

Contents

	Preface	<i>ix</i>
	Acknowledgments	<i>xi</i>
1	Introduction	<i>1</i>
1.1	Motivation	<i>1</i>
1.2	Contents of the Chapters	<i>3</i>
	References	<i>8</i>
2	Josephson Junctions	<i>9</i>
2.1	Josephson Equations	<i>9</i>
2.2	RCSJ Model	<i>9</i>
	References	<i>13</i>
3	dc SQUID's <i>I</i>–<i>V</i> Characteristics and Its Bias Modes	<i>15</i>
3.1	SQUID's <i>I</i> – <i>V</i> Characteristics	<i>15</i>
3.2	An Ideal Current Source	<i>19</i>
3.3	A Practical Voltage Source	<i>19</i>
	References	<i>21</i>
4	Functions of the SQUID's Readout Electronics	<i>23</i>
4.1	Selection of the SQUID's Bias Mode	<i>23</i>
4.2	Flux Locked Loop (FLL)	<i>23</i>
4.2.1	Principle of the FLL	<i>24</i>
4.2.2	Electronic Circuit of the FLL and the Selection of the Working Point	<i>25</i>
4.2.3	"Locked" and "Unlocked" Cases in the FLL	<i>28</i>
4.2.4	Slew Rate of the SQUID System	<i>29</i>
4.3	Suppressing the Noise Contribution from the Preamplifier	<i>29</i>
4.4	Two Models of a dc SQUID	<i>29</i>
	References	<i>31</i>
5	Direct Readout Scheme (DRS)	<i>33</i>
5.1	Introduction	<i>33</i>
5.2	Readout Electronics Noise in DRS	<i>33</i>

5.2.1	Noise Characteristics of Two Types of Preamplifiers	34
5.2.2	Noise Contribution of a Preamplifier with Different Source Resistors	37
5.3	Chain Rule and Flux Noise Contribution of a Preamplifier	39
5.3.1	Test Circuit Using the Same Preamplifier in Both Bias Modes	40
5.3.2	Noise Measurements in Both Bias Modes	42
5.4	Summary of the DRS	43
	References	43
6	SQUID Magnetometric System and SQUID Parameters	45
6.1	Field-to-Flux Transformer Circuit (Converter)	45
6.2	Three Dimensionless Characteristic Parameters, β_c , Γ , and β_L , in SQUID Operation	48
6.2.1	SQUID's Nominal Stewart-McCumber Characteristic Parameter β_c	49
6.2.2	SQUID's Nominal Thermal Noise Parameter Γ	52
6.2.3	SQUID's Screening Parameter β_L	54
6.2.4	Discussion on the Three Characteristic Parameters	55
	References	56
7	Flux Modulation Scheme (FMS)	61
7.1	Mixed Bias Modes	61
7.2	Conventional Explanation for the FMS	63
7.2.1	Schematic Diagram of the FMS	63
7.2.2	Time Domain and Flux Domain	65
7.2.3	Flux Modulation	66
7.2.4	Five Additional Notes	71
7.3	FMS Revisited	73
7.3.1	Bias Mode in FMS	74
7.3.2	Basic Consideration of Synchronous Measurements of I_s and V_s	74
7.3.3	Experimental Synchronous Measurements of Δi and V_{Rs}	75
7.3.4	Transfer Characteristics of the Step-Up Transformer	78
7.3.5	$V(\Phi)$ Comparison Obtained by DRS and FMS	80
7.4	Conclusion	81
	References	82
8	Flux Feedback Concepts and Parallel Feedback Circuit	85
8.1	Flux Feedback Concepts and History	85
8.2	SQUID's Apparent Parameters	87
8.3	Parallel Feedback Circuit (PFC)	89
8.3.1	Working Principle of the PFC in Current Bias Mode	89
8.3.2	Working Principle of PFC in Voltage Bias Mode	94
8.3.3	Brief Summary of Qualitative Analyses of PFC	97
8.4	Quantitative Analyses and Experimental Verification of the PFC in Voltage Bias Mode	99
8.4.1	The Equivalent Circuit with the PFC in Voltage Bias Mode	99
8.4.2	Introduction of Two Dimensionless Parameters r and Δ	101

8.4.3	Numerical Calculations	103
8.4.4	Experimental Results	108
8.4.5	Noise Comparison and Interpretation	111
8.4.6	Two Practical Designs for PFC	114
8.5	Main Achievements of PFC Quantitative Analysis	116
8.6	Comparison with the Noise Behaviors of Two Preamplifiers	117
	References	119
9	Analyses of the "Series Feedback Coil (Circuit)" (SFC)	121
9.1	SFC in Current Bias Mode	121
9.1.1	Working Principle of the SFC in Current Bias Mode	121
9.1.2	Noise Measurements of a Weakly Damped SQUID (Magnetometer) System with the SFC	123
9.2	The SFC in Voltage Bias Mode	125
9.3	Summary of the PFC and SFC	127
9.4	Combination of the PFC and SFC (PSFC)	129
9.4.1	PSFC Analysis Under Independence Conditions	129
9.4.2	PSFC Experiments and Results	132
9.4.3	Conclusion of the PSFC	136
	References	137
10	Weakly Damped SQUID	139
10.1	Basic Consideration of Weakly Damped SQUID	139
10.2	SQUID System Noise Measurements with Different β_c Values	140
10.3	Statistics of SQUID Properties	143
10.4	Single Chip Readout Electronics (SCRE)	147
10.4.1	Principle of SCRE and Its Performance	148
10.4.2	Equivalent Circuit of SCRE	149
10.4.3	Differences Between the Conventional Version of Readout Electronics with an Integrator and SCRE	152
10.4.4	Two Applications of SCRE	153
10.5	Suggestions for the DRS	154
	References	155
11	Two-Stage and Double Relaxation Oscillation Readout Schemes	157
11.1	Two-Stage Scheme	158
11.2	ROS and D-ROS	164
11.3	Some Comments on D-ROS and Two-Stage Scheme	168
	References	169
12	Radio-Frequency (rf) SQUID	171
12.1	Fundamentals of an rf SQUID	171
12.2	Conventional rf SQUID System	176
12.2.1	Block Diagram of rf SQUID Readout Electronics (the 30 MHz Version)	176

12.2.2	rf SQUID System Noise in the 30 MHz Version	178
12.3	Introduction to Modern rf SQUID Systems	180
12.3.1	Magnetometric Thin-Film rf SQUID and a Conventional Tank Circuit with a Capacitor Tap	181
12.3.2	Improved rf SQUID Readout Electronics	184
12.3.3	Tank Circuit Operating Up to 1 GHz with Inductive Coupling	188
12.3.4	Modern rf SQUID System	190
12.3.4.1	Microstrip Resonator	190
12.3.4.2	Coplanar Resonator	192
12.3.4.3	Instability of rf Bias Current	194
12.3.5	Substrate Resonator	196
12.3.6	Regarding the rf SQUID's Thermal Noise Limit	200
12.4	Further Developments of the rf SQUID Magnetometer System	201
12.4.1	Achievement of a Very Large $\partial V_{\text{rf}}/\partial\Phi$ in a Low-Impedance System	201
12.4.2	Multiturn Input Coil for a Thin-Film rf SQUID Magnetometer with a Planar Labyrinth Resonator	204
12.4.3	Modern rf SQUID Electronics	208
12.5	Multichannel High- T_c rf SQUID Gradiometer	211
12.6	Comparison of rf SQUID Readout with dc SQUID Readout	214
12.7	Summary and Outlook	215
	References	218

Index 225