## **Contents**

## Preface ---- XI

| 0    | Prerequisites and notation —— 1                                             |
|------|-----------------------------------------------------------------------------|
| 0.1  | Prerequisites —— 1                                                          |
| 0.2  | Notation —— 1                                                               |
|      | Exercises for Chapter 0 —— 3                                                |
| 1    | Basic theory —— 4                                                           |
| 1.1  | Motivation: why study complex analysis? —— 4                                |
| 1.2  | The fundamental theorem of algebra —— 9                                     |
| 1.3  | Holomorphicity, conformality, and the Cauchy–Riemann equations —— 12        |
| 1.4  | Additional consequences of the Cauchy–Riemann equations —— 18               |
| 1.5  | Power series —— 20                                                          |
| 1.6  | Contour integrals —— 22                                                     |
| 1.7  | The Cauchy, Goursat, and Morera theorems —— 28                              |
| 1.8  | Simply connected regions and the general version of Cauchy's                |
|      | theorem —— 32                                                               |
| 1.9  | Consequences of Cauchy's theorem —— 36                                      |
| 1.10 | Zeros, poles, and the residue theorem —— 46                                 |
| 1.11 | Meromorphic functions, holomorphicity at $\infty$ , and the Riemann         |
|      | sphere —— <b>50</b>                                                         |
| 1.12 | Classification of singularities and the Casorati–Weierstrass theorem —— 52  |
| 1.13 | The argument principle and Rouché's theorem —— 53                           |
| 1.14 | The open mapping theorem and maximum modulus principle —— <b>57</b>         |
| 1.15 | The logarithm function —— <b>58</b>                                         |
| 1.16 | The local behavior of holomorphic functions —— <b>60</b>                    |
| 1.17 | Infinite products and the product representation of the sine function —— 63 |
| 1.18 | Laurent series —— 68                                                        |
|      | Exercises for Chapter 1 —— <b>71</b>                                        |
| 2    | The prime number theorem —— 82                                              |
| 2.1  | Motivation: analytic number theory and the distribution of prime            |
|      | numbers —— <b>82</b>                                                        |
| 2.2  | The Euler gamma function —— 83                                              |
| 2.3  | The Riemann zeta function: definition and basic properties —— 89            |
| 2.4  | A theorem on the zeros of the Riemann zeta function —— 97                   |
| 2.5  | Proof of the prime number theorem —— 99                                     |
|      | Exercises for Chapter 2 —— 110                                              |



| 3    | Conformal mapping —— 118                                                       |
|------|--------------------------------------------------------------------------------|
| 3.1  | Motivation: classifying complex regions up to conformal equivalence —— 118     |
| 3.2  | First singleton conformal equivalence class: the complex plane —— 121          |
| 3.3  | Second singleton conformal equivalence class: the Riemann sphere —— 123        |
| 3.4  | The Riemann mapping theorem —— 124                                             |
| 3.5  | The unit disc and its automorphisms —— 126                                     |
| 3.6  | The upper half-plane and its automorphisms —— 129                              |
| 3.7  | The Riemann mapping theorem: a more precise formulation —— 131                 |
| 3.8  | Proof of the Riemann mapping theorem, part I: technical background —— 132      |
| 3.9  | Proof of the Riemann mapping theorem, part II: the main                        |
|      | construction —— 137                                                            |
| 3.10 | Annuli and doubly connected regions —— 140                                     |
|      | Exercises for Chapter 3 —— <b>145</b>                                          |
| 4    | Elliptic functions —— 146                                                      |
| 4.1  | Motivation: elliptic curves —— 146                                             |
| 4.2  | Doubly periodic functions —— 149                                               |
| 4.3  | Poles and zeros; the order of a doubly periodic function —— <b>151</b>         |
| 4.4  | Construction of the Weierstrass β-function —— <b>154</b>                       |
| 4.5  | Eisenstein series and the Laurent expansion of $\wp(z)$ —— 158                 |
| 4.6  | The differential equation satisfied by $\wp(z)$ —— <b>159</b>                  |
| 4.7  | A recurrence relation for the Eisenstein series —— 160                         |
| 4.8  | Half-periods; factorization of the associated cubic —— <b>161</b>              |
| 4.9  | $\wp(z)$ and $\wp'(z)$ generate all doubly periodic functions —— <b>163</b>    |
| 4.10 | $\wp(z)$ as a conformal map for rectangles —— <b>165</b>                       |
| 4.11 | The discriminant of a cubic polynomial —— <b>168</b>                           |
| 4.12 | The discriminant of a lattice —— <b>170</b>                                    |
| 4.13 | The <i>J</i> -invariant of a lattice —— <b>170</b>                             |
| 4.14 | The modular variable $	au$ : from elliptic functions to elliptic modular       |
|      | functions —— 171                                                               |
| 4.15 | The classification problem for complex tori —— 172                             |
| 4.16 | Equivalence between complex tori and elliptic curves —— 177                    |
|      | Exercises for Chapter 4 —— 179                                                 |
| 5    | Modular forms —— 182                                                           |
| 5.1  | Motivation: functions of lattices —— 182                                       |
| 5.2  | The modular group $\Gamma = PSL(2, \mathbb{Z})$ —— <b>184</b>                  |
| 5.3  | The modular group as a group of Möbius transformations —— <b>185</b>           |
| 5.4  | The fundamental domain and the modular surface $\mathbb{H}/\Gamma$ — 186       |
| 5.5  | The classification problem for complex tori, part II —— 190                    |
| 5.6  | The point at $i\infty$ , premodular forms, and their Fourier expansions —— 191 |
| 5.7  | Fourier expansions and number-theoretic identities —— 194                      |

| 5.8     | Modular functions —— 199                                              |
|---------|-----------------------------------------------------------------------|
| 5.9     | Klein's J-invariant —— 205                                            |
| 5.10    | The J-invariant as a conformal map —— 208                             |
| 5.11    | The classification problem for complex tori, part III —— 209          |
| 5.12    | Modular forms — 209                                                   |
| 5.13    | Examples of modular forms —— 214                                      |
| 5.14    | Infinite products for modular forms —— 218                            |
|         | Exercises for Chapter 5 —— 228                                        |
| 6       | Sphere packing in 8 dimensions —— 233                                 |
| 6.1     | Motivation: the sphere packing problem in $d$ dimensions —— 233       |
| 6.2     | A high-level overview of the proof —— 236                             |
| 6.3     | Preparation: some remarks on Fourier eigenfunctions —— 237            |
| 6.4     | The (+1)-Fourier eigenfunction —— 239                                 |
| 6.5     | The (–1)-Fourier eigenfunction —— <b>250</b>                          |
| 6.6     | A modular form inequality —— 256                                      |
| 6.7     | Proof of Theorem 6.1 —— 263                                           |
|         | Exercises for Chapter 6 —— <b>265</b>                                 |
| A       | Appendix: Background on sphere packings —— 267                        |
| A.1     | Sphere packings and their densities —— 267                            |
| A.2     | Lattices and lattice packings —— 268                                  |
| A.3     | Periodic sphere packings —— 268                                       |
| A.4     | Lattice covolume —— 269                                               |
| A.5     | Dual lattices —— <b>269</b>                                           |
| A.6     | The Poisson summation formula for lattices —— 270                     |
| A.7     | Construction of the lattice $E_8$ —— <b>271</b>                       |
| A.8     | The Cohn–Elkies sphere packing bounds —— 276                          |
| A.9     | Magic functions —— 278                                                |
| A.10    | Radial functions and their Fourier transforms —— 279                  |
| A.11    | Structural properties of E <sub>8</sub> magic functions —— <b>281</b> |
| A.12    | Summary —— <b>284</b>                                                 |
|         | Exercises for Appendix A —— 286                                       |
| Bibliog | raphy —— 289                                                          |

Index ---- 293

Web Bibliography —— 291