Contents

Anno	tation —— V	
Preface —— VII		
1	Everybody understands everything — 1	
2	Cybernetic and electromagnetic impacts on electronic equipment: do they	
	have anything in common? —— 17	
2.1	Conclusions —— 22	
	Bibliography —— 22	
3	New developments in protection of power transformers against	
	HEMP —— 23	
3.1	Introduction —— 23	
3.2	E3's impact on electrical power equipment —— 23	
3.3	Suggested solutions for the problem —— 27	
3.4	Tester for periodical testing of relay serviceability —— 31	
3.5	Safety actuating module for transformer relay protection from	
	geomagnetically induced currents of HEMP —— 35	
3.6	Throw-over transfer switch for transformer protection relay powered by a	
	substation DC auxiliary power system —— 44	
	Bibliography —— 57	
4	New developments in the protection of diesel generators from	
	electromagnetic pulses (HEMP) —— 58	
4.1	Mounting of protecting metal panels —— 58	
4.2	Mounting of electromagnetic filter and varistors —— 59	
4.3	Main controller protection —— 59	
4.4	Mounting of ventilation blinds —— 61	
	Bibliography —— 64	
5	HEMP protection of electronic equipment located in control cabinets —— 66	
5.1	Introduction —— 66	
5.2	Selecting the design of protection modules —— 67	
5.3	Efficiency of protection elements as affected by mounting wires — 68	
5.4	Suggested solution of the problem — 71	
5.5	Conclusions —— 75	
	Bibliography —— 76	
	Appendix —— 77	
6	HEMP protection strategy for power system's electronic equipment —— 80	
6 1	Introduction — 80	

6.2	Major provisions underlying the offered strategy —— 80
6.3	Basic HEMP protection strategy for power system's electronic
	equipment —— 81
6.4	Conclusion —— 87
	Bibliography —— 87
7	Selection of LC filters to ensure HEMP protection of electronic
	equipment — 88
7.1	Introduction —— 88
7.2	What is special in HEMP filters? —— 89
7.3	Conclusion —— 94
	Bibliography —— 94
8	Research shielding effectiveness of an elastic shield made of conductive
	fabric to ensure HEMP protection of electronic equipment —— 95
8.1	Introduction —— 95
8.2	Measuring of shielding effectiveness of conductive fabrics —— 97
8.3	Conclusion —— 104
	Bibliography —— 104
9	Resilience of digital protection relay's power supplies to powerful
	nanosecond pulses —— 105
9.1	Introduction —— 105
9.2	Analysis of the literature —— 105
9.3	Standards and testing procedure —— 106
9.4	Power supplies of DPR —— 108
9.5	Results —— 109
9.6	Conclusion —— 114
	Bibliography —— 114
10	Comparative tests of voltage suppressors for the protection of electronics
	against high-altitude electromagnetic pulses (HEMP) —— 116
10.1	Introduction —— 116
10.2	Purpose of the research —— 117
10.3	Method, test subject, and equipment —— 117
10.4	Test results —— 119
10.5	Conclusions —— 124
	Bibliography —— 124
11	The problems of testing HEMP resilience of electronic equipment —— 125
11.1	Introduction —— 125
11.2	Methods and aims of HEMP-resilience tests —— 126
11.3	Test bench—HEMP simulator —— 128

11.4	Problem No. 1 —— 128
11.5	Problem No. 2 130
11.6	Problem No. 3 —— 130
11.7	Problem No. 4 132
11.8	Problem No. 5 136
11.9	Conclusions —— 141
	Bibliography —— 143
12	A special HEMP-resilient protection and automation devices —— 144
12.1	Introduction —— 144
12.2	Universal HEMP-resilient overcurrent protective relay —— 144
12.3	Very-fast overcurrent protection relay —— 147
12.4	Threshold-current transducer —— 155
12.5	Fault-passage indicator (FPI) —— 156
12.6	Automatic-reset short-circuit indicator for 6–24 kV power
	busbars —— 159
12.7	High-current pulse transducer —— 160
12.8	Shorting-circuit protection module —— 165
12.9	Fast-voltage unbalance protective relay —— 168
12.10	Autoreclosing module for low-voltage electrical equipment —— 170
12.11	The problems in the AC-power network upon HEMP impact —— 174
12.12	Reed-switch relay as a very-fast undervoltage relay —— 183
12.13	The problems in the DC-power network at HEMP impact —— 185
	Bibliography —— 189
	Appendixes —— 190
	A. Main parameters of the full size HV reed switches —— 190
	B. Main parameters of miniature HV reed switches —— 192
	C. Main parameters of HV Darlington transistors —— 193
	D. Main parameters of HV bipolar transistors with high-DC current
	gain 193
	E. Main parameters of small HV thyristors —— 194
	F. Main parameters for thyristor diode (dynistor, diac, four-layer diode,
	Shockley diode) —— 196

Index ---- 197