauge Photons in the New Metric	605	
	29.5	$\hat{A}^{\mu}(x)$ -Commutators and the Feynman Photon Propagator		607	
		29.5.1	Covariant Commutation Relations		
		29.5.2	Equal-Time Commutation Relations	608	
		29.5.3	The Feynman Photon Propagator	609	
30	Matt	ar-Attac	hed Quantized Fields	611	
<i>3</i> 0	30.1		is of the Covariant Photon Propagator		
	50.1	30.1.1	Combined Exchange of Longitudinal	012	
		50.1.1	and Scalar Photons	612	
		30.1.2	Near-Field and Gauge Photon Exchange		
	30.2		Particle Interaction in Covariant Notation		
	50.2	30.2.1			
		30.2.2	Retarded and Advanced Propagators:		
		30.2.2	In- and Out-States	618	
	30.3	Interact			
	20.2	Interaction Between Two Fixed Charges: Exchange of Scalar Photons			
		30.3.1	Prescribed Particle Dynamics: Hamiltonian		
		50.5.1	for Field Evolution	621	
		30.3.2	Energy Shift of the Ground State of the Field		
		30.3.3	Reinterpretation of Coulomb's Law		
	30.4		nb Interaction: The Near-Field and Gauge Photon Picture		
	30.5	_			
	00.0	30.5.1	Sheet Current Density		
		30.5.2	Longitudinal and Scalar Parts of the Classical		
		•	Four-Potential	631	
		30.5.3	Quasi-Static Regime		
		30.5.4	Sheet Rim Zone		
	30.6		m Field Radiated by a Classical Source		
		30.6.1	Current Density Without Quantum Fluctuations		
		30.6.2	Heisenberg Equations of Motion		
			for the Annihilation Operators $\{a_r(q;t)\}$	637	

Contents		xxv

30.6.3	Coherent Field State	638
30.6.4	Coherent Scalar and Longitudinal Photon	
	Radiation from a Sheet Source	639
References	643	
Index		653