Contents

Preface — VII

1	Motivation of the Hardy-Leray potential —— 1
1.1	Introduction —— 1
1.2	Where does the monster appear? — 2
1.2.1	The Hardy-Leray potential in quantum mechanics —— 2
1.2.2	More quantum mechanics: the uncertainty principle —— 4
1.2.3	Frank-Kamenetskii model in combustion: a Gelfand problem —— 5
1.2.4	Stability of the singular solution —— 12
1.3	A Picone type inequality —— 12
2	Looking at the Hardy–Leray potential —— 15
2.1	Properties of the Hardy-Leray potential —— 15
2.2	The Hardy–Leray inequality —— 15
2.3	Optimality and nonattainability of the constant $\Lambda_{N,2}$ —— 16
2.3.1	Some preliminaries on symmetrization —— 17
2.3.2	Constant $\Lambda_{N,2}$ is the best constant and is not attained —— 19
2.4	Hardy's inequality in $W^{1,p}(\mathbb{R}^N)$, 1
2.5	Hardy—Leray inequality with remainder term —— 23
2.5.1	A functional consequence —— 28
3	Calderón–Zygmund theory and the Hardy–Leray potential —— 29
3.1	Introduction —— 29
3.1.1	Unbounded solution for $m > \frac{N}{2}$ — 30
3.1.2	Nonexistence result for $m = 1 - 30$
3.2	Summability of finite energy solutions —— 33
3.2.1	Optimality of the condition on λ — 34
3.3	Existence of infinite energy solutions —— 35
3.3.1	Complete blow-up for data in L^1 —— 38
3.4	Necessary and sufficient conditions for solvability in weighted
	L ¹ -spaces —— 39
3.4.1	Uniqueness —— 41
3.5	Further results —— 41
3.5.1	A different way to obtain the critical value for λ —— 41
3.5.2	A remark in the case $\lambda = \Lambda_{N,2}$ —— 43
4	Effect of the Hardy-Leray potential in the solvability of semilinear elliptic
	equations —— 45
4.1	Introduction —— 45
4.2	The optimal power —— 45

4.3	Some previous results for linear elliptic equations —— 47
4.3.1	Elliptic equations with measure data —— 47
4.3.2	Newtonian capacity —— 48
4.3.3	The Ambrosetti-Rabinowitz mountain pass theorem —— 54
4.4	Results on existence —— 62
4.5	Results on nonexistence —— 66
4.5.1	Complete blow-up —— 68
4.6	Further results and comments —— 69
5	The Hardy–Leray potential in semilinear heat equations —— 71
5.1	Introduction — 71
5.2	Preliminaries and tools —— 72
5.2.1	Local behavior of supersolutions of the linear equation —— 74
5.2.2	A technical remark on existence —— 77
5.3	Nonexistence results: $p \ge p_+(\lambda)$ — 79
5.4	Instantaneous and complete blow-up results —— 83
5.4.1	Blow-up for the approximated problems when $p \ge p_+(\lambda)$ —— 83
5.4.2	Blow-up when $p_n \rightarrow p_+(\lambda)$ — 84
5.5	Existence of solutions: $p < p_{+}(\lambda)$ — 87
5.6	Cauchy problem —— 89
5.6.1	Subsolution blow-up in a finite time for small $p - 90$
5.6.2	Global supersolutions for $F(\lambda) — 92$
5.6.3	Local existence results for $1 — 93$
5.6.4	Global existence for $F(\lambda) and small data —— 94$
5.6.5	Blow-up result for $p < F(\lambda)$ — 94
5.7	Further results and remarks —— 96
5.7.1	Problems involving the p -Laplacian heat equation —— 96
5.7.2	Problems associated to the Caffarelli-Kohn-Nirenberg
	inequalities —— 96
5.7.3	The borderline case $p = F(\lambda)$ — 97
6	Elliptic equations with a nonlinearity on the gradient and the Hardy–Leray
	potential —— 103
6.1	Introduction —— 103
6.2	Some auxiliary results —— 104
6.2.1	Comparison results —— 104
6.2.2	A quantitative version of the maximum principle —— 112
6.2.3	Caffarelli–Kohn–Nirenberg inequalities —— 113
6.3	Nonexistence results: exponent $q \ge q_+(\lambda)$ —— 114
6.4	Blow-up result —— 121
6.5	Existence result: $1 and \lambda < \Lambda_{N,2} — 126$
6.6	The critical case, $\lambda \equiv \Lambda_{N,2}$ and $p < \frac{N+2}{N}$ —— 132

6.7	Further remarks —— 135
7	The heat equation with nonlinearity on the gradient and the Hardy–Leray potential —— 137
7.1	Introduction —— 137
7.2	Preliminaries and tools —— 139
7.2.1	Maximum principle and comparison results —— 140
7.2.2	Local behavior of a very weak supersolution to problem (7.1.1) —— 145
7.2.3	Passing to the limits in locally truncated problems —— 147
7.3	Nonexistence and blow-up results —— 154
7.3.1	Nonexistence —— 154
7.3.2	Complete and instantaneous blow-up —— 166
7.4	Existence results —— 168
7.5	Cauchy problem —— 173
7.5.1	A class of subsolutions to (7.5.2) for small p , blow-up in a finite time — 174
7.5.2	A class of global supersolutions to (7.5.2) for $F(\lambda) — 176$
7.5.2	Local existence for $1 — 177$
7.5.4	Global existence for small data and $F(\lambda) —— 181$
7.5.5	Blow-up in a finite time for $p < F(\lambda)$ and any positive initial
7.5.5	datum — 184
7.6	Further remarks —— 186
8	Fractional Laplacian type operators —— 189
8.1	Introduction —— 189
8.1.1	Riesz potentials —— 192
8.1.2	Analytic continuation and the fractional Laplacian formula —— 194
8.1.3	Some elementary properties of the fractional Laplacian —— 197
8.2	Analytical preliminaries related to $(-\Delta)^s$ —— 199
8.2.1	Some remarks on the regularity of solutions in the whole \mathbb{R}^N — 205
8.3	The Dirichlet problem: the variational framework —— 211
8.3.1	Elementary estimates —— 214
8.3.2	Elliptic Kato inequality —— 217
8.3.3	Weak maximum principle and comparison results —— 218
8.3.4	Some interpolation results —— 220
8.4	Elliptic problem: finite energy setting —— 221
8.4.1	Bounded solutions: Moser and Stampacchia methods —— 222
8.4.2	The limit case $m = \frac{N}{2s}$: exponential summability —— 225
8.4.3	A Calderón-Zygmund type result —— 226
8.4.4	Further fractional regularity —— 227
8.5	A fractional Picone inequality and applications to sublinear problems —— 228

8.6	Nonvariational setting for elliptic problems: weak solutions —— 232
8.6.1	Calderón–Zygmund type result for weak solutions — 236
8.7	Further results —— 237
9	The fractional Hardy inequality —— 239
9.1	Introduction —— 239
9.2	The fractional Hardy inequality —— 240
9.3	Normalizing the constants —— 248
9.4	Local behavior of solutions of the elliptic equation —— 250
9.5	Ground state representation —— 252
9.6	Hardy's inequality with remainder terms —— 255
9.7	Further results and comments —— 261
10	Calderón-Zygmund summability in the fractional setting — 263
10.1	Introduction and statement of the problem —— 263
10.2	Functional setting: inequalities with weights —— 265
10.2.1	Weighted Sobolev inequalities and applications — 269
10.2.2	Some compactness results —— 277
10.2.3	Some numerical inequalities —— 278
10.3	Weak Harnack inequality and local behavior of nonnegative
	supersolutions —— 280
10.4	Optimal summability in the presence of Hardy potential —— 291
10.4.1	Regularity of energy solutions —— 291
10.4.2	About the optimality of the regularity results —— 295
10.4.3	Nonvariational setting: weak solutions —— 299
10.4.4	A necessary and sufficient condition for solvability —— 301
10.5	Further results and comments —— 303
11	Fractional semilinear elliptic problems —— 305
11.1	Introduction —— 305
11.2	Preliminaries —— 306
11.2.1	A convergence tool by Brezis-Lieb —— 309
11.2.2	Maximum principle for the fractional Laplacian —— 310
11.2.3	The Pohozaev identity for the fractional Laplacian —— 314
11.3	Existence of minimal solutions for $1 —— 323$
11.4	Existence of at least two nontrivial variational solutions if
	1
11.4.1	Subcritical case —— 329
11.4.2	The critical problem: $p = 2_s^* - 1 \longrightarrow 342$
11.5	Nonexistence for $p \ge p(\lambda, s)$: complete blow-up —— 358
11.5.1	Complete blow-up —— 362

11.6	Problems with the Hardy potential and nonlinear terms singular at the
	boundary —— 365
11.7	Further comments — 372
11.7.1	Other operators —— 372
12	The heat equation with fractional diffusion —— 373
12.1	Introduction —— 373
12.2	Finite energy setting —— 373
12.3	Nonvariational setting: weak solutions —— 376
12.4	A priori estimates and summability of the solutions —— 379
12.4.1	Bounded solutions —— 379
12.4.2	Summability of the solutions outside of the Aronson-Serrin
	zone —— 384
12.4.3	Further summability results —— 386
12.4.4	Parabolic Kato inequality —— 388
12.5	The Cauchy problem for the fractional heat equation —— 389
12.5.1	Some remarks on regularity of the solution to the Cauchy
	problem 398
12.6	Regularity in bounded domains: relation between weak solutions and
	viscosity solutions —— 404
12.7	The uniqueness result of Widder type —— 406
12.7.1	Uniqueness for weak solutions —— 411
12.7.2	Uniqueness for strong positive solutions —— 419
12.7.3	About viscosity solutions —— 424
12.8	Further results —— 425
12.8.1	Some remarks about the fractional Widder theorem —— 425
12.8.2	The Fujita exponent for the fractional heat equation —— 428
13	The influence of the Hardy potential on the linear and semilinear fractional
	heat equations —— 433
13.1	Introduction —— 433
13.2	Functional framework: some preliminary results —— 435
13.3	Weak Harnack inequality for a weighted problem —— 441
13.4	The linear problem: dependence on the spectral parameter λ — 456
13.5	Existence and nonexistence results for a semilinear problem —— 465
13.5.1	Nonexistence results for $p>p_+(\lambda,s)$, instantaneous and complete
	blow-up —— 468
13.5.2	Existence results for $1 — 471$
13.6	Further results and comments —— 473
13.6.1	Fujita exponent depending on λ —— 473
13.6.2	Other operators —— 473

XX — Contents

Bibliography —— 475

Alphabetical Index — 489