

Contents

Preface *xiii*

1	DNA Computing: Origination, Motivation, and Goals – Illustrated Introduction	<i>1</i>
	<i>Evgeny Katz</i>	
1.1	Motivation and Applications	<i>1</i>
1.2	DNA- and RNA-Based Biocomputing Systems in Progress	<i>3</i>
1.3	DNA-Based Information Storage Systems	<i>8</i>
1.4	Short Conclusions and Comments on the Book	<i>10</i>
	References	<i>11</i>
 2	DNA Computing: Methodologies and Challenges	<i>15</i>
	<i>Deepak Sharma and Manojkumar Ramteke</i>	
2.1	Introduction to DNA Computing Methodologies	<i>15</i>
2.2	Key Developments in DNA Computing	<i>16</i>
2.2.1	Adleman Model	<i>16</i>
2.2.2	Lipton's Model	<i>18</i>
2.2.3	Smith's Model	<i>19</i>
2.2.4	Sakamoto's Model	<i>21</i>
2.2.5	Ouyang's Model	<i>22</i>
2.2.6	Chao's Model	<i>24</i>
2.2.7	DNA Origami	<i>24</i>
2.2.8	DNA-Based Data Storage	<i>26</i>
2.3	Challenges	<i>26</i>
	Acknowledgment	<i>27</i>
	References	<i>28</i>
 3	DNA Computing and Circuits	<i>31</i>
	<i>Chuan Zhang</i>	
3.1	From Theory to DNA Implementations	<i>31</i>
3.2	Application-Specific DNA Circuits	<i>35</i>
	Acknowledgments	<i>41</i>
	References	<i>41</i>

4	Connecting DNA Logic Gates in Computational Circuits	45
	<i>Dmitry M. Kolpashchikov and Aresenij J. Kalnin</i>	
4.1	DNA Logic Gates in the Context of Molecular Computation	45
4.2	Connecting Deoxyribozyme Logic Gates	46
4.3	Connecting Gates Based on DNA Strand Displacement	47
4.4	Logic Gates Connected Via DNA Four-Way Junction (4WJ)	50
4.5	Conclusion	53
	References	53
5	Development of Logic Gate Nanodevices from Fluorogenic RNA Aptamers	57
	<i>Trinity Jackson, Rachel Fitzgerald, Daniel K. Miller, and Emil F. Khisamutdinov</i>	
5.1	Nucleic Acid: The Material of Choice for Nanotechnology	57
5.2	RNA Aptamers are Modular and Programmable Biosensing Units	58
5.3	Construction of RNA Nanoparticles with Integrated Logic Gate Operations Using Light-Up Aptamers	64
5.3.1	Implementation of MG-Binding RNA Aptamer to Design Binary Logic Gates	65
5.3.2	Implementation of MG-Binding RNA Aptamer and Broccoli RNA Aptamer to Design Half-Adder Circuit	68
5.4	Conclusion	70
	Acknowledgments	70
	References	70
6	Programming Molecular Circuitry and Intracellular Computing with Framework Nucleic Acids	77
	<i>Jiang Li and Chunhai Fan</i>	
6.1	Framework Nucleic Acids	77
6.2	A Toolbox for Biomolecular Engineering of Living Systems	80
6.2.1	Biomolecular Scaffolds	80
6.2.2	Logic Units	81
6.2.3	Cell Entry Vehicles	82
6.2.4	Isothermal Construction	83
6.2.5	Targeting and Editing	83
6.2.6	Signal Readout	84
6.2.7	Triggers and Switches	84
6.2.8	Error Correction and Resilience	84
6.3	Targeted Applications	85
6.3.1	Drug Delivery	85
6.3.2	Cellular Imaging	85
6.3.3	Metabolic Engineering and Cellular Pathway Investigation	86
6.4	Nucleic Acid Nanotechnology-Enabled Computing Kernel	86
6.5	I/O and Human-Computer Interfacing	89
6.6	Information Storage	90
6.7	Perspectives	91
6.8	Conclusion	95
6.8.1	Terminology	96
	References	97

7	Engineering DNA Switches for DNA Computing	
	Applications	105
	<i>Dominic Lauzon, Guichi Zhu, and Alexis Vallée-Bélisle</i>	
7.1	Introduction	105
7.2	Selecting Recognition Element Based on Input	107
7.3	Engineering Switching Mechanisms	108
7.4	Engineering Logic Output Function Response	116
7.5	Optimizing Switch Response	117
7.6	Perspective	120
	Acknowledgments	120
	References	121
8	Fluorescent Signal Design in DNA Logic Circuits	125
	<i>Dan Huang, Shu Yang, and Qianfan Yang</i>	
8.1	Basic Signal Generation Strategies Based on DNA Structures	126
8.1.1	Strategies Based on Watson–Crick Hydrogen Bond	127
8.1.1.1	Signal Derived from Hairpin Structure/Molecular Beacon	127
8.1.1.2	Signal Derived from DNAzyme Activity	128
8.1.1.3	Signal Derived from Strand Displacement Reaction	129
8.1.2	Strategies Based on Hoogsteen Hydrogen Bond	132
8.1.2.1	Signal Derived from G-Quadruplex	132
8.1.2.2	Signal with the Help of i-Motif	135
8.1.3	Signal Derived from Aptamer–Ligand Interaction	138
8.2	Designs for Constructing Multi-output Signals	138
8.2.1	Selecting Individual Signal Transducers	138
8.2.2	Designing Multifunctional Probes	141
8.3	Summary and Outlook	147
	References	149
9	Nontraditional Luminescent and Quenching Materials for Nucleic Acid-Based Molecular Photonic Logic	155
	<i>Rehan Higgins, Melissa Massey, and W. Russ Algar</i>	
9.1	Introduction	155
9.2	DNA Molecular Photonic Logic Gates	156
9.3	Nontraditional Luminescent Materials	158
9.4	Semiconductor “Quantum Dot” Nanocrystals	159
9.4.1	Quantum Dots	159
9.4.2	Logic Gates with QDs	160
9.5	Lanthanide-Based Materials	161
9.5.1	Luminescent Lanthanide Complexes	161
9.5.2	Coupling Lanthanide Complexes with Energy Transfer	163
9.5.3	Logic Gates with LLCs and Lanthanide Ions	163
9.5.4	Upconversion Nanoparticles	165
9.5.5	Logic Gates with UCNPs	165
9.6	Gold Nanoparticles	166
9.6.1	Gold Nanoparticles	166

9.6.2	Logic Gates with AuNPs and Colorimetric Output	166
9.6.3	Logic Gates with AuNPs and PL Quenching	168
9.7	Metal Nanoclusters	169
9.7.1	Metal Nanoclusters	169
9.7.2	Logic Gates with Metal Nanoclusters	170
9.8	Carbon Nanomaterials	171
9.8.1	Graphene and Graphene Oxide	171
9.8.2	Logic Gates with Graphene and GO	172
9.8.3	Carbon Dots	174
9.8.4	Logic Gates with CDs	175
9.9	Conjugated Polymers	175
9.9.1	Conjugated Polymers	175
9.9.2	Logic Gates with CPs	176
9.10	Conclusions and Perspective	177
	References	178

10 Programming Spatiotemporal Patterns with DNA-Based Circuits 185

Marc Van Der Hofstadt, Guillaume Gines, Jean-Christophe Galas, and André Estevez-Torres

10.1	Introduction	185
10.1.1	What is Spatial Computing?	185
10.1.2	Digital vs. Analog Computing	186
10.1.3	Computing Consumes Energy	186
10.1.4	Molecules Compute in Space Through Reaction–Diffusion Primitives	187
10.2	Experimental Implementation of DNA Analog Circuits	188
10.2.1	DNA Strand Displacement Oscillators	189
10.2.2	DNA/Enzyme Oscillators	189
10.2.2.1	Genelets	190
10.2.2.2	PEN Reactions	191
10.3	Time-Dependent Spatial Patterns	193
10.3.1	Edge Detection	194
10.3.2	Traveling Patterns	195
10.3.2.1	Fronts	196
10.3.2.2	Go-Fetch Fronts	197
10.3.2.3	Waves and Spirals	198
10.3.3	Controlling Spatio-Temporal Patterns	199
10.3.3.1	Controlling Diffusion Coefficients	199
10.3.3.2	Initial and Boundary Conditions	200
10.4	Steady-State Spatial Patterns	202
10.4.1	Colony Formation	202
10.4.2	Patterns with Positional Information	203
10.5	Conclusion and Perspectives	206
	Acknowledgments	207
	References	208

11	Computing Without Computing: DNA Version	213
	<i>Vladik Kreinovich and Julio C. Urenda</i>	
11.1	Introduction	213
11.2	Computing Without Computing – Quantum Version: A Brief Reminder	214
11.3	Computing Without Computing – Version Involving Acausal Processes: A Reminder	215
11.4	Computing Without Computing: – DNA Version	217
11.4.1	Main Idea	217
11.4.2	It Is Not Easy to Stop Biological Processes	218
11.4.3	Towards Describing Ligation Prevention in Precise Terms	218
11.4.4	What Is Given	219
11.4.5	What We Want to Find	219
11.4.6	Let Us Prove that the Ligation Prevention Problem Is NP-Hard	219
11.4.7	How NP-Hardness Is Usually Proved	219
11.4.8	How We Will Prove NP-Hardness	220
11.4.9	The Actual Proof by Reduction	220
11.5	DNA Computing Without Computing Is Somewhat Less Powerful than Traditional DNA Computing: A Proof	222
11.5.1	Which of the Two DNA Computing Schemes is More Powerful?	222
11.5.2	W-hierarchy: A Brief Reminder	222
11.5.3	Conclusion	224
11.6	First Related Result: Security Is More Difficult to Achieve than Privacy	224
11.6.1	What We Plan to do in this Section	224
11.6.2	How to Describe Privacy in Graph Terms	224
11.6.3	How to Describe Security in Graph Terms	225
11.6.4	Conclusion: Security Is More Difficult to Maintain than Privacy	226
11.7	Second Related Result: Data Storage Is More Difficult than Data Transmission	226
11.7.1	Application to Information Science	226
11.7.2	Data Storage	226
11.7.3	Data Transmission	227
11.7.4	Conclusion: Data Storage Is More Difficult than Data Transmission	228
	Acknowledgments	228
	References	228
12	DNA Computing: Versatile Logic Circuits and Innovative Bio-applications	231
	<i>Daoqing Fan, Erkang Wang, and Shaojun Dong</i>	
12.1	Definition, Logical Principle, and Classification of DNA Computing	231
12.2	Advanced Arithmetic DNA Logic Devices	232
12.2.1	Half-Adder, Half-Subtractor	232
12.2.2	Full-Adder, Full-Subtractor	234
12.3	Advanced Non-arithmetic DNA Logic Devices	235

12.3.1	Data Conversion: Encoder/Decoder, Multiplexer/Demultiplexer	235
12.3.2	Distinguishing Even/Odd Natural Numbers: The Parity Checker	236
12.3.3	DNA Voter and Keypad Lock	236
12.3.4	Parity Generator/Checker (pG/pC) for Error Detection During Data Transmission	237
12.3.5	Non-Boolean Ternary Logic Gates	239
12.4	Concatenated Logic Circuits	239
12.5	Innovative Multifunctional DNA Logic Library	241
12.6	Intelligent Bio-applications	241
12.7	Prospects	244
	Acknowledgment	244
	References	244

13 Nucleic Acid-Based Computing in Living Cells Using Strand Displacement Processes 247

Lukas Oesinghaus and Friedrich C. Simmel

13.1	Nucleic Acid Strand Displacement	247
13.1.1	Basics	247
13.1.2	Computing with Strand Displacement Processes	248
13.1.3	Computing with Nucleic Acid Strand Displacement <i>In Vivo</i>	250
13.2	Synthetic Riboregulators	251
13.2.1	First-Generation Riboregulators	251
13.2.2	Toehold Switch Riboregulators	252
13.2.3	Other Transcriptional and Translational Regulators	254
13.3	Combining Strand Displacement and CRISPR Mechanisms	255
13.3.1	A Brief Introduction to CRISPR	255
13.4	Computing Via Nucleic Acid Strand Displacement in Mammalian Cells	258
13.5	Outlook	260
13.5.1	Interfacing Nucleic Acid Computing with Synthetic Biology	260
	References	262

14 Strand Displacement in DNA-Based Nanodevices and Logic 265

Antoine Bader and Scott L. Cockroft

14.1	An Introduction to Strand Displacement Reactions	265
14.1.1	External Control of Strand Displacement Reactions	265
14.1.2	The Toehold Exchange Mechanism	268
14.2	Dynamic Reconfiguration of Structural Devices	268
14.3	Stepped and Autonomous DNA Walkers	271
14.4	Early Breakthroughs in DNA Computing	274
14.4.1	Hamiltonian Paths	275
14.4.2	Satisfiability (SAT) Problem	277
14.5	DNA-Based Molecular Logic	279
14.5.1	Computing with Boolean Logic	279
14.5.2	Deoxyribozyme Logic Gates	280

14.5.3	Autonomous DNA Translators	282
14.5.4	Catalytic Systems for Signal Amplification	285
14.6	Future Prospects for Strand Displacement-Based Devices	286
14.6.1	DNA Chemical Reaction Networks	286
14.6.2	DNA Nanotechnology Goes <i>In Vivo</i>	287
	Acknowledgment	289
	References	289
15	Development and Application of Catalytic DNA in Nanoscale Robotics	293
	<i>David Arredondo, Matthew R. Lakin, Darko Stefanovic, and Milan N. Stojanovic</i>	
15.1	Introduction	293
15.2	Brief History of DNAzymes	293
15.3	Experimental Implementations	296
15.4	DNAzyme Walkers	298
15.5	Statistical Mechanics and Simulation	300
15.6	Conclusions	302
	References	304
16	DNA Origami Transformers	307
	<i>Reem Mokhtar, Tianqi Song, Daniel Fu, Shalin Shah, Xin Song, Ming Yang, and John Reif</i>	
16.1	Introduction	307
16.2	Design	312
16.3	Experimental Demonstrations	316
16.4	Applications	318
16.5	Conclusion	322
	Acknowledgment	322
	References	322
17	Nanopore Decoding for DNA Computing	327
	<i>Hiroki Yasuga, Kan Shoji, and Ryuji Kawano</i>	
17.1	Introduction	327
17.2	Application of Nanopore Technology for Rapid and Label-Free Decoding	330
17.3	Application of Nanopore Decoding in Medical Diagnosis	335
17.4	Conclusions	339
	References	339
18	An Overview of DNA-Based Digital Data Storage	345
	<i>Xin Song, Shalin Shah, and John Reif</i>	
18.1	Introduction	345
18.1.1	Durability and Energy Efficiency	345
18.1.2	Density and Coding Capacity	345
18.1.3	Availability of Supporting Technologies	346
18.2	Components of a DNA Storage System	346

18.2.1	Data Encoding	346
18.2.2	Data Writing	346
18.2.3	Data Storage	348
18.2.4	Data Retrieval	348
18.2.5	Data Decoding	349
18.3	Conclusions and Outlook	350
	Acknowledgments	350
	References	350
19	Interfacing Enzyme-Based and DNA-Based Computing Systems: From Simple Boolean Logic to Sophisticated Reversible Logic Systems	<i>353</i>
	<i>Evgeny Katz</i>	
19.1	Interfacing Enzyme-Based and DNA-Based Computing Systems is a Challenging Goal: Motivations and Approaches	353
19.2	Bioelectronic Interface Transducing Logically Processed Signals from an Enzymatic System to a DNA System	354
19.3	The Bioelectronic Interface Connecting Enzyme-Based Reversible Logic Gates and DNA-Based Reversible Logic Gates: Realization in a Flow Device	362
19.4	Enzyme-Based Fredkin Gate Processing Biomolecular Signals Prior to the Bioelectronic Interface	363
19.5	Reversible DNA-Based Feynman Gate Activated by Signals Produced by the Enzyme-Based Fredkin Gate	368
19.6	Conclusions and Perspectives	371
19.A	Appendix	373
19.A.1	Oligonucleotides Used in the System Mimicking Feynman Gate	373
	References	374
20	Conclusions and Perspectives: Further Research Directions and Possible Applications	<i>379</i>
	<i>Evgeny Katz</i>	
	Index	383