Contents

Preface ---- V

	Cha	pter	1
--	-----	------	---

Inference of the acting factors of evolution and basic evolutionary parameters from sequence data — 1

1.1		Mechanism of HIV diversity and the estimate of average selection coefficient —— 2			
	1.1.1		e diversity in protease gene: data analysis —— 3		
	1.1.2		deterministic adaptation of virus in an individual —— 6		
	1.1.3		chain of single-clone transmission —— 9		
	1.1.4	Model 3: coinfection from independent sources —— 11			
	1.1.5	Probability of coinfection estimated for HIV —— 12			
	1.1.6	Model 4: individual variation in wild type due to MHC subtypes —— 12			
	1.1.7	Discussion —— 14			
	1.1.8	Mathema	Mathematical derivations —— 15		
		1.1.8.1	Virus evolution in an individual —— 15		
		1.1.8.2	Chain of single-clone transmission —— 16		
		1.1.8.3	Coinfection from independent sources —— 17		
		1.1.8.4	Coinfection from the same source —— 18		
		1.1.8.5	Estimation of the value of q for HIV —— 19		
		1.1.8.6	Approximations —— 20		
1.2	Estimate of the effective population size —— 21				
	1.2.1	One-locu	s model of stochastic evolution —— 23		
	1.2.2	Three reg	gimes of evolution —— 24		
	1.2.3	Two-locu	s model and linkage disequilibrium test —— 27		
	1.2.4	Estimatio	n of the effect of recombination —— 30		
	1.2.5	Robustne	ess to approximations —— 31		
	1.2.6	Discussio	n —— 32		
1.3	Estimate of recombination rate —— 33				
	1.3.1	Methods	 35		
		1.3.1.1	Model of population —— 35		
		1.3.1.2	Linkage disequilibrium measures —— 36		
		1.3.1.3	Patient data —— 36		
	1.3.2		n of HIV adaptation —— 36		
	1.3.3	Estimatio	n of recombination rate and average selection		
	coefficient —— 39				
	1.3.4	Discussio	n —— 42		

Chapter 2

IIIIC	ence or	inchess landscape from sequence data —— 44		
2.1	Univer	sal evolutionary footprint of epistasis —— 44		
	2.1.1	Model of stochastic evolution with epistasis —— 46		
	2.1.2	The footprint of epistasis for a single interacting pair in a long		
		genome —— 47		
	2.1.3	The long genome of isolated pairs —— 50		
	2.1.4	Full compensation and UFE interval —— 53		
	2.1.5	Effects of network topology —— 55		
	2.1.6	Discussion —— 59		
	2.1.7	Mathematical derivations —— 60		
		2.1.7.1 Isolated pairs (Section for 2.1.3) — 61		
		2.1.7.2 Double arches —— 64		
		2.1.7.3 Triple arches —— 66		
		2.1.7.4 Long chain —— 69		
		2.1.7.5 Large binary tree —— 72		
		2.1.7.6 Double arches with unequal interactions —— 75		
2.2	Detect	ion of epistatic pairs in a single population: mission impossible —— 78		
	2.2.1	Epistatic pairs have a distinct signature in a narrow time		
		window —— 79		
	2.2.2	Results are robust to the combinations of LD measures —— 82		
	2.2.3	Parameter sensitivity analysis confirms the results —— 83		
	2.2.4	Population divergence creates strong linkage effects —— 84		
	2.2.5	The use of multiple populations rescues epistatic signature —— 85		
	2.2.6	Discussion —— 86		
2.3	Detection of epistasis by the three-way correlation method —— 87			
	2.3.1	Simulation model to generate sequences for testing the		
		method —— 88		
	2.3.2	First step: averaging over populations —— 88		
	2.3.3	Second step: three-way correlation —— 90		
	2.3.4	Analytic test of the method —— 91		
		2.3.4.1 Derivation for topology without loops —— 91		
		2.3.4.2 Derivation for topology with closed squares — 93		
	2.3.5	Application to influenza A virus —— 97		
		2.3.5.1 A primary mutation and compensatory sites —— 99		
		2.3.5.2 Structural interpretation —— 99		
	2.3.6	Discussion —— 100		
2.4	Estima	tion of selection coefficients from DNA data —— 102		
	2.4.1	Experimental distribution of selection coefficients —— 104		
	2.4.2	Model —— 105		
	2.4.3	Monte-Carlo simulation of genetic evolution —— 105		
	2.4.4	Analytic derivation of universal DEF —— 107		

		2.4.4.1	Early evolution —— 107
		2.4.4.2	Traveling wave regime —— 108
		2.4.4.3	Quasi-equilibrium argument —— 110
		2.4.4.4	Monte-Carlo test confirms results —— 111
	2.4.5	Estimatin	g selection coefficients from a sequence set —— 112
	2.4.6	Discussio	n 113
Chap			
	-		trait —— 116
3.1			oward AIDS —— 116
	3.1.1		virus dynamics —— 119
		3.1.1.1	Model 1: no immune response —— 119
		3.1.1.2	Model 2: CD8 T-cell immune response —— 120
	3.1.2		of HIV adaptation to a host —— 121
	3.1.3		g the speed of progression to AIDS —— 122
		3.1.3.1	Negative correlation between time to AIDS and virus
			load —— 123
		3.1.3.2	Parameter estimates for AIDS prognosis —— 124
	3.1.4		ve models of progression to AIDS: impaired
			asis —— 126
	3.1.5		n —— 128
3.2		-	ole for HIV latency —— 130
	3.2.1		itical models of lentiviral transmission —— 133
	3.2.2		atency depends on both mucosal and systemic
		infection	
		3.2.2.1	Latency increases the probability of systemic
			infection —— 136
		3.2.2.2	Latency decreases the inoculum —— 137
	3.2.3		ty of latency near 50% optimizes transmission —— 139
		3.2.3.1	Result is robust to the presence of nonlatent routes —— 140
		3.2.3.2	·
			predictions —— 141
	3.2.4	-	ncy in patients is rare: including the immune response —— 141
		3.2.4.1	Models incorporating the immune response fit patient
			data —— 144
	3.2.5		n: depletion of CD8 ⁺ T cells in macaques will increase the
	latent reservoir — 146		
	3.2.6		n —— 147
		3.2.6.1	Latency and other mechanisms of initial viral survival —— 148
		3.2.6.2	Potential therapy: suppressing latent reactivation in
			mucosa —— 148

		3.2.6.3	, ,	
			approaches —— 148	
	3.2.7	Derivation	ons for stochastic dynamics in mucosa ($R_0^{\text{muc}} > 1$) —— 148	
	3.2.8	Two-con	npartment model (R_0^{muc} < 1 and R_0^{LT} > 1) —— 153	
	3.2.9	Paramet	ers sensitivity analysis —— 155	
	3.2.10	Robustn	ess to model variations —— 156	
3.3	Recom	Recombination and the optimal mutation rate of polio virus —— 160		
	3.3.1	Experim	ents on strains with altered recombination and mutation	
		rates	– 163	
		3.3.1.1	Mutation D79H decreases recombination rate 10-fold —— 163	
		3.3.1.2	Mutation D79H does not alter mutation rate —— 165	
		3.3.1.3	Mutation D79H slows down viral adaptation in	
			culture —— 166	
		3.3.1.4	Mutation D79H does not affect fitness in culture —— 166	
		3.3.1.5	Double mutants impair viral adaptation in mice —— 167	
	3.3.2	Mathem	atical modeling and fitting data —— 169	
		3.3.2.1	Adaptation rate is maximal near wild-type mutation	
			rate 169	
		3.3.2.2	Recombination and mutation affect adaptation	
			independently —— 173	
		3.3.2.3	Mathematical modeling fits the mice survival data —— 175	
		3.3.2.4	Sensitivity to parameters —— 175	
	3.3.3	Optimal	mutation rate replaces the concept of "error	
		catastro	phe" —— 176	
	3.3.4	Steady-s	state derivation —— 178	
	3.3.5	The poir	nt of no adaption in a short-term evolution —— 179	
Cha	pter 4			
Evol	-	•	rom an opposing species (Red Queen effect) —— 181	
4.1	Evoluti		body epitopes of influenza virus —— 181	
	4.1.1	Model c	f influenza transmission in a population —— 183	
		4.1.1.1	· •	
		4.1.1.2	Including mutation and random genetic drift —— 184	
	4.1.2	Two-cor	mponent traveling wave —— 186	
		4.1.2.1	Density of recovered individuals —— 186	
		4.1.2.2	Moving fitness landscape —— 187	
	4.1.3	Connect	ting to the evolution theory —— 189	
		4.1.3.1	Antigenic diversity and the speed of evolution —— 189	
		4.1.3.2	Time to the most recent common ancestor —— 192	
	4.1.4		ison with data on influenza A —— 193	
	4.1.5	Robustr	ness to additional dimensions and old memory —— 194	
	4.1.6	Discuss	ion —— 195	

	4.1.7	Analytic	derivation for the 1D model —— 197	
		4.1.7.1	Traveling wave solution —— 197	
		4.1.7.2	Effective selection coefficient —— 198	
		4.1.7.3	Wave speed —— 198	
		4.1.7.4	Time to the most recent ancestor —— 200	
		4.1.7.5	Comparison to a previous 1D model of influenza	
			evolution —— 200	
	4.1.8	Multidim	nensional antigenic space —— 201	
		4.1.8.1	Two dimensions with one antigenic coordinate —— 201	
		4.1.8.2	Two antigenic coordinates —— 202	
		4.1.8.3	Many dimensions are equivalent to tree topology —— 202	
	4.1.9	Approxir	mations —— 203	
4.2	Evoluti		T-cell epitopes of HIV —— 204	
	4.2.1	Model of	f HIV dynamics in the presence of multiple epitopes —— 206	
		4.2.1.1	Simplified model to study the order of escape	
			mutations —— 207	
	4.2.2	Simulation	ons of the dynamics of antigenic escape —— 210	
		4.2.2.1		
		4.2.2.2	· ·	
			strain —— 210	
		4.2.2.3	, ,	
			plane —— 211	
	4.2.3	Correlation between escape cost and benefit in Pol gene is		
		explained —— 213		
	4.2.4	Three patterns of antigenic escape in an epitope with two sites —— 214		
	4.2.5	Approximations —— 217		
	4.2.6		on of the steady state, escape rate, and clone	
			on —— 220	
		4.2.6.1	· · · · · · · · · · · · · · · · · · ·	
	4.2.7		pattern of escape —— 222	
		4.2.7.1	•	
		4.2.7.2		
	4.2.8	Relationship between Δr and HLA binding loss from three		
		•	ents —— 224	
		4.2.8.1	Finding Δr from virus dynamics in the presence of	
			CTL —— 224	
		4.2.8.2	HLA-binding loss ΔB from competition binding assay — 224	
		4.2.8.3	ΔB and Δr from the measurement of CTL activity —— 224	
4.3	Stability of HIV in the presence of defective interference particles in a cell			
	and a host —— 226			
	4.3.1	Missing	entiviral DIP and evolutionary stability —— 227	

4.4

4.3	.2 DIP into	erference with HIV by competition for genomic RNA leads to		
	diverge	ent evolution —— 229		
4.3	.3 An alte	rnative mechanism of DIP interference: protein stealing —— 232		
	4.3.3.1	The single-cell model with capsid stealing —— 233		
	4.3.3.2	The individual-host model —— 235		
	4.3.3.3	Parameter values —— 237		
	4.3.3.4	Dynamically stable suppression of HIV at the host level —— 237		
	4.3.3.5	HIV suppression is due to high multiplicity of DIP infection —— 239		
4.3	.4 Testing	evolutionary stability: the effective selection coefficient —— 240		
4.3	.5 Discuss	ion —— 242		
4.3	.6 Derivat	ion of HIV and DIP loads —— 245		
	4.3.6.1	Single cell 245		
	4.3.6.2	Small waste parameter, $K \ll 1 - 247$		
	4.3.6.3	Individual host —— 247		
	4.3.6.4	Dynamic stability of DIP in a host —— 249		
4.3	.7 Selectio	on coefficient of HIV in terms of intracellular parameters —— 250		
	4.3.7.1	Change in waste parameter —— 252		
	4.3.7.2	Change in capsid-to-genome production ratio —— 253		
4.3		e of parameters κ and η in infected individuals —— 253		
		n the presence of defective interference particles in a host		
		lutionary conflicts and the "tragedy of the commons" —— 255		
4.4		cale model of HIV and DIP dynamics —— 257		
4.4		Conditions of HIV and DIP coexistence and HIV suppression in high- risk populations —— 261		
4.4		ape mutants that are resistant to DIP face conflicting		
4.4		n pressures —— 262		
4.4		onary conflicts prevent the establishment of DIP-resistant		
7.7		tants —— 264		
4.4		ion —— 266		
•••	4.4.5.1	Cheaters and the "tragedy of the commons" —— 267		
	4.4.5.2	Model assumptions and limitations —— 268		
	4.4.5.3	Frequency-dependent selection on the population		
		scale —— 269		
	4.4.5.4	DIP as a resistance-proof therapy? —— 269		
4.4		ion of DIP and HIV prevalence in a population of hosts —— 270		
•••	4.4.6.1	Link to the individual-host and single-cell scales —— 270		
	4.4.6.2	Steady state —— 271		
	4.4.6.3	Condition for DIP spread and stability in a population —— 273		

4.4.7	Derivation of the evolutionary stability of HIV in the presence of DIP —— 274		
4.4.8	Robustn	ess to model variations —— 276	
	4.4.8.1	T-cell division and homeostasis —— 276	
	4.4.8.2	DIP preinfects individuals —— 276	
	4.4.8.3	Sensitivity to κ—— 278	
	4.4.8.4	Timing of HIV transmission —— 278	
	4.4.8.5	Other approximations —— 278	

References —— 279

Index ---- 303