

Contents

1	Introduction	1
2	Inverse Problems and Non-destructive Evaluation	5
2.1	Inverse Problems from a Mathematical Viewpoint	5
2.2	Inverse Problems and Non-destructive Evaluation from a Practical Viewpoint	6
2.2.1	General Remarks	6
2.2.2	Practical Realisation	7
3	Mathematical Models of Microstructured Solids	11
3.1	Basic Principles	11
3.2	Microstructured Solids	12
3.3	General Formulation of Inverse Problems	17
4	Linear Waves	21
4.1	Dispersion Relations. Harmonic Waves	21
4.1.1	Hierarchical Equation	21
4.1.2	Coupled System	23
4.1.3	Comparison of Models	25
4.2	Other Linear Waves	27
4.2.1	General Solution Formula	27
4.2.2	Right-Propagating Waves	28
4.2.3	Gaussian Wave Packets	30
4.3	Proofs of Mathematical Statements	32
5	Inverse Problems for Linear Waves	37
5.1	Inverse Problems for Harmonic Waves	37
5.1.1	Hierarchical Equation	37
5.1.2	Coupled System	39
5.1.3	General Consequences	43
5.2	Inverse Problems for Gaussian Wave Packets	43

5.3	Reconstruction of Parameters from Spectra of Waves	46
5.3.1	The Case of Deformation Boundary Condition	46
5.3.2	The Case of Displacement Boundary Condition	49
5.4	Stability and Examples	50
5.4.1	Stability of Solutions	50
5.4.2	Numerical Examples	50
5.5	Proofs of Mathematical Statements	53
5.5.1	Proof of Theorem 5.2	53
5.5.2	Proofs of Sect. 5.2	55
6	Solitary Waves in Nonlinear Models	61
6.1	Solitary Waves	61
6.2	Solitary Wave Solutions of Hierarchical Equation	62
6.2.1	Reduction to Equation of First Kind. Canonical Description	63
6.2.2	Existence and Basic Properties of Canonical Waves	65
6.2.3	Physical and Geometrical Properties of Solitary Waves in General Form	71
6.2.4	Series Expansion of Solitary Wave	73
6.3	Solitary Wave Solutions of Coupled System	77
6.3.1	Separation of Unknowns. Reduction of System	77
6.3.2	Existence and Basic Properties of Canonical Waves	81
6.3.3	Properties of General Solitary Waves	88
6.3.4	The Case $v = 0$	91
6.3.5	Comparison with Hierarchical Equation	93
6.4	Proofs of Mathematical Statements	94
6.4.1	Proofs of Sect. 6.2	94
6.4.2	Proofs of Sect. 6.3	96
7	Inverse Problems for Solitary Waves	103
7.1	Inverse Problems for Hierarchical Equation	103
7.1.1	Formulation of Inverse Problems	103
7.1.2	Uniqueness Issues	105
7.1.3	Stability Estimates	108
7.2	Inverse Problems for Coupled System	115
7.2.1	Formulation of Inverse Problems	115
7.2.2	Uniqueness Issues	117
7.3	Methods of Solution of Inverse Problems	121
7.3.1	Minimisation of Cost Functional	121
7.3.2	Application of Series Expansion. Linearisation	122
7.3.3	Numerical Examples	124
7.4	Proofs of Mathematical Statements	127
7.4.1	Proofs of Sect. 7.1.2	127
7.4.2	Proof of Theorem 7.5	130
7.4.3	Proofs of Sect. 7.2.2	137

Contents		ix
8	Summary	147
8.1	General Glance at Mathematical Methods	147
8.2	From Mathematics to Physics	149
8.3	Epilogue	153
References		155
Index		159