Contents

Foreword ---- VII

Part I: Product-centred Design

1	Introduction —— 3
1.1	The current setting of the process industry —— 3
1.2	The development of the PDPS approach —— 4
1.3	Structure of the book —— 5
2	Performance products in a challenging environment —— 9
2.1	A challenging environment for the process industry —— 9
2.1.1	Environmental and energy challenges —— 9
2.1.2	Changes in consumer needs and requirements —— 13
2.1.3	Changes in the network of raw materials and their availability —— 16
2.1.4	Technological and operational changes —— 18
2.2	Product-centered process design —— 39
2.2.1	Product life cycle —— 43
2.2.2	Structured products and fast-moving consumer goods —— 46
2.3	New product development —— 48
2.3.1	Stage-gate innovation process —— 49
2.3.2	Management tools to support NPD —— 52
2.3.3	Competitive advantage —— 58
2.4	Design is not a trivial task —— 60
2.5	Challenges of the FMCG sector —— 62
2.5.1	Challenge #1: Product profile improvement by microstructure creation —— 64
2.5.2	Challenge #2: Product naturalness by mild processing —— 68
2.5.3	Challenge #3: Benign products by improved sustainability practices —— 72
2.5.4	Challenge #4: On-shelf availability by supply chain optimization —— 74
2.6	A novel approach for product design and process synthesis —— 75
2.7	Take-away message —— 76
3	A structured approach for product-driven process design of consumer
	products — 86
3.1	Introduction —— 86
3.2	Conceptual process design in the context of process systems
	engineering —— 91
3.2.1	Developments in new processes and retrofits —— 92
3.2.2	Interactions between process development and process design —— 93
3.2.3	Structure of the design activity —— 94

3.2.4	Lifespan performance criteria — 95
3.3	Process synthesis in the industry of consumer products —— 97
3.4	A product-driven process synthesis approach —— 99
3.4.1	Generalities —— 99
3.4.2	Structure of the methodology —— 100
3.5	Take-away message —— 108
4	Formulation of design problems and identification of consumer
	wants —— 114
4.1	Introduction —— 114
4.2	Level 0: Formulation of the design problem —— 114
4.3	Level 1: Identifying consumer wants —— 118
4.3.1	The perception and creation of value —— 119
4.3.2	Consumer focus: the consumer is king —— 121
4.3.3	Consumer wants and needs and product specifications — 124
4.3.4	Quality function seployment — 127
4.3.5	The QFD house of quality —— 129
4.3.6	BROC decision making method —— 132
4.4	Take-away message —— 136
5	Project management and reporting —— 139
5.1	Project management —— 139
5.1.1	Project versus business as usual —— 139
5.1.2	Typical phases of a project —— 141
5.1.3	Managing a project effectively —— 142
5.1.4	PRINCE2 methodology —— 144
5.1.5	PRINCE2 principles — 146
5.1.6	PRINCE2 themes — 147
5.1.7	PRINCE2 processes —— 147
5.1.8	Making a project successful —— 148
5.2	Reporting —— 150
5.2.1	Preparation of written reports —— 150
5.2.2	Preparation of oral presentations —— 155
5.2.3	What to include and what not to include —— 155
5.3	Take-away message —— 157
6	Product function and generation of ideas —— 158
6.1	Level 2: Product function —— 158
6.1.1	Building HoQ-2 —— 161
6.1.2	Generation of ideas —— 164
6.2	Level 3: Input-output —— 170
6.2.1	Economic evaluation —— 171

6.3	Take-away message —— 174
7	Brainstorming techniques —— 177
7.1	Introduction —— 177
7.2	The basics of brainstorming —— 178
7.3	Popular brainstorming techniques —— 178
7.3.1	Mind mapping —— 178
7.3.2	SCAMPER —— 180
7.3.3	Reverse brainstorming —— 180
7.3.4	SWOT analysis —— 181
7.3.5	TRIZ —— 182
7.3.6	Other popular brainstorming concepts —— 182
7.4	Setting up a brainstorming session —— 182
7.5	Conducting the brainstorming session —— 183
7.6	Example of a brainstorming session —— 185
7.7	Take-away message —— 187
7.8	Further reading —— 187
8	Network of tasks, mechanisms and operational window —— 189
8.1	Level 4: Fundamental tasks and task network —— 189
8.2	Level 5: Mechanism and operational window —— 196
8.3	Take-away message —— 205
9	Equipment selection and design —— 207
9.1	Level 7: Equipment selection and design —— 207
9.1.1	Selection of operating units —— 208
9.1.2	Design of operating units —— 209
9.2	Take-away message —— 251
10	Multiproduct and multiproduct–equipment integration —— 255
10.1	Level 6: Multiproduct integration —— 255
10.2	Level 8: Multiproduct–equipment integration —— 256
10.2.1	Supply chain management —— 258
10.2.2	Supply chain modeling —— 259
10.3	Take-away message —— 262
11	Molecular product design —— 264
11.1	Introduction and motivation —— 264
11.2	CAMD methodology —— 265
11.3	Quantitative structure–property relationships —— 266
11.4	Optimization formulations for CAMD —— 267

11.5	Mathematical techniques for the solution of CAMD optimization problems —— 269
11.6	Example —— 270
11.6.1	Initial steps —— 271
11.6.2	Generation of QSPR models —— 272
11.6.3	Problem formulation —— 273
11.6.4	Example results —— 275
11.7	Take-away message —— 276
Part II	: Process Design Principles
12	Process synthesis —— 281
12.1	Introductory concepts —— 281
12.2	Collection of relevant information —— 283
12.3	The hierarchy of decisions —— 286
12.4	Data structures for the space of alternative designs —— 291
12.5	Evaluation of alternative designs —— 292
12.6	Take-away message —— 294
12.7	Further reading —— 295
13	Process simulation —— 296
13.1	Process simulators —— 296
13.2	Modular and equation-oriented modes —— 296
13.3	Analysis, process and simulation flowsheets —— 298
13.4	Degrees of freedom analysis —— 300
13.5	Bidirectional information and design specs —— 300
13.6	Recycles and tear streams —— 301
13.7	Convergence algorithms —— 301
13.8	Open-loop simulation of an ammonia synthesis plant in UniSim —— 303
13.8.1	Background —— 303
13.8.2	UniSim Design solution —— 305
13.8.3	Creating a new unit set —— 306
13.8.4	Building the simulation —— 307
13.8.5	Defining Reaction Sets —— 311
13.8.6	Entering the simulation environment —— 316
13.8.7	Using the Workbook —— 317
13.8.8	Installing the feed streams —— 318
13.8.9	Installing unit operations —— 321
13.9	Review simulation results —— 333
13.10	Saving —— 334
13.11	Closed-loop simulation of an ammonia synthesis plant in UniSim —— 334

13.11.1	Review of UniSim Design convergence methods —— 335
13.11.2	UniSim Design solution —— 337
13.12	Add recycle loop to ammonia synthesis process —— 337
13.12.1	Adding a Tee —— 337
13.12.2	Adding a Compressor —— 338
13.12.3	Adding a Recycle —— 339
13.13	Optimize the purge rate to deliver desired product —— 342
13.13.1	Installing, connecting and defining the Adjust —— 343
13.13.2	Adjusting the target variable —— 344
13.14	Investigate the effects of flash feed temperature on product
	composition —— 346
13.14.1	Defining the key variables —— 346
13.14.2	Creating the case study —— 349
13.15	Take-away message —— 351
13.16	Further reading —— 352
14	Reactor design —— 353
14.1	Essence of reactors —— 353
14.2	Ideal reactors —— 353
14.2.1	Batch reactors —— 353
14.2.2	Plug flow reactor (PFR) —— 353
14.2.3	Continuously stirred tank reactor (CSTR) —— 354
14.3	General reactor design —— 354
14.4	. Mixing in industrial reactors —— 362
14.4.1	Gas mixing —— 362
14.4.2	Liquid mixing —— 362
14.4.3	Gas-liquid mixing —— 364
14.4.4	Solid-liquid mixing —— 365
14.5	Types of reactors —— 366
14.5.1	Vapor–liquid reactors —— 366
14.5.2	Catalytic processes —— 367
14.5.3	Bioreactors —— 369
14.6	Heating and cooling of reacting systems —— 379
14.6.1	Stirred tank reactors —— 380
14.6.2	Catalytic reactors —— 380
14.7	Heat exchangers as reactors —— 381
14.7.1	Homogeneous reactions —— 381
14.7.2	Heterogeneous reactions —— 381
14.8	Safety considerations in reactor design —— 382
14.9	Capital cost of reactors —— 382
14.10	Take-away message —— 383
14.11	Further reading —— 384

15	Batch process design —— 385
15.1	Continuous versus batch-wise —— 385
15.2	Batch scheduling —— 386
15.3	Basics of batch scheduling —— 387
15.4	State-task networks —— 391
15.5	Mathematical formulations of scheduling problems —— 392
15.6	Example: scheduling of an ice cream factory —— 394
15.7	Implementation —— 397
15.8	AIMMS code for the scheduling model —— 399
15.9	Take-away message —— 402
15.10	Further reading —— 402
16	Separation train design —— 404
16.1	Separations in process development —— 404
16.2	Energy and separations —— 404
16.3	Selection of a suitable separation method —— 405
16.4	The sequencing of separations —— 406
16.5	The sequencing of ordinary distillation columns —— 408
16.6	Complex column configurations for ternary mixtures — 410
16.7	Estimating the annualized costs for separation sequences —— 412
16.8	Distillation column design with a process simulator —— 414
16.8.1	Setting your session preferences —— 415
16.8.2	Building the simulation —— 416
16.8.3	Review simulation results —— 428
16.9	Take-away message —— 430
16.10	Further reading —— 430
17	Plant-wide control —— 431
17.1	Process control —— 431
17.2	Incentives for process control —— 431
17.3	Importance of modeling —— 433
17.4	Block diagrams —— 433
17.5	Control schemes — 434
17.6	Dynamic model development and behavioral diagrams —— 435
17.7	Linearizations and Laplace transforms —— 438
17.8	Basic control loops —— 439
17.9	Sensors and valves —— 442
17.10	Process interlocks —— 443
17.11	Process control over the entire process —— 444
17.12	Take-away message —— 447
17.13	Further reading —— 448

18	Heat integration —— 449
18.1	Pinch analysis —— 449
18.2	Motivation for heat integration by pinch analysis —— 449
18.3	The pinch analysis approach —— 450
18.4	Take-away message —— 462
18.5	Further reading —— 463
19	Process and product safety —— 464
19.1	Introduction —— 464
19.2	Relevant definitions —— 464
19.3	Inherently safe design —— 465
19.3.1	Learning from the past —— 467
19.4	Hazards in chemical industry —— 469
19.5	Safety of consumer products —— 471
19.5.1	Microbiological poisoning —— 472
19.5.2	Food Safety Act 1990 —— 476
19.5.3	Microbiological hazards —— 476
19.5.4	Hazards to plant and processes —— 477
19.6	Design for process safety —— 477
19.6.1	QRA and LOPA —— 479
19.6.2	Process control —— 480
19.6.3	Hazard analysis of critical control points (HACCP) —— 480
19.6.4	Hygiene —— 481
19.6.5	Engineering for food safety —— 483
19.7	Process safety management for plant operation —— 486
19.8	Risk-based process safety —— 487
19.8.1	Commitment to process safety —— 488
19.8.2	Understand hazards and risks —— 490
19.8.3	Risk management —— 494
19.8.4	Learn from experience —— 495
19.9	Safety modeling approaches —— 497
19.9.1	Equipment sizing —— 497
19.10	Industry 4.0 and outlook —— 502
19.11	Take-away message —— 505
20	Techno-economical evaluation of projects —— 507
20.1	Introduction —— 507
20.2	Total capital investment —— 508
20.2.1	Fixed capital investment —— 509
20.2.2	Working capital —— 510
20.2.3	Start-up costs —— 511
20.3	Total manufacturing cost —— 512

20.3.1	Production cost: direct production costs —— 512
20.3.2	Production cost: fixed charges —— 512
20.3.3	Production cost: plant overhead —— 512
20.3.4	General expenses —— 514
20.4	Required selling price —— 514
20.5	Estimation of FCI —— 514
20.5.1	FCI based on turnover ratio —— 514
20.5.2	FCI based on investment per unit of production capacity —— 515
20.5.3	FCI based on the six-tenth rule —— 515
20.5.4	FCI based on step counting —— 515
20.5.5	FCI based on factorial methods —— 516
20.6	Estimation of equipment cost —— 517
20.6.1	Economy-of-scale equation —— 517
20.6.2	Empirical correlations —— 518
20.6.3	Cost per unit weight estimation —— 519
20.7	Project financial assessment —— 520
20.7.1	Economic potential —— 521
20.7.2	The gross margin —— 522
20.7.3	Payback period —— 522
20.7.4	Return on investment —— 523
20.7.5	Discounted cash flow analysis —— 523
20.8	Market effects —— 525
20.9	Computer tools for cost estimating —— 526
20.10	Take-away message —— 527
21	Design for sustainability —— 529
21.1	Taking the long-term view —— 529
21.2	Metrics for sustainability —— 530
21.3	Including sustainability metrics within the design process —— 534
21.4	Retrofit for improved sustainability —— 535
21.5	Take-away message —— 537
21.6	Further reading —— 537
22	Optimization —— 539
22.1	Classification of optimization problems —— 539
22.2	Objectives and constraints —— 540
22.3	Specific formulations for process design and operations —— 542
22.4	Solution algorithms for optimization problems —— 544
22.5	Take-away message —— 548
22.6	Further reading —— 550

23	Enterprise-wide optimization —— 551
23.1	What is enterprise-wide optimization? —— 551
23.2	Fast-moving consumer good supply chains —— 551
23.3	Scheduling —— 552
23.4	Planning —— 554
23.5	Mixed-integer programming —— 554
23.6	Optimization challenges —— 558
23.6.1	The challenge of flexibility —— 559
23.6.2	The challenge of sustainability —— 559
23.6.3	The challenge of complexity —— 562
23.6.4	Perspectives — 562
23.7	Take-away message —— 564
23.8	Further reading —— 564
A	Appendix —— 565

Index —— 569