Peter Laznicka

Giant Metallic Deposits

Future Sources of Industrial Metals

With 458 Figures and a CD-ROM

Contents

Explan	ations, Abbreviations, Units	1
Contex	t	1
	ations, abbreviations	
Емрин		
1 (2::1	ization based on metals	7
1 Civii	ization based on metals	······ /
1.1	Past and present sources of industrial metals	7
1.1.1	Introduction	7
1.1.2	History of metal supplies	
1.1.3	Present metal supplies	
1.2	Metal prices	
1.3	Future metal supplies	
1.3.1	How much metals will be needed?	
1.3.2	Reducing demand for "new" metals	19
1.4	Conclusion: future supplies of metals and giant deposits	29
	<u>uoposta</u>	2
1 Data	on motallia denosite and magnitude setegories.	
	on metallic deposits and magnitude categories: iant and world class deposits	35
2.1	Data sources and databases	35
2.2	Giant and world class ore deposits: definition and	
	characteristics	38
2.3	Dimension, complexity and hierarchy of metallic	
	deposits	44
2.4	The share of "giant" metal accumulations in global	47
	metal supplies	4/
2 F		
3 Fron	n trace metals to giant deposits	
3.1	Introduction	55
3.2	Extraterrestrial metals and ore formation resulting	
	from meteorite impact	56
3.3	Lithospheric evolution and geochemical backgrounds	
	to metals concentration and accumulation	59
Introd	uction to Chapters 4 to 14	65
	-	
4 Man	tle to oceans	71
	m .	
4.1	The mantle	
4.1.1 4.2	Mantle metallogeny Oceanic crust, ocean floor	
4.4	Octable Clust, Octabli 11001	/ 3

4.2.1 4.3	Oceanic spreading ridges
	on oceanic crust
4.4	Sea water as source of metals
4.5	Ocean floor sediments
5 Youn	g island arcs
5.1	Island arc metallogeny and giant deposits 82
5.2	Island arc-trench components and ore-forming processes
5.3	Porphyry Cu-Au-(Mo) deposits in young island arcs 90
5.4	Epithermal Au-(Ag) deposits
5.5	Young subaqueous-hydrothermal (Fe)-Zn-Pb-Cu
3.3	(and Ag, Au-Sb, As) deposits (VMS, kuroko-type) 97
5.6	Magnetite beach sands
	-
6 Ande	ean-type margins 101
6.1	Introduction
6.2	Metals fluxing and metallogenesis
6.2.1	Ores in predominantly continental sediments
6.2.2	Ores in contemporaneous and "young" subaerial
6.2.2	
(22	volcanics
6.2.3	Ores in ancient continental margin volcanics,
	predominantly andesite
6.2.4	"Red beds" in andean margins
6.2.5	Ores in andean margin rhyolites
6.3	Epithermal deposits and hot springs
6.3.1	Hot spring deposits
6.4	High-sulfidation epithermal ores
6.4.1	Low-grade ("bulk"), low-sulfide Au-Ag deposits 123
6.4.2	Transition to sulfides-rich high-sulfidation Au-Ag
	systems
6.4.3	Diatreme-dome complexes with enargite-gold centers
	surrounded by pyrite, Zn-Pb-Ag carbonate
	replacements
6.4.4	Combined high sulfidation/porphyry Cu-Au-Ag
	systems
6.5	Low sulfidation (LS) deposits
6.5.1	Au-dominated low-sulfidation ores
6.5.2	Au-(Te)>Ag alkaline association
6.5.3	Bonanza Ag >> Au 136
6.5.4	Epithermal to mesothermal Pb, Zn (Cu), Au, Ag deposits
6.5.5	Other epithermal deposits: Mo, W, Bi, U, As, Sb, Te 140
6.5.6	LS deposits as part of a system: other related
0.5.0	mineralization?
6.5.7	"Bolivian-type" porphyry Sn-bonanza Ag composite
5.5.7	association
6.6	Carlin-type micron-size Au (As, Hg, Sb) deposits 147
6.6.1	"Invisible gold" in the Great Basin
6.6.2	"Carlin-type" gold outside the U.S.A

7 Cord	illeran granitoids	153
7.1	Introduction	153
7.2	Metallogeny	154
7.3	Porphyry deposits	157
7.3.1	General and calc-alkaline	157
7.3.2	Breccias in porphyry systems	
7.3.3	Evolution of mineralized calc-alkaline "porphyry"	
	systems, alterations, ores	164
7.3.4	Alkaline (diorite-model) porphyry Cu	165
7.3.5	Combined porphyry Cu (Mo, Au)-skarn deposits	168
7.3.6	Precambrian porphyry-style Cu, Mo, Au deposits	171
7.3.7	Supergene modification of porphyry deposits	
7.3.8	Porphyry Cu: global distribution and deposit	
	descriptions	180
7.4	Stockwork molybdenum deposits	199
7.4.1	Differentiated monzogranite Mo suite	200
7.4.2	High-silica rhyolite suite (Climax-type)	201
7.4.3	Stockwork Mo in the alkaline "rift" association	
7.4.4	Precambrian stockwork Mo "giants"	
7.4.5	Mo-dominated skarn deposits	205
7.5	Stockwork, vein and skarn Mo-W-Bi	207
7.6	Scheelite skarn deposits	
7.7	Cordilleran Pb-Zn-Ag (Sb) deposits	
7.7.1	High-temperature Zn, Pb, Ag replacements in	
, , , , , ,	carbonates	212
7.7.2	Mesothermal Pb-Zn-Ag (Sb) veins	
7.7.2	Hydrothermal Fe, Mn, Sb, Sn, B, U, Th deposits in,	210
7.0	and associated with, Cordilleran granitoids	220
8 Volc	ano-sedimentary orogens	225
O VOIC	uno-seamentary or ogens	220
8.1	Introduction	225
8.1.1	Growth and evolution of composite eugeoclinal	
	orogens as exemplified by the Canadian Cordillera	227
8.2	Ophiolite allochthons, melanges and alpine	
	serpentinites	229
8.3	Oceanic successions	
8.4	Mafic and bimodal marine volcanic-sedimentary	
	successions	235
8.4.1	VMS deposits	
8.4.2	Sedimentary rocks-hosted Fe, Cu, Zn, Pb ores	
8.4.3	Au-Ag deposits	
8.5	Differentiated mafic-ultramafic intrusions (Alaska-	2 13
0.5	Urals type)	243
8.6	Calc-alkaline and shoshonitic volcanic-sedimentary	273
0.0	successions	245
8.7	Sundry metallic ores	
0.7	Sundry inclaine ores	∠ 4 9
9 Prec	ambrian greenstone-granite terrains	252
	-	
91	Introduction	252

9.1.1	Abitibi Subprovince (greenstone belt), Canadian Shield	253
9.2	Komatiite association and Ni ores	
9.3	Early Proterozoic paleo-ophiolites	
9.4	Mafic and bimodal greenstone sequences: Fe-ores	200
9.4	and Cu-Zn VMS deposits	
9.4.1	Mafic (meta-basalt) sequences and banded iron	
7. 4 .1	formations	262
9.4.2	VMS deposits in bimodal and sequentially	. 202
9.4.2		264
0.5	differentiated volcanic-sedimentary sequences	204
9.5	Granitoid plutons and older Precambrian	272
0.6	"porphyry" deposits	. 212
9.6	(Syn)orogenic hydrothermal Au-(As, Sb, Cu) in	072
	greenstone terrains	2/3
9.7	Synorogenic Cu (U, Ni, Au, Ag) deposits	•
	overprinting greenstone belts	290
9.8	Ores in late orogenic sedimentary rocks in	
	greenstone belts	. 292
10 Intra	acratonic orogens, granites, hydrothermal deposits	. 295
10.1	Introduction	295
10.1.1.	Granitoids in orogenic setting	. 296
10.2	Massif anorthosite association: Fe-Ti-V and Ni-Cu	
	deposits	. 303
10.3	Ores closely associated with granites	
10.3.1	Rare metals pegmatites	
10.3.2	Zr, Nb, Ta, Y, REE, Th, Be association in peralkaline	
	granites	310
10.3.3.	Uraniferous leucogranites, aplites, pegmatites	
10.3.4	Granite-related wolframite deposits (Jiangxi-type)	
10.3.5	Granite-related tin deposits	
10.3.6	Cassiterite regoliths and placers	
10.3.7	Multi-metal zoned Sn, Mo, W, Bi, Be, Pb, Zn skarn-	
10.5.7	greisen-vein systems	. 323
10.3.8	Hydrothermal U deposits	
10.4	Mesothermal gold	
10.4.1	Intrusion ("granite")-related Au veins, stockworks,	
10, 1,1	disseminations	
10.4.2	Gold skarns	. 333
10.4.3	Transition of granite-related to (syn)orogenic Au	
	deposits	. 335
10.5	Dominantly orogenic Au deposits	. 339
10.5.1	(Syn)orogenic gold veins and stockworks	
10.6	Gold placers	
10.7	(Syn)orogenic Sb and Hg deposits	
10.7.1	Antimony deposits	
10.7.2	Mercury deposits	
10.7.2	Pb, Zn, Ag veins and replacements	
. 0.0	1 0, 21, 115 tonio ana replacemento in	

	erozoic Intracratonic Orogens and Basins:
Exte	ension, Sedimentation, Magmatism367
11.1	Introduction
11.2	Metallogeny and giant deposits369
11.3	Proterozoic Pb-Zn-Ag "sedex" deposits374
11.4	Strata controlled Proterozoic copper deposits in
	(meta)sedimentary rocks377
11.5	Au and U in quartz-rich conglomerate (Witwatersrand-
11.6	type)
11.6	Fe in Superior-type banded iron formations (BIF)394
11.7	Fe (BIF) and Mn in diamictites
11.8	Bedded and residual Mn deposits
11.9	Miscellaneous, complex Zn, Pb, Cu, Co, V, Ag, Ge
11.10	Ga, (U) sulfide deposits 409
11.10	Oxidic (nonsulfide) Zn and Pb deposits411
11.11	Unconformity uranium deposits
11.12	Hydrothermal Fe-oxide deposits with Cu, or U, or Au,
	or REE (Olympic Dam-type)415
12 Difts	s, paleo-rifts, rifted margins, mantle plumes,
	rogenic and alkaline magmatism425
ano	or ogenic and arkatine magmatism423
12.1	Introduction425
12.2	Young rifts, hydrothermal activity
12.3	Mantle plumes, continental breakup, rifted continental
12.5	margins
12.3.1	Hot spots and mantle plumes430
12.3.2	Rifted (Atlantic-type) continental margins430
12.3.3	Intraplate and rift margin mafic to bimodal
12.5.5	magmatism
12.4	Plateau (flood) basalts
12.4.1	Ni-Cu sulfide deposits in intrusions associated with
121	plateau basalt provinces
12.4.2	Lateritic bauxite on basalt
12.5	Diabase, gabbro, rare peridotite dikes and sills440
12.6	Bushveld-style layered intrusions
12.7	Sudbury complex Ni, Cu, Co, PGE, Ontario: an enigma.455
12.8	Alkaline magmatic association
12.8.1	Introduction
12.8.2	Alkaline metallogeny and giant deposits461
12.8.3	Alkaline volcanic and subvolcanic centers
12.8.4	Nepheline syenite-dominated intrusions463
12.8.5	Alkaline pyroxene-nepheline series and alkaline
	ultramafics
12.9	Carbonatites
•	
13 Sedi	mentary associations and regolith
13.1	Introduction
13.1	Marine clastics
13.2.1	Ore formation

Į

13.2.2	Detrital (clastic) ores: coastal and shelf heavy	
	mineral sands and paleoplacers of Fe, Ti, Zr, REE, Th	484
13.3	Combined clastic and chemical bedded sedimentary	
	deposits	487
13.3.1	Particulate (oolitic) ironstones	487
13.3.2	Bedded Mn deposits (Phanerozoic)	
13.3.3	Mineralized carbonaceous pelites ("black shales")	
13.3.4	Phosphorite-black shale association	
13.3.5	Cu, Ag (Pb, Zn, Au, PGE) associated with reduced	.,,
13.3.3	marine units above "redbeds" (Kupferschiefer or	
	` .	500
12.2.6	copper shale-type)	500
13.3.6	Sedex Pb-Zn-Ag deposits in basinal shale	
	near carbonate platform	
13.4	Marine carbonates and evaporites	
13.4.1	Introduction	509
13.4.2	Warm current (Florida-type) phosphorites and	
	their uranium enrichment	512
13.4.3	Bedded Mn deposits in "basinal" (reduced)	
155	carboantes	513
13.4.4.	Low-temperature Zn-Pb deposits in carbonates	
		213
13.4.5	Discordant (vein) Zn-Pb orebodies of	500
10.16	"MVT affiliation"	
13.4.6	Stratabound cinnabar deposits in carbonates	
13.4.7	Metallic ores in karst on carbonates	
13.5	Marine evaporites and metallic ores	
13.6	Hydrocarbons as a source of metals	526
13.7	Regolith and continental sediments	
13.7.1	Introduction	
13.7.2	Glaciation and ores in glaciogenic (cryogenic)	
13.7.2	materials and structures, related talus and glacio-	
	fluvial deposits	520
13.7.3	Humid tropical regoliths	
		329
13.7.4	Supergene Cu ores and leaching/reprecipitation	530
10.5.5	profiles	. 538
13.7.5	Paleo-regoliths, paleosols and basal sequences at	
	unconformities	
13.7.6	Humid alluvial environments: placer deposits	
13.7.7	Lakes and lacustrine sequences	544
13.7.8	Arid regoliths and sediments	545
13.7.9	Sandstone-dominated continental sequences: "gray"	
	and "red"	548
13.7.10	Metals recoverable from coal	
13.7.11	Infiltrations from meteoric waters: "sandstone U (V)"	. 547
13.7.11		550
12 7 10	deposits	330
13.7.12	Cu-sandstone deposits in red and gray (varicolored)	
	beds	555
13.7.13	Sandstone Pb-(Zn) deposits	
13.8	Anthropogenic metal sources	
14 Higher	r-grade metamorphic associations	561
8		
14.1	Introduction	
14.2	Metallogeny	563
14.3	High-grade associations and ores	
14.3	Tright-grade associations and ores	503

14.4	High-grade metamorphosed banded iron formations (BIF)
14.5	Pb-Zn-Ag sulfide orebodies in gneiss >> marble, Ca-Mg-Mn silicates: Broken Hill-type568
14.6	Zn, Pb sulfide orebodies in marble and Ca-Mg silicates, and Zn-Mn oxide orebodies in marble571
14.7	Zn, Cu, Pb sulfide deposits in gneiss, schist, marble (meta-VMS?)
14.8	Disseminated Cu sulfide deposits in gneiss, schist and marble
14.9	Scheelite, uraniferous phosphates, magnesite, borates in marble and Ca-Mg silicate gneiss
14.10	High-grade metamorphic mafic-(ultramafic) associations
14.11	Structures subjected to retrograde metamorphism and metasomatism
15 Giant	t deposits in geological context589
15.1	0.11 (41 1.41 1.41 1.41
15.1	Origin of the giant deposits
15.1.1. 15.1.2	Genetic coding and ore varieties
13.1.2	Giant deposits and their genetic and host rock associations
15.2	Giant metallic deposits: geotectonic setting
15.2	Giant metal accumulations in geological time606
15.4	Why "giants" are so big and are where they are?610
13.4	with grants are so big and are where they are:
16 Gian	t deposits: industry, economics, politics613
16.1	Historical background613
16.2	Giant deposits and corporations616
16.3	Giants' economics
17 Findi	ng or acquiring giant deposits628
17.1	Introduction628
17.2	History of discovery of giant ore deposits/districts631
17.3	Acquiring giant deposits for tomorrow640
17.3.1	Acquisition of an existing deposit641
17.3.2.	International risk assessment642
17.3.3	Acquiring "giants": geology perspective646
Reference	res649
Locality	index707
Subject i	ndex719

CD-ROM (attached):

Supplementary materials to accompany the book Giant Metallic Deposits and Future Sources of Industrial Metals

Peter Laznicka (2006)

README

This CD-ROM contains materials that supplement the text, presented in my book "Giant Metallic Deposits", that would be impractical or too costly to have in the book itself. There are two parts: 1) a database, and 2) selection of 79 rock/ore inventory diagrams, interspersed as black-and-white figures throughout the book, here repeated in color.

CONTENTS

Note: the CD-ROM has an independent page numbering

Part 1, Database GiantdepShort

Introduction
Explanations
Table 1, organized by book page numbers 4
Table 2, organized by metals and localities
Table 3, organized by localities (deposits, areas)
Part 2, Total Metallogeny Geosites (book figures in color)
Part 2, Total Metallogeny Geosites (book figures in color) Introduction
Introduction