Contents

Preface — V

Introduction: economics with memory —— XIX

Part I: Concept of memory

1	Concept of memory in economics — 3
1.1	Introduction —— 3
1.2	Definition of memory —— 4
1.3	General principles of memory — 7
1.3.1	Principle of causality in time domain —— 7
1.3.2	Principle of nonlocality in time —— 9
1.3.3	Principle of linear superposition —— 11
1.3.4	Principle of memory fading —— 12
1.3.5	Monotonous memory fading and significant events —— 15
1.3.6	Principle of nonaging memory —— 15
1.3.7	Changing type of behavior at infinity —— 17
1.3.8	Principle of memory reversibility —— 19
1.4	Examples of memory and nonlocality in time —— 20
1.4.1	Absence of memory: total amnesia and instant amnesia —— 20
1.4.2	Distributed lag or memory —— 21
1.4.3	Memory with power-law fading —— 24
1.4.4	Memory with multiparameter power-law fading —— 28
1.4.5	Memory with variable fading —— 29
1.4.6	Complete (perfect, ideal) memory —— 29
1.4.7	Memory with generalized power-law fading —— 30
1.4.8	Memory with distributed fading —— 33
1.5	Memory in economics: discrete time approach —— 36
1.5.1	Long memory in discrete time approach —— 36
1.5.2	Definition of process with memory for discrete time —— 39
1.5.3	Granger-Joyeux fractional differencing —— 41
1.5.4	Continuous limit of fractional differencing —— 43
1.5.5	Power-law memory and exact fractional differences —— 44
1.5.6	Definition of exact fractional differences —— 46
1.6	Methods of describing processes with memory —— 47
1.6.1	Integral equations and integro-differential equations —— 47
1.6.2	Mathematical statistics and time series analysis —— 48
1.6.3	Fractional calculus —— 50
1.7	Conclusion —— 52

Part II: Concepts of economics with memory

2	Concepts of marginal values with memory —— 55
2.1	Introduction —— 55
2.2	Economic behavior of consumers and presence of memory —— 55
2.3	Consumer behavior, utility and memory effect —— 58
2.4	Standard average and marginal values and ambiguity —— 61
2.5	Ambiguity and memory effects —— 64
2.6	Caputo fractional derivative and its properties —— 65
2.7	Generalization of concepts of average and marginal values —— 67
2.7.1	One-parameter marginal values with memory —— 67
2.7.2	Two-parameter marginal values with memory —— 69
2.7.3	General marginal values through parametric derivative — 70
2.8	Examples of calculations of generalized marginal values —— 71
2.9	Conclusion —— 74
3	Marginal values of noninteger order in economic analysis —— 76
3.1	Introduction —— 76
3.2	Standard marginal value in economic analysis —— 77
3.3	Concept of marginal value of noninteger order —— 78
3.4	Example of calculating of generalized marginal values —— 82
3.5	From marginal value of noninteger order to total value —— 84
3.6	Conclusion —— 86
4	Deterministic factor analysis of processes with memory —— 87
4.1	Introduction —— 87
4.2	Differential method of noninteger order: single variable —— 89
4.3	Differential method of noninteger order: two variables —— 92
4.4	Comparison with standard differential method —— 93
4.5	Integral method of arbitrary (noninteger) order —— 97
4.6	Conclusion —— 100
5	Elasticity for processes with memory —— 101
5.1	Introduction —— 101
5.2	Concept of elasticity with memory —— 103
5.3	Properties of elasticity with memory —— 107
5.4	Elasticity through marginal value with memory —— 109
5.5	Generalized marginal rate of substitution with memory —— 111
5.6	Nonlocal elasticity of noninteger order —— 112
5.7	Examples of calculations of elasticities with memory —— 117
5.8	Conclusion —— 120

6	Multiplier for processes with memory —— 122
6.1	Introduction —— 122
6.2	Concept of standard multiplier —— 122
6.3	Consumption and investment multipliers —— 124
6.4	Multiplier effect and memory —— 124
6.5	Lag effects and memory effect —— 125
6.6	Concept of multiplier: from lag to memory —— 127
6.7	Generalized multiplier with memory —— 129
6.8	Multiplier with fading memory —— 130
6.9	Multiplier with nonaging memory —— 131
6.10	Multiplier with power-law memory —— 132
6.11	Multiplier with distributed time scaling —— 135
6.12	Superposition principle for multipliers with memory —— 136
6.13	Multiplier with distributed power-law memory —— 138
6.14	Multiplier with uniform distributed memory fading —— 139
6.15	Sequential action of multipliers with memory —— 141
6.16	Principles of permutability of multipliers with memory —— 145
6.17	Conclusion —— 146
_	Annal and an European with manners 467
7	Accelerator for processes with memory —— 147
7.1	Introduction —— 147
7.2	Concept of standard accelerator —— 147
7.3	Effect of financial accelerator —— 149
7.4	Generalized accelerator with memory — 150
7.5	Accelerator with power-law memory —— 153
7.6	Accelerator with simplest power-law memory —— 155
7.7	Accelerator with distributed time scaling — 158
7.8	Accelerator with distributed memory fading —— 160
7.9	Superposition principle for accelerators with memory — 163
7.10	Sequential actions of accelerators with memory —— 165
7.11	Superposition of accelerators with and without memory —— 167
7.12	Accelerator with memory through standard accelerators —— 168
7.13	Chain rule and product rule for accelerator with memory —— 170
7.14	Conclusion —— 171
8	Duality of multipliers and accelerators with memory —— 172
8.1	General duality principle —— 172
8.2	Duality principle for simple power-law memory —— 176
8.2.1	From multiplier with memory to accelerator with memory —— 176
8.2.2	From accelerator with memory to multiplier with memory —— 177
8.2.3	Formulation of duality for simple power-law memory —— 179
8.3	Principle of decreasing of fading for multiplier with memory —— 180

8.4

Examples of duality —— 182

8.4.1	Second duality for simplest power-law memory —— 182
8.4.2	Duality for memory and parametric fractional derivative —— 184
8.4.3	Duality for distributed time scaling —— 184
8.4.4	Duality for distributed memory fading —— 187
8.5	Conclusion —— 190
Dart II	I: Linear models of economics with memory
raitii	i: Linear models of economics with memory
9	Model of natural growth with memory —— 193
9.1	Introduction —— 193
9.2	Model of natural growth without memory —— 193
9.3	Memory effects by fractional derivatives and integrals —— 195
9.4	Equation of natural growth with memory and its solution —— 198
9.5	Some features of natural growth with memory —— 199
9.6	Conclusions —— 204
10	Madel of growth with constant year and many 200
10	Model of growth with constant pace and memory —— 206
10.1	Introduction — 206
10.2	Standard model of growth with constant pace — 206
10.3	Growth model with constant price and memory — 208
10.4	Growth model with power-law price and memory — 209
10.5	Growth model with two-parameter memory —— 210
10.6	Simple model of price dynamics with memory —— 212
10.7	Simple model of fixed assets dynamics with memory —— 213
10.8	Conclusion —— 214
11	Harrod-Domar growth model with memory —— 215
11.1	Introduction —— 215
11.2	Harrod-Domar growth model without memory —— 216
11.3	Harrod-Domar growth model with power-law memory —— 219
11.4	General solution of model equation —— 220
11.5	Closed model with memory: rate of growth with memory —— 222
11.6	Open model with memory and power-law consumption —— 225
11.7	Model with memory and constant consumption —— 228
11.8	Examples of memory effects for growth model —— 231
11.9	Model with multiparameter memory —— 236
11.10	Two-parameter power-law memory —— 236
11.11	Open model with two-parameter memory —— 238
11.12	Model with multiparameter power-law memory —— 239
11.13	Conclusion —— 240

12	Dynamic intersectoral Leontief models with memory —— 242
12.1	Introduction —— 242
12.2	Dynamic intersectoral model without memory —— 243
12.3	Dynamic intersectoral model with power-law memory —— 247
12.4	Closed dynamic intersectoral model with memory —— 250
12.5	Open dynamic intersectoral model with memory —— 256
12.6	Dynamic intersectoral model with sectoral memory —— 257
12.7	First example of two-sectoral model with memory —— 262
12.8	Second example of two-sectoral model with memory —— 266
12.9	Third example of two-sectoral model with memory —— 268
12.10	Conclusion —— 271
13	Market price dynamics with memory effects —— 272
13.1	Introduction —— 272
13.2	Standard Evans model of price dynamics in market —— 272
13.3	Accounting for memory of excess of demand over supply —— 276
13.4	Evans model with memory: equation and solution —— 280
13.5	Price dynamics with memory: amplification of market price —— 283
13.6	Price dynamics with memory: oscillation of market price —— 286
13.7	Properties of relaxation with memory to equilibrium price —— 288
13.8	Comparison of characteristic times for price dynamics — 290
13.9	Comparison of relaxation and oscillation damping of price —— 291
13.10	Conclusion —— 297
14	Cagan model of inflation with memory —— 298
14.1	Introduction —— 298
14.2	Standard Cagan model without memory —— 299
14.3	Generalization: Cagan model with memory —— 302
14.4	Solution for equation of Cagan model with memory —— 306
14.5	Short-term behavior of expected inflation with memory —— 308
14.6	Long-term behavior of expected inflation with memory —— 310
14.7	Properties of behavior of expected inflation with memory —— 311
14.8	Conclusion —— 312
Part I\	/: Nonlinear models of economics with memory
15	Model of logistic growth with memory —— 315
15.1	Introduction —— 315
15.2	Logistic growth model without memory —— 315
15.3	Logistic growth model with memory —— 317
15.4	Logistic growth with memory —— 320

15.5	Conclusion —— 323
16	Kaldor-type model of business cycles with memory —— 325
16.1	Introduction —— 325
16.2	Kaldor-type model of business cycles without memory —— 325
16.3	Kaldor-type model of business cycles with memory —— 327
16.4	Conclusion —— 330
17	Solow models with power-law memory —— 331
17.1	Introduction —— 331
17.2	Solow-Swan model with memory —— 332
17.2.1	Standard Solow-Swan model with continuous time —— 333
17.2.2	Generalization of Solow-Swan model —— 335
17.3	Solow model of long-run growth with memory —— 337
17.3.1	Long-run growth without memory and capital depreciation —— 337
17.3.2	Long-run growth with power-law memory —— 340
17.3.3	Rate of growth with power-law memory —— 343
17.3.4	Dynamics of capital per unit of effective labor —— 345
17.4	Solow-Lucas model of closed economy with memory —— 347
17.4.1	Solow-Lucas model for closed economy without memory —— 347
17.4.2	Solow-Lucas model for closed economy with memory —— 348
17.4.3	Growth rates of closed economy with memory —— 350
17.5	Conclusion —— 353
18	Lucas model of learning with memory —— 354
18.1	Introduction —— 354
18.2	Standard Lucas model of learning without memory —— 355
18.3	Generalized Lucas model of learning with memory —— 356
18.4	Cumulative experience: growth with power-law memory —— 359
18.5	Productivity growth with memory —— 361
18.6	Conclusion —— 363
19	Self-organization of processes with memory —— 364
19.1	Introduction —— 364
19.2	Nonlinear equations of processes with power-law memory —— 365
19.3	Slaving principle of self-organization with memory —— 367
19.4	Variable exception without using the adiabatic method —— 372
19.5	Adiabatic exclusion of variable for rapid damping —— 373
19.6	Significant changes of characteristic times by memory —— 375
19.7	Self-organization by memory toward logistic growth —— 377
19.8	Conclusion 381

Part V: Advanced models: distributed lag and memory

20	Multipliers and accelerators with lag and memory —— 385
20.1	Introduction —— 385
20.2	General multipliers and accelerators with distributed lag —— 386
20.3	Accelerator with uniformly distributed lag —— 387
20.4	Multiplier and accelerator with exponential lag —— 390
20.5	General multipliers with distributed lag and memory —— 392
20.6	General accelerator with distributed lag and memory —— 395
20.7	Multiplier with gamma distributed lag and memory —— 396
20.8	Multiplier with memory through Abel-type operator —— 398
20.9	Accelerators with gamma distributed lag and memory —— 402
20.10	Exponentially distributed lag and power-law memory —— 404
20.11	Conclusion —— 407
21	Harrod–Domar model with memory and distributed lag —— 408
21.1	Introduction —— 408
21.2	Harrod–Domar growth model without memory and lag —— 408
21.3	Harrod-Domar growth model with memory —— 410
21.4	Equation for growth with memory and lag —— 412
21.5	Conclusion —— 417
22	Dynamic Keynesian model with memory and lag —— 419
22.1	Introduction —— 419
22.2	Standard dynamic Keynesian model —— 420
22.3	Dynamic Keynesian model with memory —— 422
22.4	Equation of Keynesian model with memory and lag —— 424
22.5	Asymptotic behavior of growth with memory and lag —— 427
22.6	Conclusion —— 428
23	Phillips model with distributed lag and memory —— 430
23.1	Introduction —— 430
23.2	Phillips model with power-law memory and without lag —— 431
23.3	Phillips model with distributed lag and memory —— 435
23.4	Conclusion —— 437
Part \	/I: Advanced models: discrete time approach
24	Discrete accelerator with memory —— 441
24.1	Introduction —— 441
24.2	Standard accelerator in continuous and discrete terms —— 441

24.3	Capital stock adjustment principle —— 442
24.4	Connection of discrete and continuous time terms — 443
24.5	Continuous-time accelerator with power-law memory —— 445
24.6	Discrete-time accelerator with power-law memory —— 447
24.7	Conclusion —— 449
25	Comparison of discrete and continuous accelerators —— 450
25.1	Introduction —— 450
25.2	Comparison of accelerator without memory —— 451
25.3	Harrod–Domar growth models: continuous and discrete —— 453
25.3.1	Continuous time approach —— 453
25.3.2	Discrete time approach —— 454
25.3.3	Comparison of discrete and continuous models —— 456
25.4	Concept of exact discretization —— 456
25.5	Exact discrete accelerator and multiplier without memory —— 458
25.6	Comparison of standard and exact discrete models —— 461
25.7	Conclusion —— 463
26	Exact discrete accelerator and multiplier with memory —— 465
26.1	Introduction —— 465
26.2	Continuous-time accelerator and multiplier with memory —— 466
26.3	Standard discrete time approach to memory in economics —— 470
26.4	Exact discrete accelerator and multiplier with memory —— 471
26.5	Conclusion —— 473
27	Logistic map with memory from economic model —— 474
27.1	Introduction —— 474
27.2	Logistic growth with memory and periodic kicks —— 474
27.2	Economic and logistic laps with memory —— 476
27.4	Generalized economic and logistic maps with memory —— 480
27.5	Conclusion —— 485
27.5	Conclusion
Part V	II: Advanced models: generalized memory
*	y
28	Economics model with generalized memory —— 491
28.1	Introduction —— 491
28.2	Generalized multiplier and accelerator with memory —— 492
28.3	Generalized Taylor series for memory function —— 495
28.4	Multiplier with memory of TRB type —— 497
28.5	Accelerator with memory of TRB type —— 499
28.6	Harrod-Domar growth model with memory of TRB type —— 502

28.8	Memory function of Prabhakar type —— 511
28.9	Model of learning with memory of Prabhakar type —— 515
28.10	Conclusion —— 519
Part VIII	: Instead of conclusion
29 Fr	actional calculus in economics and finance —— 523
29.1	ARFIMA approach —— 523
29.2	Fractional Brownian motion approach —— 524
29.3	Econophysics approach —— 525
29.4	Deterministic chaos approach —— 526
29.5	Economics with memory —— 527
29.6	Conclusion —— 530
30 Fu	iture directions of economics with memory —— 532
30.1	Self-organization in economics with memory —— 532
30.2	Simultaneous action of distributed lag and fading memory —— 532
30.3	Memory with distributed fading —— 533
30.4	Generalized fractional calculus in economics —— 534
30.5	General fractional calculus and memory —— 535
30.6	Fractional variational calculus in economics with memory —— 536
30.7	Fractional differential games in economics with memory —— 536
30.8	Economic data and modeling of economics with memory —— 536
30.9	Big data and memory —— 537
30.10	Numerical methods for economics with memory —— 537
30.11	Econometrics for processes with memory —— 538
30.12	Development concept of memory —— 539
30.13	Conclusion —— 539
Bibliograp	ohy —— 541
Index	571

Lucas model of learning with memory of TRB type —— 509

28.7