Contents

Preface —— VII

Some remarks about notations —— XIII

1	Groups: the intuitive notion —— 1
1.1	Examples —— 2
1.2	Groups as transformation groups —— 3
1.3	Representations of a group —— 4
1.3.1	Vector spaces —— 5
2	Fundamental notions of algebra —— 8
2.1	Historical remarks —— 8
2.1.1	Cayley and Sylvester: a short account of their lives —— 8
2.1.2	Galois and the advent of group theory —— 10
2.2	Summary of the content of this chapter —— 12
2.3	Groups —— 12
2.3.1	Some examples —— 13
2.3.2	Abelian groups —— 13
2.3.3	The group commutator —— 13
2.3.4	Conjugate elements —— 14
2.3.5	Order and dimension of a group —— 14
2.3.6	Order of an element —— 14
2.3.7	The multiplication table of a finite group —— 15
2.3.8	Homomorphisms, isomorphisms, and automorphisms —— 15
2.3.9	Rank, generators, and relations (a first bird's-eye view) —— 10
2.3.10	Subgroups —— 17
2.4	Rings —— 18
2.5	Fields — 19
2.6	Vector spaces —— 20
2.6.1	Dual vector spaces —— 20
2.6.2	Inner products —— 21
2.7	Algebras —— 22
2.8	Lie algebras —— 22
2.8.1	Homomorphism —— 23
2.8.2	Subalgebras and ideals —— 23
2.8.3	Representations —— 24
2.8.4	Isomorphism —— 24
2.8.5	Adjoint representation —— 24
2.9	Moduli and representations —— 25
2.9.1	Fields, algebraic closure, and division algebras —— 26

2.10	There are only two other division algebras: the quaternions and the octonions —— 27
2.10.1	Frobenius and his theorem —— 27
2.10.2	Galois and field extensions — 28
2.11	Bibliographical note —— 30
3	Groups: noticeable examples and some developments —— 31
3.1	Survey of the contents of this chapter —— 31
3.2	Groups of matrices —— 31
3.2.1	General linear groups —— 31
3.2.2	Special linear groups —— 32
3.2.3	Unitary groups —— 32
3.2.4	Special unitary groups —— 32
3.2.5	Orthogonal groups —— 33
3.2.6	Special orthogonal groups —— 33
3.2.7	Symplectic groups —— 33
3.2.8	Groups of transformations —— 34
3.3	Some examples of finite groups —— 34
3.3.1	The permutation groups $S_n \longrightarrow 35$
3.4	Groups as the invariances of a given geometry —— 36
3.4.1	The Euclidean groups —— 37
3.4.2	Projective geometry —— 39
3.5	Matrix groups and vector spaces —— 40
3.5.1	General linear groups and basis changes in vector spaces —— 40
3.5.2	Tensor product spaces —— 40
3.5.3	(Anti)symmetrized product spaces —— 41
3.5.4	Exterior forms —— 42
3.5.5	Special linear groups as volume-preserving transformations —— 44
3.5.6	Metric-preserving changes of basis —— 44
3.5 <i>.</i> 7	Isometries — 47
3.6	Bibliographical note —— 48
4	Basic elements of finite group theory —— 49
4.1	Introduction —— 49
4.2	Basic notions and structural theorems for finite groups —— 50
4.2.1	Cayley's theorem —— 50
4.2.2	Left and right cosets —— 51
4.2.3	Lagrange's theorem —— 52
4.2.4	Conjugacy classes —— 53
4.2.5	Conjugate subgroups —— 55
4.2.6	Center, centralizers, and normalizers —— 56
4.2.7	The derived group —— 57

4.2.8	Simple, semi-simple, and solvable groups —— 57
4.2.9	Examples of simple groups —— 58
4.2.10	Homomorphism theorems — 58
4.2.11	Direct products —— 59
4.2.12	Action of a group on a set —— 60
4.2.13	Semi-direct products —— 62
4.3	Linear representations of finite groups —— 64
4.3.1	Schur's lemmas —— 66
4.3.2	Characters —— 69
4.3.3	Decomposition of a representation into irreducible representations — 70
4.3.4	The regular representation —— 71
4.4	Strategy to construct the irreducible representations of a solvable group —— 72
4.4.1	The inductive algorithm for irreps —— 72
4.4.2	The octahedral group $O_{24} \sim S_4$ and its irreps —— 75
4.5	Bibliographical note —— 80
5	Finite subgroups of SO(3): the ADE classification —— 8 1
5.1	Introduction —— 81
5.2	ADE classification of the finite subgroups of SU(2) —— 82
5.2.1	The argument leading to the Diophantine equation —— 83
5.2.2	Case $r=2$: the infinite series of cyclic groups \mathbb{A}_n — 88
5.2.3	Case $r = 3$ and its solutions —— 88
5.2.4	Summary of the ADE classification of finite rotation groups —— 91
5.3	Bibliographical note —— 93
6	Manifolds and Lie groups —— 94
6.1	Introduction —— 94
6.2	Differentiable manifolds —— 95
6.2.1	Homeomorphisms and the definition of manifolds —— 97
6.2.2	Functions on manifolds —— 102
6.2.3	Germs of smooth functions —— 104
6.3	Holomorphic functions revisited and the conformal automorphism group of $\mathbb{C} \cup \{\infty\}$ — 105
6.3.1	The annulus and its preimage on the Riemann sphere —— 105
6.4	Tangent and cotangent spaces —— 116
6.4.1	Tangent vectors at a point $p \in \mathcal{M}$ —— 117
6.4.2	Differential forms at a point $p \in \mathcal{M}$ — 121
6.5	About the concept of fiber bundle —— 123
6.6	The notion of Lie group —— 124
6.7	Developing the notion of fiber bundle —— 125
6.8	Tangent and cotangent bundles —— 131

XVIII — Contents

6.8.1	Sections of a bundle —— 133
6.8.2	The Lie algebra of vector fields —— 135
6.8.3	The cotangent bundle and differential forms —— 136
6.8.4	Differential k-forms —— 139
6.9	Homotopy, homology, and cohomology —— 141
6.9.1	Homotopy —— 143
6.9.2	Homology —— 146
6.9.3	Homology and cohomology groups: general construction —— 152
6.9.4	Relation between homotopy and homology —— 154
6.10	Holomorphic functions and their integrals in view of homotopy, homology, and cohomology —— 155
6.10.1	Curvilinear integrals in the \mathbb{R}^2 plane —— 155
6.10.2	The primitive of a differential 1-form —— 158
6.10.3	The Green–Riemann formula, an instance of the general Stokes
0.10.5	theorem —— 160
6.10.4	Illustrations of homotopy in \mathbb{R}^2 — 162
6.10.5	Consequences of a fundamental theorem —— 166
6.10.6	Holomorphicity —— 167
6.10.7	Holomorphicity condition —— 169
6.10.8	Cauchy theorem —— 170
6.11	Bibliographical note —— 176
7	The relation between Lie groups and Lie algebras —— 177
7.1	The Lie algebra of a Lie group —— 177
7.1.1	Left/right-invariant vector fields —— 179
7.2	Maurer-Cartan forms on Lie group manifolds —— 184
7.3	Maurer-Cartan equations —— 187
7.4	Matrix Lie groups —— 187
7.4.1	Some properties of matrices —— 187
7.4.2	Linear Lie groups —— 189
7.5	Bibliographical note —— 189
8	Crystallographic groups and group extensions —— 191
8.1	Lattices and crystallographic groups —— 191
8.1.1	Lattices —— 191
8.1.2	The <i>n</i> -torus T ⁿ —— 192
8.1.3	Crystallographic groups and the Bravais lattices for $n = 3$ and $n = 2$ — 193
8.1.4	Rigorous mathematical classification of the point groups in two dimensions —— 198
8.2	The proper point groups: the octahedral group O ₂₄ —— 200
8.2.1	The cubic lattice and the octahedral point group — 200
8.2.2	Irreducible representations of the octahedral group —— 201

8.3	The full tetrahedral group T_{12}^d and the octahedral group O_{24} are
0.04	isomorphic —— 203
8.3.1	The vibrations of XY_4 molecules — 203
8.3.2	Structure of the full tetrahedral group —— 205
8.4	Group extensions and space groups —— 212
8.4.1	General theory of group extensions —— 212
8.5	Space groups —— 215
8.5.1	The basic ingredient of the construction: the lifting map —— 216
8.5.2	The product law and the closure condition —— 217
8.5.3	Finite group cohomology —— 219
8.5.4	Frobenius congruences —— 220
8.5.5	Another example in the plane: the tetragonal lattice —— 224
8.6	Bibliographical note —— 224
9	Monodromy groups of differential equations —— 225
9.1	The role of differential equations in all branches of science —— 225
9.2	Groups in a new capacity —— 226
9.3	Ordinary differential equations —— 227
9.4	Second order differential equations with singular points —— 227
9.4.1	Solutions at regular singular points and the indicial equation —— 229
9.4.2	Fuchsian equations with three regular singular points and the
	<i>P</i> -symbol —— 232
9.4.3	The hypergeometric equation and its solutions —— 235
9.5	An example of monodromy group: differential equations and
	topology —— 241
9.5.1	The tetrahedral group in two dimensions and the torus —— 241
9.5.2	An algebraic representation of the torus by means of a cubic —— 244
9.5.3	A differential equation enters the play and brings in a new group —— 245
9.6	Conclusive remarks on this chapter —— 252
9.7	Bibliographical note —— 252
10	Structure of Lie algebras —— 253
10.1	Introduction —— 253
10.2	Linear algebra preliminaries —— 253
10.3	Types of Lie algebras and Levi decomposition —— 256
10.3.1	Solvable Lie algebras —— 256
10.3.2	Semi-simple Lie algebras —— 259
10.3.3	Levi's decomposition of Lie algebras — 260
10.3.4	An illustrative example: the Galilei group —— 265
10.4	The adjoint representation and Cartan's criteria —— 266
10.4.1	Cartan's criteria —— 267
10.5	Bibliographical note —— 269

11	Root systems and their classification —— 270
11.1	Cartan subalgebras —— 270
11.2	Root systems —— 273
11.2.1	Final form of the semi-simple Lie algebra —— 276
11.2.2	Properties of root systems —— 276
11.3	Simple roots, the Weyl group, and the Cartan matrix —— 280
11.4	Classification of the irreducible root systems —— 282
11.4.1	Dynkin diagrams —— 282
11.4.2	The classification theorem —— 284
11.5	Identification of the classical Lie algebras —— 290
11.5.1	The \mathfrak{a}_ℓ root system and the corresponding Lie algebra —— 290
11.5.2	The \mathfrak{d}_ℓ root system and the corresponding Lie algebra —— 295
11.5.3	The \mathfrak{b}_ℓ root system and the corresponding Lie algebra —— 296
11.5.4	The \mathfrak{c}_ℓ root system and the corresponding Lie algebra —— 298
11.5.5	The exceptional Lie algebras —— 299
11.6	Bibliographical note —— 299
12	Lie algebra representation theory —— 301
12.1	Linear representations of a Lie algebra —— 301
12.1.1	Weights of a representation and the weight lattice —— 302
12.2	Discussion of tensor products and examples —— 311
12.2.1	Tensor products and irreps —— 311
12.2.2	The Lie algebra \mathfrak{a}_2 , its Weyl group, and examples of its
	representations —— 315
12.2.3	The Lie algebra $\mathfrak{sp}(4,\mathbb{R})\simeq\mathfrak{so}(2,3),$ its fundamental representation, and its
	Weyl group —— 326
12.3	Conclusions for this chapter —— 336
12.4	Bibliographical note —— 337
13	Exceptional Lie algebras —— 338
13.1	The exceptional Lie algebra \mathfrak{g}_2 —— 338
13.2	The Lie algebra \mathfrak{f}_4 and its fundamental representation —— 342
13.2.1	Explicit construction of the fundamental and adjoint representation of \mathfrak{f}_4 —— 346
13.3	The exceptional Lie algebra ϵ_8 —— 352
13.3.1	Construction of the adjoint representation —— 354
13.3.2	Final comments on the e_8 root systems —— 358
13.4	Bibliographical note —— 359
14	In depth study of a simple group —— 360
14.1	A simple crystallographic point group in seven dimensions —— 360
14.1.1	The simple group L ₁₆₈ —— 361

14.1.2	Structure of the simple group $L_{168} = PSL(2, \mathbb{Z}_7)$ — 362
14.1.3	The seven-dimensional irreducible representation —— 363
14.1.4	The three-dimensional complex representations —— 366
14.1.5	The six-dimensional representation —— 367
14.1.6	The eight-dimensional representation —— 368
14.1.7	The proper subgroups of L ₁₆₈ —— 368
14.2	Bibliographical note —— 374
15	A primary on the theory of connections and metrics —— 375
15.1	Introduction —— 375
15.2	Connections on principal bundles: the mathematical definition —— 376
15.2.1	Ehresmann connections on a principal fiber bundle —— 377
15.3	Connections on a vector bundle —— 385
15.4	An illustrative example of fiber bundle and connection —— 388
15.4.1	The magnetic monopole and the Hopf fibration of \mathbb{S}^3 —— 389
15.5	Riemannian and pseudo-Riemannian metrics: the mathematical
	definition —— 394
15.5.1	Signatures —— 395
15.6	The Levi-Civita connection —— 397
15.6.1	Affine connections —— 397
15.6.2	Curvature and torsion of an affine connection —— 398
15.7	Geodesics —— 401
15.8	Geodesics in Lorentzian and Riemannian manifolds: two simple
	examples —— 403
15.8.1	The Lorentzian example of dS ₂ —— 403
15.8.2	The Riemannian example of the Lobachevsky–Poincaré plane —— 409
15.8.3	Another Riemannian example: the catenoid —— 412
15.9	Bibliographical note —— 415
16	Isometries and the geometry of coset manifolds —— 416
16.1	Conceptual and historical introduction —— 416
16.1.1	Symmetric spaces and Élie Cartan —— 417
16.1.2	Where and how do coset manifolds come into play? —— 418
16.1.3	The deep insight of supersymmetry —— 419
16.2	Isometries and Killing vector fields —— 420
16.3	Coset manifolds —— 420
16.3.1	The geometry of coset manifolds —— 425
16.4	The real sections of a complex Lie algebra and symmetric spaces —— 436
16.5	The solvable group representation of non-compact coset manifolds —— 439
16.5.1	The Tits–Satake projection: just a flash —— 442
16.6	Bibliographical note —— 443

17	Functional spaces and non-compact Lie algebras —— 444
17.1	Introduction to an introduction —— 444
17.2	The idea of functional spaces —— 447
17.2.1	Limits of successions of continuous functions —— 449
17.2.2	A very short introduction to measure theory and the Lebesgue
	integral —— 450
17.2.3	Space of square summable functions —— 452
17.2.4	Hilbert space —— 453
17.2.5	Infinite orthonormal bases and the Weierstrass theorem —— 455
17.2.6	Consequences of the Weierstrass theorem —— 456
17.2.7	The Schmidt orthogonalization algorithm —— 457
17.3	Orthogonal polynomials —— 459
17.3.1	The classical orthogonal polynomials —— 459
17.3.2	The differential equation satisfied by orthogonal polynomials —— 461
17.4	The Heisenberg group, Hermite polynomials, and the harmonic
	oscillator —— 463
17.4.1	The Heisenberg group and its Lie algebra —— 463
17.5	Self-adjoint operators —— 469
18	Harmonic analysis and conclusive remarks —— 471
18.1	A few highlights on harmonic analysis —— 472
18.1.1	Harmonics on coset spaces —— 473
18.1.2	Differential operators on H-harmonics —— 475
18.2	Conclusive remarks —— 476
A	Available MATHEMATICA NoteBooks written by the author —— 479
Bibliography —— 497 About the author —— 503	