Contents

1	Geo	logical	Foundation of Well Pattern Optimization	1
	1.1	Overv	riew of Fine Reservoir Description	2
		1.1.1	Stages of Reservoir Description	2
		1.1.2	Purpose of Fine Reservoir Description	11
	1.2	Main	Contents and Methods of Fine Reservoir Description	13
		1.2.1	Fine Division and Contrast of Reservoirs	13
		1.2.2	Microscopic Structure Research	20
		1.2.3	Sedimentary Micro-facies Analysis and Sand	
			Body Connectivity	23
		1.2.4	Reservoir Heterogeneity	27
	1.3	Reser	voir Heterogeneity and Quantitative Characterization	28
		1.3.1	Reservoir Heterogeneity Classification	28
		1.3.2	Geological Characteristics of Reservoir Heterogeneity	31
		1.3.3	Areal Heterogeneity	34
		1.3.4	In-Layer Heterogeneity	37
		1.3.5	Micro-heterogeneity	41
		1.3.6	Quantitative Features of Reservoir Heterogeneity	42
	1.4		nce of Reservoir Heterogeneity on the Development	
		Effect	and Well Pattern	49
		1.4.1	Influence of Longitudinal Heterogeneity on the	
			Development	49
		1.4.2	Influence of Areal Heterogeneity on the Oilfield	
			Development	53
		1.4.3	Water-Flooding Features of Various Types of Rhythm	57
		1.4.4	Influence of Reservoir Microstructures	
			on the Water-Flooding Performance	58

x Contents

2	Reservoir Direction Characteristics Investigation and Permeability Distribution Law					
	2.1		ional Characteristics of the Reservoir	61		
	2.1	2.1.1	Provenance Direction and Depositional Direction	62		
		2.1.2	Principal Permeability Direction	64		
		2.1.2	Principal Stress Direction and Fracture	66		
		2.1.3		67		
			Fault Strike and Structural Dip			
	2.2	2.1.5	Direction of Edge and Bottom Water Invasion	69		
	2.2		cability Distribution Law	71		
		2.2.1	Cause for Permeability Anisotropy	71		
		2.2.2	Distribution of Permeability	71		
		2.2.3	Description Method of Permeability Vector	76		
	2.3		and Calculation Methods of Permeability Direction	78		
		2.3.1	Calculation of Permeability Vector	78		
		2.3.2	Analysis of Directivity of Reservoir Permeability			
			with Variogram	81		
		2.3.3	TDS Technique for Determining the Anisotropy			
			of Reservoir Plane Permeability	83		
		2.3.4	Method for Identifying the Main Permeability			
			of the Fractured Reservoir and the Main Fracture			
			Direction	87		
	Direction					
			•	89		
		2.4.1	Influence of Vertical Heterogeneity of Permeability			
			on Water Flooding Recovery	89		
		2.4.2	Influence of Lateral Heterogeneity of Permeability	0,		
			on Water Flooding Recovery	91		
		2.4.3	Influence of Permeability Anisotropy on Well	,,		
		2.4.5	Pattern Arrangement	92		
		2.4.4	Influence of Water Flooding Direction on Development	72		
		2.4.4		95		
		245	Efficiency	93		
		2.4.5		07		
			Efficiency	97		
3	Injection-Production Well Pattern Optimal Control Theory 9					
	3.1		flooding Characteristics in Sandstone Reservoirs	99		
		3.1.1	Overview of the Well Pattern Research	99		
		3.1.2	Types and Characteristics of the Areal Well Pattern			
			Deployment	101		
		3.1.3	Comparison of Different Well Patterns	105		
		3.1.4	The Choice of the Areal Well Pattern	110		
	3.2		Pattern Optimal Control Theory	111		
	5.4	3.2.1	Problems of the Areal Well Pattern.	111		
		3.2.2	Concept of Well Pattern Optimal Control	116		
		3.2.2	Summary of Well Pattern Optimal Control	110		
		5.4.5	Summary of Well Pattern Oblimal Control	119		

Contents xi

	3.3	Princip	oles and Standards for Well Pattern Optimal Control	122
		3.3.1	Principles for Well Pattern Optimal Control	122
		3.3.2	Standards for Well Pattern Optimal Control	125
		3.3.3	Implementation of Well Pattern Optimal Control	126
	3.4	Influer	nce Factor Analysis of Well Pattern Optimal Control	130
		3.4.1	Reservoir Distribution Characteristics	131
		3.4.2	Sedimentary Characteristics of the Reservoir	133
		3.4.3	Characteristics of Reservoir Heterogeneity	134
		3.4.4	Development Strategies and Modes	134
		3.4.5	Development Technologies and Measures	136
		3.4.6	Geographical Environment and Economic Factors	136
4	Prin	ciples a	and Adjustment Methods for the Vector	
	Wel	l Patter	n	139
	4.1	Conce	pt and Physical Meaning of the Vector Well Pattern	139
		4.1.1	Concept of the Vector Well Pattern	139
		4.1.2	Physical Meaning of the Vector Well Pattern	140
		4.1.3	A Case Study of the Vector Well Pattern	141
		4.1.4	Theoretical Basis for the Vector Well Pattern	141
		4.1.5	The Actual Development Effect with the Vector	
			Well Pattern	154
	4.2	Vector	Well Pattern Arrangement Principles	157
		4.2.1	Methods for the Vector Well Pattern Arrangement	157
		4.2.2	Problems in the Vector Well Pattern Deployment	158
		4.2.3	Choose the Right Well Types for Different Reservoirs	162
	4.3	Vector	Well Pattern Design	162
		4.3.1	Design of Well Spacing in the Vector Well Pattern	162
		4.3.2	Direction Design of the Vector Well Pattern	168
		4.3.3	Case Studies of the Vector Well Pattern Design	170
	4.4	Adjust	ment Methods Based on the Vector Well Pattern	172
		4.4.1	Adjustment Strategies for the Permeability Anisotropic	
			Reservoir	172
		4.4.2	Adjustment Strategies in Terms of Reservoir	
			Characteristics	174
		4.4.3	Adjustment Strategies in Terms of Sedimentary	
			Micro-facies Characteristics	176
5	Wel	l Patter	n Models for Different Reservoir Characteristics	179
-	5.1		Pattern Optimization for Channel Deposit Sedimentary	
			-facies	180
		5.1.1	Development Effects of Different Well Patterns	180
		5.1.2	Water Flooding Direction Optimization	183
	5.2		Pattern Optimization for Sheet Sand Sedimentary	-00
			facies	185
			Development Effects of Different Well Patterns	186

xii Contents

		5.2.2	Comparative Study on the Development Effects	
			of Different Well Patterns	189
		5.2.3	Vector Well Pattern Optimization	190
	5.3		opment Effects Analysis on Well Patterns of Different	
		Micro	-facies Combinations	191
		5.3.1	Influence of Different Well Patterns	
			on the Development Effect	192
		5.3.2	Influence of Well Spacing Densities of Different	
			Micro-facies on the Development Effect	194
	5.4		Patterns in the Vertical Heterogeneous Reservoir	197
		5.4.1	Construction of the Theoretical Geologic Model	197
		5.4.2	Well Pattern Optimization with Two Different	
			Permeability Directions	201
6	Ana	lvsis or	n the Application of the Vector Well Pattern	225
	6.1	Optim	al Design and Application of the Vector Well	
		Patter	n in Zhao'ao Oilfield	225
		6.1.1	Overview of Zhao'ao Oilfield	225
		6.1.2	Optimization Analysis of the Vector Well Pattern	
			in Zhao'ao Oilfield	227
		6.1.3	Adjustment Analysis of the Vector Well Pattern	
			in Zhao'ao Oilfield	233
	6.2	Optim	al Design and Application of the Vector Well Pattern	
			Group VI of Shuanghe Oilfield	239
		6.2.1	Overview of Oil Group VI of Shuanghe Oilfield	239
		6.2.2	Reservoir Characteristics and Directivity	242
		6.2.3	Vector Well Pattern Adjustment Analysis	244
	6.3		al Design and Application of the Vector Well Pattern	
			nglongzhuang Fault Block Reservoir	248
		6.3.1	Overview of Wanglongzhuang Reservoir	248
		6.3.2	Directional Characteristics of the Reservoir	250
		6.3.3	Design and Effect Forecast of the Vector Well Pattern	251
	6.4		arative Analysis on the Application of Well Pattern	
		-	al Theory in Different Units	258
		6.4.1	Differences Between the Initial Vector Well Pattern	
			and the Actual Well Pattern	258
		6.4.2	Effect Comparison and Analysis of Applying	• • •
			the Vector Well Pattern in Different Reservoirs	260
7	Con	nplex V	Vell Pattern Optimal Design	263
	7.1		iew of Complex Well Pattern Optimal Design	263
		7.1.1	A Brief Introduction to the Development	
			of Horizontal Wells	265
		7.1.2	Multilateral Wells	269

Contents xiii

	7.2	Horizo	ontal Wells and Well Pattern Optimal Design	278
		7.2.1	Advantages and Adaptability of Horizontal Wells	
			in Reservoir Development	278
		7.2.2	Design of the Horizontal Well Extending Direction	280
		7.2.3	Design of the Length of the Horizontal Section	281
		7.2.4	Design Principles for Spatial Location of Horizontal	
			Wells	285
		7.2.5	Optimization of the Design Method of Horizontal	
			Well Productivity	289
		7.2.6	Principles and Methods for the Horizontal Well	
			Pattern Design	292
		7.2.7	Design of the Horizontal Well Pattern	293
	7.3	Well I	Pattern Optimal Design for the Fractured Low-Permeability	
			voir	299
		7.3.1	Design of the Vertical Well Pattern	300
		7.3.2	Design of the Horizontal Well Pattern	307
		7.3.3	Optimal Design of Horizontal Well Fracturing	319
	7.4	Impor	tant Factors for the Well Pattern Design	328
		7.4.1	Penetration Ratio	329
		7.4.2	Ground Stress	329
		7.4.3	Influence of Types of Horizontal Wells on the	
			Development Effect	330
		7.4.4	Horizontal Section Length	331
		7.4.5	Optimal Design of the Horizontal Section Direction	332
		7.4.6	Optimization Research on the Well Line Direction	333
		7.4.7	Formation and Fluid Parameters (Permeability,	
			Reservoir Thickness, Fluid Viscosity,	
			and Mobility Ratio)	334
8	Dota	mino	tion of Descapable Well Specing Density	335
0	8.1	1 0 7		
	0.1	8.1.1	Classification of Well Spacing Density	335 335
		8.1.2	Basic Principles for Well Spacing Density Selection	336
	8.2		nination of Conventional Vertical Well Spacing	330
	0.2		Vell Pattern Density	338
		8.2.1	Methods in Terms of Reservoirs Characteristics	338
		8.2.2	Determination of Reasonable Well Spacing Density	336
		0.2.2	in Terms of Economic Benefits	356
	8.3	Datarr	nination of Technical Limit Well Spacing	330
	0.5		E Low-Permeability Reservoir	360
		8.3.1	Determination of the Technical Limit Well Spacing	300
		0.3.1	in Terms of Seepage Characteristics	360
		8.3.2	Determination of Starting Pressure Gradient	364
		8.3.3	Determination of Starting Pressure Gradient Determination of the Limit Well Spacing	304
		0.3.3	with the Starting Pressure Gradient	368
			WILL DIE STALLING FICSSUIC CHAUTCHL	- 200

xiv Contents

8.4	Determination of Heavy Oil Reservoir Well Pattern Density		370
	8.4.1	The Heating Radius Method	370
	8.4.2	The Volumetric Method	371
	8.4.3	The Method of Controllable Reserves Per Well	372
	8.4.4	Shelkachev's Iterative Method	373
	8.4.5	The Injection-Production Ratio Method	375
	8.4.6	The Oil Recovery Factor Control Method	376
Bibliogi	anhv		379