1	Intr	oduction	1		
	1.1	1 Content of This Study and Guiding Questions			
	1.2	• •			
	1.3				
	1.4	4 Overview of Important Primary and Secondary Sources			
	1.5	Methodology	31		
		1.5.1 Network Analysis of Primary and Secondary Sources	31		
		1.5.2 Stoffgeschichte and Product-Line Analysis	33		
		1.5.3 Material Culture (Studies)	37		
		1.5.4 Biographical Facets, Institutional and Corporate History	41		
		1.5.5 Eyewitness Interviews	43		
		1.5.6 My Own Methodological Approach—Typology	46		
	1.6	Structure of the Work	48		
	1.7				
	1.8	Terminology—Material Versus Hybrid Material	55		
2	Early Composites				
	2.1	Unique Piece from the Stone Age	61		
	2.2	•			
	2.3	•			
	2.4	Papier-Mâché—Composite Material from the Middle Ages	69		
3	The	Development of Composite Materials Within the Context			
	of 19	9th-Century Industrialization	75		
	3.1	The Plastic Masses Versus Presstoff	75		
		3.1.1 Materials Design of the Plastic Masses	79		
		3.1.2 The Development of Vulcanized Fibre, an Early Laminate			
		Around 1850	82		
	3.2	Wood as a Fibre Composite and the Development of Industrially			
	Manufactured Wooden Composites				
		3.2.1 Veneer Wood Versus Plywood	85		

χV

xvi Contents

		3.2.2	Fibreboard and Chipboard 3.2.2.1 Standardization and Norms—The Holig Homogenholzwerke, from Aircraft Flooring	89
			to Prisoner Barracks	95
	3.3		ne Elements—Early Designs with Hybrid Materials Early Presstoff and Layered Materials From the 1880s	108
			to the Turn of the Century	108
4	Con	mosites	s in 20th-Century Polymer Chemistry	113
	4.1	_	en Aesthetics and Functionality—Bakelite, The First Years	
			1930	113
		4.1.1	Bakelite "A-Wing"	121
			"Old" Materials in Early Lightweight Designs the Productive	
			1920s	127
			4.1.2.1 John Dudley North	127
			4.1.2.2 Albin Kasper Longren	130
	4.2	A Hig	h-Performance Material Matrix From Polymer Chemistry	
		_	Early 1920s	134
		4.2.1	"Engineered Stability"—Layered Presstoff, a Modern Fibre	
			Composite	135
		4.2.2	Machine Elements as "Fibre-Composite	
			Pioneers"—the Development Between 1925 and 1945	138
		4.2.3	First German Presstoff Plain-Bearings Research in Darmstadt	
			and Dresden	141
	4.3	Römn	ıler AG Versus Dynamit Nobel AG	146
		4.3.1	Presstoff, an Emancipated "Substitute Material"?	150
		4.3.2	Top-Secret Order on "Presstoff"—Compressed	
			Thermoplastic in Armaments Research and Production	
			in the 1930s and 1940s	153
			4.3.2.1 Competency Disputes About Where to Apply	
			the Materials Technology	156
			4.3.2.2 Specialized Navy and Army Orders for Römmler AG	160
	4.4	Betwe	en Professional and Political Ambivalence—Fibre Research	
		from	1920 to 1945	165
		4.4.1	Friedrich Tobler—Botanist, Fibre Researcher, Raw Materials	
			Expert	172
			4.4.1.1 Glass-Fibre-Reinforced Plastic—A Secret Serial	
			Product for the Luftwaffe from the 1940s	177
		4.4.2	Institute of Materials Research at the DVL—New Materials	
			and Conventional Knowledge—Researches Between 1930	
			and 1945	183

			4.4.2.1 Uncharted Academic Territory Far Removed From	
			University Research	187
		4.4.3	Fibre Research—The Institute of Materials Research	
			at the DVL and the Graf Zeppelin Research Institute	194
	4.5	Aviati	on Case Study I: Fibre-Aligned Wood Construction.	
		Develo	oping an Aircraft that Never Flew—The Hütter Hü 211	197
		4.5.1	Preamble to the Reconnaissance Aeroplane Hütter Hü 211	198
		4.5.2	Fibre-Aligned Lightweight Wood Construction	
			and Conventional Moulded-Wood Production	201
		4.5.3	Testing of Construction Methods and Materials to Underpin	
			Design Specifications	205
		4.5.4	Moulded Wood Versus Shell Fabrication	210
		4.5.5	Foreign and Forced Labour for the Hü 211	215
	4.6	Aviati	on Case Study II: New Load Horizons	
		for Ai	rcraft—the Horton Brothers' Fibre-Composite Flying	
		Wing	from 1935	218
		4.6.1	Introduction	218
		4.6.2	The Horten Brothers	221
		4.6.3	The Horten Flying Wing Model H V-a Made of Layered	
			Presstoff	231
		4.6.4	The "Composite" Flying Wing IX V2/V3 by the Horten	
			Brothers	241
		4.6.5	Composite Materials and Their Applications in Foreign	
			Design	251
5	Dev	elopme	nt of Hybrid Material Systems in the Second Half	
_		_	ntieth Century	257
	5.1		Bridge to the Future—Glass-Fibre-Reinforced Plastic	
			e Akafliegs	257
	5.2		Load Horizons from "Black Gold"—Early 1970	260
		5.2.1		260
		5.2.2		272
	5.3	Resea	rch with Limited Prospects—GDR Composite Materials	
		Devel	opment, 1954 to 1980	281
		5.3.1	The "Reinvention" of Lightweight Design	282
		5.3.2	From Garland to Lightweight "Honeycomb" in Aviation	288
		5.3.3	Composite Materials Development Compared—FRG	
			and GDR	293
	5.4	Beast	of Burden for the Ether—The SOFIA Project, 1985 to 2009	300
		5.4.1	First Steps and Historical Obstacles	302
		5.4.2	"Black" Decision and New Ways Along Old Paths	305
		5.4.3	The "Black-Frame" View into the Past and Future	308

xviii Contents

	5.5 Hybrid Materials with Other Matrices and Reinforcing Materials	312
6	Conclusion	315
\mathbf{A}	ppendix	343
Li	ist of Sources	345
R	eferences	355
N	ame Index	393
In	ndex	397