Contents

Introduction 1

	What is Nanoengineering? 1	
	What are Chemical Principles of Nanoengineering? 3	
	Who is this Book Intended for? 4	
1	Intermolecular Forces 7	
1.1	The Pairwise Potential 8	
1.2	Electrostatic Interactions 11	
1.3	Permanent Dipole Interactions and Hydrogen Bonding 18	
1.4	van der Waals Forces 23	
1.5	Hydrophobic Forces 32	
1.6	Steric Forces 36	
1.7	Particle Stability and Aggregation 39	
	Further Reading 42	
	Problems and Discussion Topics 43	
2	Molecular Bonds 49	
2.1	Atomic Orbitals 50	
2.2	Valence Bond Theory 51	
2.3	Molecular Orbital Theory 58	
2.4	Frontier Orbitals and Chemical Reactions 71	
2.5	Electronic Transitions 73	
2.6	Functional Groups and Nomenclature 75	
	Further Reading 89	
	Problems and Discussion Topics 89	
3	Extended Solids 95	
3.1	Energy Bands 95	
3.2	Conductivity 99	
3.3	Tight-Binding Approximation 104	
3.4	Density of States 116	
3.5	Conducting Polymers 120	
	Further Reading 128	
	Problems and Discussion Topics 128	

viii	Contents	
------	----------	--

4	Nanocarbon 133	
4.1	Hybridization 133	
4.2	Graphene 137	
4.3	Carbon Nanotubes 146	
4.4	Fullerenes 154	
4.5	Diamondoids 157	
	References 158	
	Further Reading 159	
	Problems and Discussion Topics 159	
5	Descriptive Crystal Chemistry 163	
5.1	Lattices and the Unit Cell 163	
5.2	Hard-Sphere Packing 167	
5.3	Coordination Geometries 173	
5.4	Bravais Lattices 176	
5.5	The Atomic Basis 183	
5.6	Archetypes 186	
5.7	Miller Indices and Crystal Planes 190	
	Further Reading 194	
	Problems and Discussion Topics 194	
6	Surface Properties and Effects 199	
6.1	Estimating the Surface 199	
6.2	Adsorption 203	
6.3	Surface Energy 208	
6.4	Nearest-neighbor Broken-bond Model 212	
6.5	Interfacial Energy 218	
6.6	Curvature Effects 222	
6.7	Stabilizing the Surface 226	
	Further Reading 232	
	Problems and Discussion Topics 232	

Index 235