Contents

Preface	to the	second	edition	V

Preface to the first edition — VII

Nomen	clature	XV
-------	---------	----

1	Introduction —— 1	
2	Kinetics in reaction engineering —— 4	
2.1	Stoichiometry of multiple reactions —— 4	
2.2	Reaction kinetics in chemical reaction engineering —— 5	
2.2.1	General concepts —— 5	
2.2.2	Examples of rate equations —— 6	
3	Modelling of homogeneous systems —— 8	
3.1	Mass balances for completely backmixed tank reactors: batch,	
	semi-batch and continuous operation —— 8	
3.2	Mass balances for tubular reactors —— 13	
3.3	Energy balances of homogeneous systems —— 19	
3.3.1	Tank reactor —— 22	
3.3.2	Tubular plug flow reactor —— 24	
3.3.3	Batch reactor —— 25	
3.3.4	Semi-batch reactors —— 26	
3.4	Physical properties and correlations of homogeneous systems —	27
3.4.1	Heat capacity and reaction enthalpy —— 27	
3.4.2	Pressure drop in tubular reactors —— 28	
3.4.3	Dispersion coefficient —— 29	
3.5	Numerical solution of homogeneous reactor models —— 30	
3.5.1	Model structures and algorithms —— 30	
3.5.2	Software build-up —— 35	
4	Modelling of fixed beds and fluidized beds —— 38	
4.1	Simultaneous reaction and diffusion in fluid films and porous	
	media —— 39	
4.2	Catalytic fixed bed reactors —— 42	
4.2.1	Models for fixed beds —— 43	
4.2.2	Pseudo-homogeneous models for fixed beds —— 44	
4.2.3	Heterogeneous model for fixed beds —— 49	
4.2.4	Model equations for the bulk phase —— 57	
4.2.5	Pressure drop in fixed beds —— 61	

4.3	Numerical solution of fixed bed models —— 61
4.3.1	Solution of pseudo-homogeneous models —— 61
4.3.2	Solution strategy of heterogeneous models —— 63
4.4	Catalytic fluidized beds —— 65
4.4.1	Modelling approaches to fluidized beds —— 65
4.4.2	Kunii-Levenspiel model of fluidized beds —— 67
4.5	Numerical solution of fluidized bed models —— 71
4.6	Physical properties and correlations for catalytic two-phase
	systems —— 73
4.6.1	Effective diffusion coefficients in a gas phase —— 73
4.6.2	Mass and heat transfer coefficients around solid particles —— 74
4.6.3	Mass transfer coefficients for fluidized beds —— 75
5	Modelling of three-phase systems —— 77
5.1	Mass balances of three-phase reactors —— 78
5.1.1	Phase boundaries —— 78
5.1.2	Liquid-phase mass balances —— 80
5.1.3	Gas-phase mass balances —— 83
5.1.4	Tank reactors with complete backmixing —— 84
5.1.5	Catalyst particles in three-phase reactors —— 85
5.1.6	Slurry reactor in the absence of mass transfer resistances —— 87
5.2	Energy balances of three-phase reactors —— 88
5.3	Numerical aspects —— 89
6	Modelling of gas-liquid systems —— 92
6.1	Gas-liquid contact —— 94
6.2	Gas and liquid films —— 96
6.2.1	Mass balances for films —— 96
6.2.2	Energy balances for liquid films —— 100
6.3	Gas-liquid tank reactors —— 102
6.4	Gas-liquid column reactors —— 103
6.5	Energy balances for gas-liquid reactors —— 107
6.6	Physical properties of gas-liquid systems —— 108
6.6.1	Diffusion coefficients in gas and liquid —— 108
6.6.2	Gas-liquid equilibrium —— 112
6.7	Numerical strategies for gas-liquid reactor models —— 113
7	Structured reactors —— 118
7.1	Modelling principles and model equations —— 120
7.2	Case study: oxidation of alcohols in microreactor —— 126

8	Modelling of unsteady-state reactor systems —— 128
8.1	Kinetics and transport phenomena under transient conditions —— 129
8.2	Reactor modelling in case of transient kinetics —— 132
8.2.1	Gas- and liquid-phase mass balances —— 132
8.2.2	Adsorbed surface species —— 136
8.2.3	Model summary —— 136
8.3	Case study: enantioselective hydrogenation of an organic
	compound —— 137
9	Equipment and models for laboratory experiments —— 140
9.1	Homogeneous batch reactor —— 140
9.2	Homogeneous stirred tank reactor (CSTR) —— 144
9.3	Catalytic fixed bed in integral mode —— 145
9.4	Catalytic differential reactor —— 146
9.5	Catalytic gradientless reactor —— 147
9.6	Catalytic slurry reactor —— 148
9.7	Classification of laboratory reactor models —— 148
9.7.1	Algebraic and differential models —— 149
9.7.2	Linearity and nonlinearity of the model —— 149
10	Parameter estimation in reaction engineering —— 152
10.1	Principles of nonlinear regression analysis —— 152
10.2	Statistical and sensitivity analysis of parameters —— 156
10.3	Suppression of correlation between parameters —— 160
10.3.1	Correlation in rate expressions —— 161
10.3.2	Correlation in temperature dependencies —— 163
10.4	Systematic deviations and normalization of experimental data —— 165
10.5	Direct integral method —— 170
10.6	Parameter estimation from non-isothermal data —— 174
10.7	Estimation of parameters from semibatch experiments —— 178
10.7.1	Composite reactions in the presence of a heterogeneous catalyst —— 178
10.7.2	Composite reactions in the presence of a homogeneous catalyst —— 182
Refere	nces —— 185
Exerc	ises
I	Gas-phase tube reactor —— 191
II	Synthesis of maleic acid monoester in a semi-batch reactor —— 192
III	Exothermic reaction in a continuous stirred tank reactor —— 193
IV	Production of phtalic anhydride in a fixed bed reactor —— 194

V	Water-gas shift in a fixed bed reactor: diffusional limitations —— 196
VI	Steady-state CSTR's in series: oxidation of Iron(II) to Iron(III) —— 198
VII	A fluidized bed reactor —— 200
VIII	Three-phase slurry reactor: hydrogenation of aromatics —— 201
IX	Chlorination of p-cresol in a continuous stirred tank reactor —— 203
Χ	Reaction between methanol and triphenyl methyl chloride —— 204
XI	Use of millireactor for the kinetic study of very fast reaction:
	dehydrochlorination of 1,3-dichloro-2-propanol —— 205
XII	Multiple liquid-phase reaction system —— 207
XIII	Gas-liquid reactions in a semi-batch reactor —— 211
VIV	Gas-phase reaction in a differential reactor —— 213
XV	Three-phase reactions in a semi-batch reactor —— 216
XVI	Non-isothermal liquid phase reaction in a CSTR —— 219
XVII	Oxidation of sulphur dioxide in an optimal multi-bed reactor
	system 221
XVIII	Modelling of a monolith channel —— 222
XIX	Heterogeneous two-dimensional model for a catalytic fixed-bed
	reactor —— 223
XX	Dissolution of a solid particle in a batch reactor —— 224

Appendices

Appendix A

Numerical strategies in the solution of nonlinear algebraic equations and ordinary differential equations —— 227

Appendix B

Computer simulation of CSTR, PFR and batch reactor models —— 235

Appendix C

Numerical simulation of non-isothermal tubular reactors —— 243

Index —— 249