Contents

Preface ---- V

Acknowledgment —— XIII

1	Spectral flow in finite dimension —— 1
1.1	From intuition to definition —— 1
1.2	Structural properties of the spectral flow —— 4
1.3	Alternative expressions for the spectral flow —— 5
1.4	Spectral flow as a sum of eigenvalue crossings —— 8
1.5	The spectral flow for paths of unitaries —— 11
1.6	The spectral flow through the imaginary axis —— 19
1.7	\mathbb{Z}_2 -valued orientation flow of skew-adjoint real matrices —— 20
1.8	Multiparameter spectral flow —— 23
2	Applications of finite-dimensional spectral flow —— 25
2.1	Bott–Maslov index in finite dimension —— 25
2.2	<i>J</i> -unitary matrices —— 31
2.3	Conley–Zehnder index in finite dimension —— 39
2.4	Oscillation theory for finite Jacobi matrices —— 48
2.5	Oscillation theory for periodic Jacobi matrices — 54
2.6	Bound states for scattering systems —— 56
3	Bounded Fredholm operators —— 64
3.1	Compact operators and their spectral theory —— 64
3.2	Basic properties of bounded Fredholm operators —— 66
3.3	The index of a Fredholm operator —— 69
3.4	The notion of essential spectrum —— 75
3.5	Spectral flow in finite dimension as index —— 78
3.6	Bounded self-adjoint Fredholm operators —— 83
3.7	Essentially gapped unitary operators —— 87
4	Spectral flow for bounded self-adjoint Fredholm operators —— 89
4.1	The definition of the spectral flow —— 89
4.2	Fundamental properties of the spectral flow —— 92
4.3	Formulas for the spectral flow —— 95
4.4	Spectral flow for essentially hyperbolic operators —— 107
4.5	Spectral flow for paths of essentially gapped unitaries —— 109
4.6	Connecting spectral flows of self-adjoints and unitaries —— 116

5	Fredholm pairs and their index —— 126
5.1	Projections and orthogonal projections —— 126
5.2	Characterization of Fredholm pairs of projections —— 130
5.3	Fredholm pairs of orthogonal projections —— 137
5.4	Fredholm pairs of symmetries —— 150
5.5	Fredholm pairs of unitary conjugate projections —— 152
5.6	Spectral flow of linear paths between Fredholm pairs —— 156
5.7	Spectral flow formulas for paths with compact difference —— 158
5.8	Spectral flow as sum of indices of Fredholm pairs —— 165
5.9	Relative Morse indices and spectral flow —— 167
6	Unbounded Fredholm operators —— 173
6.1	Topologies on closed and densely defined operators —— 173
6.2	Basic properties of unbounded Fredholm operators —— 183
6.3	Unbounded self-adjoint Fredholm operators —— 195
6.4	Self-adjoint Fredholm operators with compact resolvent —— 203
7	Spectral flow for unbounded self-adjoint Fredholm operators —— 218
7.1	Definition of spectral flow and its basic properties —— 218
7.2	The η -invariant and spectral flow —— 223
7.3	Conley–Zehnder index as spectral flow —— 229
7.4	Spectral flow as index via semiclassics —— 233
8	Homotopy theory of Fredholm operators —— 247
8.1	Homotopy groups of essentially gapped unitaries —— 247
8.2	Homotopy groups of Fredholm operators —— 248
8.3	Homotopy groups of bounded self-adjoint Fredholm operators —— 251
8.4	An application: characterization of spectral flow —— 255
8.5	Homotopy groups of Fredholm pairs —— 258
8.6	Homotopy groups of unbounded self-adjoint Fredholm operators —— 268
8.7	Resumé: homotopy equivalences of operator classes —— 275
9	Bott–Maslov index via spectral flow —— 277
9.1	Krein spaces and operators thereon —— 277
9.2	J-isotropic subspaces —— 281
9.3	<i>J</i> -Lagrangian subspaces —— 287
9.4	Fredholm pairs of <i>J</i> -Lagrangian projections —— 291
9.5	Paths of Fredholm pairs of <i>J</i> -Lagrangian projections —— 296
9.6	Conley–Zehnder index —— 303
9.7	Oscillation theory for bound states of scattering systems —— 308

10	Index pairings and spectral localizer —— 313
10.1	Fredholm modules and index pairings —— 313
10.2	Spectral flow formulas for index pairings —— 319
10.3	Spectral localizer for even index pairings —— 320
10.4	Spectral localizer for odd index pairings —— 329
10.5	The η -invariant of the spectral localizer —— 335
11	Spectral flow in semifinite von Neumann algebras —— 345
11.1	Fredholm operators in semifinite von Neumann algebras 345
11.2	$(P \cdot Q)$ -Fredholm operators — 358
11.3	Semifinite Fredholm pairs of projections —— 365
11.4	Definition and basic properties of the spectral flow —— 370
11.5	Index formulas for semifinite spectral flow —— 375
11.6	Semifinite spectral localizer —— 379
12	Spectral flow in bifurcation theory —— 389
12.1	A primer of variational bifurcation theory —— 389
12.2	The spectral flow in variational bifurcation theory —— 394
12.3	Applications to Hamiltonian systems —— 404
A	Collection of technical elements —— 417
A.1	Riesz projections —— 417
A.2	Norm estimates on roots —— 419
A.3	Definitions and facts from topology —— 420
Acrony	yms and notations —— 427
Bibliog	graphy —— 431
Indev.	439