Inspection-oriented Tolerancing Size, Form, and Location

Summarized by

Robert Roithmeier

Oberkochen, Germany – 2020 (3rd edition)

A publication of ZEISS Academy Metrology

Robert Roithmeier: Inspection-oriented Tolerancing – Size, Form, and Location ZEISS Academy Metrology, 2020³

This documentation is protected by copyright. Any utilization outside the narrow limits of the law of copyright is prohibited without the prior permission of Carl Zeiss Industrielle Messtechnik GmbH and is liable to prosecution. No part of this document may be copied, reproduced, translated in any way without the express approval by Carl Zeiss Industrielle Messtechnik GmbH or processed and reproduced by means of electronic systems. Non-compliance is subject to compensation for damages.

This publication is subject to modifications. Carl Zeiss Industrielle Messtechnik GmbH does not grant any warranty on the contents of this publication and no implied warranties on commercial quality and the suitability for a certain purpose. Carl Zeiss Industrielle Messtechnik GmbH cannot be held liable for errors included in this document, accidental damage or damage resulting from the provision, function or use of this manual. All product names are registered trademarks or trademarks of the corresponding proprietors.

© 2020 Carl Zeiss Industrielle Messtechnik GmbH Carl-Zeiss-Straße 22 73447 Oberkochen

Printing and publishing: Opferkuch GmbH, Ellwangen

ISBN 978-3-945380-27-7 (3rd edition)

If You Can't Measure It, You Can't Manage It (Peter F. Drucker, 1909-2005)

Acknowledgements

This book was developed in cooperation with many colleagues at Carl Zeiss IMT GmbH. I would particularly like to thank Günther Hopp for his CALYPSO examples, Bernd Balle for the GD&T figures as well as Hannes Kiehl and Herbert Bux for their professional assistance. Thanks go to Prof. Ulrich Lunze, Thomas Lindner, Helmut Ludt, Alessandro Gabbia, Udo Kirin, Dieter Huber, Carrie Pfeifer, Waltraud Hartwich and many others for their numerous ideas and valuable information. Many thanks to Professor Sophie Gröger for her bearing block drawings. Special thanks go to Walter Blum who designed the cover.

Oberkochen, September 2020 (3rd edition)

Dr. Robert Roithmeier

Table of contents 7

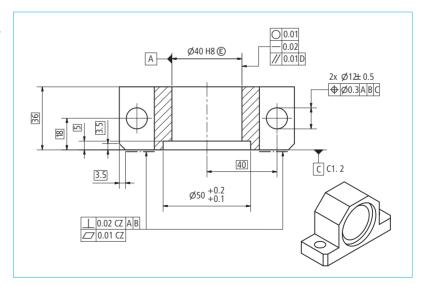
Contents

1	Intr	oduction	on	10
1.1		Engine	ering in compliance with functional,	
		manuf	acturing, and inspection requirements	10
1.2		Coope	ration between the areas	14
2	Ins	oection	-oriented tolerancing of size, form, and	
	pos	ition		21
3	For	m		25
3.1		Line-lik	e form	31
		3.1.1	Roundness (Circularity)	31
		3.1.2	Straightness of a line in a plane	33
		3.1.3	Straightness of an axis	35
		3.1.4	Straightness of surface lines	37
		3.1.5	Simple line profile	39
3.2		Surface	e-like form	40
		3.2.1	Cylindricity	40
		3.2.2	Surface flatness	42
		3.2.3	Center plane flatness	43
		3.2.4	Simple surface profile	44
4	Size	2		47
5	Env	elope r	equirement and principle of independency	.53
6	Dat	:um		61
6.1		Datum	feature	61
6.2		Datum	reference frame	66
7	Ori	entatio	n and angle	75
7.1		Variant	ts of orientation tolerancing	76
		7.1.1	Orientation of a plane	76
		7.1.2	Orientation of an axis	79

8 Table of contents

	7.1.3	Orientation of a surface line	81
7.2	Angular	ity instead of angular dimension	84
8 Lo	cation an	d distance	87
8.1	Locatio	n tolerancing	87
	8.1.1	Position of a plane	89
	8.1.2	Position of axes	91
	8.1.3	Symmetry	93
	8.1.4	Coaxiality and concentricity	95
8.2	Profile	with datum	98
8.3	Locatio	n instead of distance	102
9 Bo	re patter	n and composite tolerance	107
9.1	Position	tolerancing on a bore pattern	107
9.2	Compos	site tolerancing	111
10 Ru	nout		115
10.1	Axial ru	nout on a plane	115
10.2	Radial r	unout on a surface area	117
11 Lir	nits of fo	rm and position tolerances	119
11.1	Maximu	um material condition	119
11.2	Reverse	tolerance limits	128
11.3	Least m	aterial requirement	130
12 Re	stricted t	colerance zone and datum area	133
12.1	Restrict	ed tolerance zone	133
12.2	Restrict	ed datum area	135
12.3	Projecto	ed tolerance zone	137
13 Ge	neral tol	erances	139
14 Dr	awing sp	ecifications for the measurement str	ategy
			145
14.1	Associa	tion	145

14.2	Filter specifications	147
14.3	Excursion into contour analysis	148
	14.3.1 Digital filtering	157
	14.3.2 Low-pass filter: analysis of the works	oiece
	form	159
	14.3.3 High-pass and band-pass filters	164
	14.3.4 Notes on digital filtering	167
15 Sui	tability of measurement systems	171
15.1	Measurement system analysis: capability an	d GR&R-
	test	177
15.2	GUM and VDA 5	179
16 Fin	al remarks	181
Appen	dix	182
Α	More books of ZEISS Academy Metrology	182
В	Important ISO, US, and DIN standards	184
С	Bibliography without standards	188
D	Illustrations and tables	192
Ε	Index	198


1 Introduction

1.1 Engineering in compliance with functional, manufacturing, and inspection requirements

In order to be competitive in international markets, the industry is forced to manufacture its products more efficiently and to become more productive. This is where engineering drawings of the work-pieces to be produced come in, since they play a key role in this context. In industrial manufacturing, an engineering drawing is a core reference for a clear and complete product description. It is the most important means of communication between design, engineering, manufacturing, purchase, sales, and the customer — worldwide. No matter what format is used, this may be a traditional 2D engineering drawing on paper (see Illustration 1) or a digital data set [STEINBEIS 2014].

Illustration 1:

Technical
drawing of a
bearing block
(extract)

The drawing (or CAD data set) must include all specifications needed to guarantee functional safety, economical production, and reliable inspection of the workpiece in question. The technical drawing (or CAD description of the workpiece) must therefore be created with a view to meeting the requirements in terms of

- function
- production
- inspection.

This last point is often especially neglected, although it is one of the basic conditions for an economical production. That is why this book not only deals with the suitability of technical drawings and CAD descriptions for meeting functional and manufacturing requirements, but particularly focuses on their fitness for inspection purposes.

Thanks to the work of international standardization committees, a comprehensive descriptive language for geometrical product requirements has been created: the GPS standards¹. Based on these standards, geometric requirements can be described completely, clearly, and unambiguously in technical drawings and CAD files. The GPS standards contain a symbolized language and rules, which are constantly evolving. Any information needed to meet the requirements with regard to function, manufacturing, and inspection can thus be included in the drawing. This guarantees the functional properties of a product and ensures its suitability for mounting and inspection once the drawing has been released [GRÖGER 2013].

GPS standards

GPS = \underline{G} eometrical \underline{P} roduct \underline{S} pecification; for details refer to [ISO 14638]

Furthermore, the GPS standards are supposed to promote communication between the different "worlds", which the [ISO 22432] standard describes as follows:

- product as conceived by the designer,
- manufactured product,
- measured product.

Function

The product conceived by the designer is a purely functional one. All geometric properties are chosen for the purpose of fulfilling the desired function. Geometric tolerances (size, form, position, and surface tolerances) are defined to guarantee that function. This means that the "imprecise" workpiece must be able to fulfill its intended function throughout the entire service life if its deviations are within the defined tolerance limits. It must be either unconditionally suitable for assembly (i.e., same parts can be exchanged at will) or conditionally suitable (i.e., same parts are combined or can only be exchanged together) [Klein 2014]. These are the function-related requirements to be met by the engineering drawing.

Production

The manufactured product is subject to typical deviations resulting from the production process. In practice, it is impossible to manufacture parts without deviations. Such deviations are caused by the effects of material properties and production conditions (e.g. tool type, shear force, production speed, clamping, residual stress of the workpiece, ...). Nevertheless, it must be possible to manufacture the workpiece within the defined tolerances, while ensuring cost-efficiency and process capability [KLEIN 2014]. According to this, a manufacturing-oriented drawing needs to meet other requirements than a function-oriented one: it must, for example, specify the points for clamping and include the allowances required for the various machining steps.

With regard to the measurement of a product in turn, additional criteria need to be met. It should be possible to inspect or measure the product reliably and as easily as possible. The drawing must include the essential features of a product to ensure its function and suitability for assembly [Klein 2014]. The drawing is supposed to allow clear and unambiguous interpretation of all tolerances in order to avoid different or incomparable measurement results and, consequently, unnecessary discussions with suppliers and other departments due to incompleteness, contradictions, and ambiguities. Reliable inspection is a precondition for reliable manufacturing. Therefore, both the function-oriented drawing and the manufacturing-oriented drawing (if available) need to be created with a view to meeting inspection requirements. However, two particular problem areas will have to be faced in this context, and this book aims to help you handle these difficulties:


- The first issue to face is the large number of standards existing in the field of geometrical product specification (GPS). They cover far more than 2000 text pages, which have not all been read and understood by all those involved in the product manufacturing process. Consequently, only few quality professionals fully understand the information provided by a drawing [NPL 79] and the meaning of the symbols (e.g. 20h7 @N ACS 0.2 @R), or know how to perform the corresponding measurements.
- The second problem is that the symbols used in a technical drawing (e.g. ⊕ or ⊚) may apply to different tolerances and measurement methods, depending on the country, the drawing's date of creation, and the standard on which it is based.

1.2 Cooperation between the areas

Such challenges related to a function-, manufacturing-, and inspection-oriented geometrical product specification can only be tackled jointly. Even though the designer is always responsible for the product specification, it is only if design, manufacturing, and metrology staff act together that cost-efficiency, high quality, and operational reliability (also in terms of product liability) can be guaranteed.

Illustration 2: Cooperation in industrial production

Need for communication

Communication between the various stages is of fundamental importance in the course of a production process. Good metrology, in particular, should be a part of this process. It is not restricted to meas-

urements on the final product. According to the GPS system, tolerancing and measurement capability criteria should be considered for all stages of design, manufacturing, and inspection. It is usually much costlier to modify an engineering drawing later, for example when noticing that a specific functional feature cannot be measured as planned [NPL 79] or does not provide the desired information.

The following chapters will present various aspects of geometric dimensioning and tolerancing ("GD&T") for design, manufacturing and inspection of workpieces. Furthermore, you will find an outline of the international system of ISO GPS standards, and the book will deal with advanced options for defining the measurement strategy in the technical drawing.

Fourteen rules of inspection-oriented GD&T are summarized below. Each rule will be dealt with in detail in the course of the book:

14 rules of analysis capability

→ Rule R1: inspection-oriented tolerancing of form

Form must be controlled for any geometric element that is relevant to function or will be used as a datum for other features. Furthermore, tolerances of size and position can be adhered only if the form of a feature is also controlled. (Page 25 et segg.)

→ Rule R2: inspection-oriented dimensional tolerancing

Modifiers are to be used for task-specific dimensional tolerancing. Such unambiguous metrological specifications allow better comparison of measurement results and target-oriented tolerancing in compliance with functional, manufacturing, and inspection requirements. (Page 47et segg.)

→ Rule R3: inspection-oriented independency and envelope requirement

The separate verification of size and form tolerances is useful for

the manufacturing process (independency principle). The dimensional tolerance needs to be marked by © only in cases where the function requires adherence to the envelope condition. This is always preferable to a reduction of the individual size and form tolerances. Requesting the envelope requirement for all sizes would not be economical and defeat the purpose. If, instead of using the © symbol, you reduce the individual size and form tolerance ranges just to "be on the safe side", you would unnecessarily increase the expenditure for production and inspection. (Page 53 et seqq.)

→ Rule R4: inspection-oriented datums

In order for a datum to be stable and suitable for analysis, its form deviation must be significantly smaller than that of the feature to be toleranced. Furthermore, when establishing datums, make sure that they are distinctive and accessible for measurement, and that the datum feature and the toleranced feature are not too far apart. (Page 61 et seqq.)

→ Rule R5: inspection-oriented tolerancing of orientation

Check whether it is possible to use angularity tolerances instead of angular dimension tolerances. They are usually easier to measure, especially in the area near the vertex. Moreover, the angularity tolerance provides separate results for the datum feature and the toleranced feature. (Page 75 et seqq.)

→ Rule R6: inspection-oriented tolerancing of location

Tolerancing is always preferable to dimensional distance tolerancing. It is easier to define positions than dimensions, and this reduces specification uncertainties significantly. The use of cylindrical or circular tolerance zones generally provides a larger tolerance surface while the functional requirements remain the same. This ensures optimized usage of the desired tolerance and better suitability for inspection purposes. (Page 87 et seqq.)

198 E Index

E Index

(A)35	0-L tolerancing13
(AD)	0-M tolerancing12
(CA)	3-2-1 datum7
(CC)	3-2-1 rule7
(CV)	Accuracy17
(E) 54, 58, 125, 139	ACS32, 9
(F)	All around zone10
(GC)	All over tolerance zone10
(GG)	ALS3
(GN) 48, 59	Amplitide16
(GX) 48, 59	Amplitude14
(I) 57	Analysis-capable datum6
(L)	Angular dimension8
(LP)	Angular dimension tolerancing8
(LS)	Angularity tolerance7
(M) 107, 119, 120	Any Cross Section3
(P)	Any Longitudinal Section3
(R) 128	Arrow11
(S)	Articulating system17
(SA)50	ASME rule #15
(SD)50	ASME rule #23
(SM) 50	ASME Y14.522, 42, 11
(SN)50, 59	Associated geometry2
(SR) 50	Association criterion14
(SX)50, 59	At-line inspection5
(T)	AUKOM1
(U)99	AVG5
[CF]	Axial runout tolerancing11
[DF]73	Axis3
[DV]73	Band-pass filter15
[PL]136	Basic Dimension5
[PT]136	Basic tolerance4
[SL]136	Bore pattern10
[u,v,w]136	C14
[x,y,z]136	CAD data set1
><	Capability173, 17

Appendix 199

Cartesian coordinate system 69	Dial gage116
Center plane35	Diameter symbol
Center plane without form error 78	Digital filtering 157
Chatter mark 153	Dimension chain 103
Chatter marks25	Dimension Origin 105
Chebyshev72	Dimensional error
Circularity31	Dimensional tolerancing of a distance
Clamp-on gage107	102
Coaxiality tolerance87, 95	DIN 40680 141
Collection plane symbol100	DIN 4760
Combined tolerance zone36	DIN 6930-2141
Combined zone	DIN 71606 141
Combined Zone42	DIN 7167 55
Common datum71	DIN 7526141
Common Zone36	DIN 7527 141
Compensator	DIN EN 10243141
Composite tolerance111	DIN EN 12020141
Composite tolerance indicator 111	DIN EN 16742 141
Composite tolerancing111	DIN EN 586-3141
Concentricity tolerance 87, 95	DIN EN 755-9141
Cones	Distance tolerancing 102
Contour	Duration
Coordinate measuring machine 32, 171	Eccentricity
Coplanarity36	Engineering drawing 10
Cracks	Envelope principle 53
Cutoff wave number 158	Envelope requirement 53, 54
Cutoff wavelength	Evaluation method 145
Cylindrical tolerance zone91	Extracted geometry 22
Cylindricity40	Feature control frame
Cylindricity tolerance40	Filter
CZ36, 42, 109	Filter end range
Datum 61	Filter start range
Datum center point 87	First angle projection
Datum feature	Flatness error
Datum frame	Flatness tolerance of a center plane 43
Datum order70	Flatness tolerance of a surface 42
Datum reference frame	Floating tolerancing 37, 108
Datum target71	Form error
Datum triangle61	Form tester 32
Degree of freedom 66, 136	Fourier analysis
Deviations	Free state

200 E Index

Free-form surface	ISO 2768139
Function	ISO 2864
G 146, 147	ISO 545969, 7
Gage 54, 125	ISO 80155.
Gaussian Best Fit	ISO 806214
Gaussian filter 147	ISO 901314
GD&T15, 22	ISO committees14
General tolerances 139	ISO size tolerance system4
Geometrical product specification 13	ISO tolerance field4
Golden rule of metrology 173	ISO/IEC Guide 98-3179
GPS142	Lambda14
GPS standard chain 142	Leader arrow3
GPS standards11	Least Material Condition13
GPS system 11, 142	Least Material Requirement13
GR&R test 177	Least Material Requirement13
Grooves	Least square circle14
GUM 179	Least square cone14
Helix path 118	Least square cylinder140
High-pass filter 157	Least square plane140
Independence requirement 53	Least-squares method48
Indicator for orientation 80	Length measuring error173, 17
In-line inspection 53	LMC130
Inner shell54	LMR130
Inside datum 108	Location8
Inspection 13	Location error2
Inspection process 173	Location tolerance8
Inspection process capability 173	Lower tolerance limit4
Inspection-oriented datum 63, 73	Low-pass filter15
Intensity 166	LSCI140
Invocation principle 142	LSCO14
ISA21	LSCY14
ISO21	LSPL14
ISO 129	Maximum inscribed circle14
ISO 1057973	Maximum inscribed cylinder48, 14
ISO 110137	Maximum inscribed element88
ISO 13920141	Maximum material condition107, 11
ISO 14253 171	Maximum permissible error88, 173
ISO 14405 47	Maximum permissible measuring error
ISO 16610 167, 168	17
ISO 2243212	MCCI14
ISO 2692119	MCCY14

Appendix 201

Measurement system analysis 177	Precision dial gage	116
Measurement system capability 173	Primary datum	66
Measurement uncertainty171	Principle of independency	53
MICI145	Probing error	175
MICY145	Production	12
Minimum circumscribed circle 145	Production deviations	26
Minimum circumscribed cylinder48, 145	Profile tolerance	98
Minimum circumscribed element 88	Profile-of-a-line tolerance	39
Modifiers	Profile-of-a-surface tolerance	44
Morphological filter 167	Projected tolerance zone	137
MPE 173	Projection method	30
Multiple-stylus probing system 175	Radial runout tolerancing	117
Multiwave standard 153	Rank-order size	50
N	Real geometry	22
NC64	Real-time spectral analysis	155
Nominal geometry22	Reciprocity requirement	128
Nominal size47	Reference temperature	29
Non-convex64	Regardless of Feature Size	132
Ø35	Repeatability range	175
Off-line inspection53	Restricted datum area	135
Offset Zone 100	Restricted tolerance zone	133
Operation sequence-related datum 63	Reversal measurement	82
Orientation75	RFS	132
Orientation error25	Robust Gaussian filter	167
Orientation indicator80	Rotary table	175
Orientation only109	Rotational degree of freedom	66
Orientation tolerance	Roughness	25
OTPL145	Roughness inspection	164
Outer shell54	Roughnesses	153
Outer tangential element72	Roundness	31
Outer tangential plane88, 145	Roundness error	25
Ovality152	RPR	128
OZ100	RPS system	72
Parallelism tolerance	Runout error	25
Peak	Runout tolerance	115
Peak-to-valley height	Runout tolerancing	115
Perpendicularity tolerance	SØ	93
Point cloud22	Scales	25
Position error	Scanning probing error	175
Position of an axis91	Scanning time	
Position tolorance 75, 97	-	

202 E Index

SCS 51	Three-lobed circle152
Secondary datum 66	Three-plane datum reference frame69
Separate zone36	Tolerance indicator3
Size tolerancing	Tolerance symbol3
SØ45	Tolerance value3
Spectral analysis 148	Tolerance zone orientation indicator .80
Spectrum 148	Tolerances12
Spherical Diameter	Tolerance-zone restriction134
Spherical tolerance zone93	Tolerancing of form25
Spiral line 116	Total axial runout tolerancing115
Spiral staircase form 118	Total radial runout tolerancing117
Spline filter 167	Total runout tolerancing115
Spline Filter 147	Translational degree of freedom66
Straight line of holes 107	Transverse profile164
Straight-edge34	Two-point size48
Straightness error	UF100
Straightness tolerance of a plane 33	Undulations per revolution147, 15
Straightness tolerance of an axis 35	United Feature100
Straightness tolerance of an edge 35	Unsymmetrical Zone92, 99
Straightness tolerance of surface lines37	Upper tolerance limit4
Striations	UPR147, 151, 158
Suitability of measurement systems 171	UZ92, 99
Superposition of waves 149	Variable tolerance zone134
Surface inspection	VDA 5179
Surface line 35, 38, 82	VDI/VDE 260125
Symmetry tolerancing93	W/U (UPR)158
SZ 36, 109	Wavelength149, 166
T145	Waviness25, 153
Tangential element72	Without form81, 92, 94, 97
TED 51	Workpiece surface148
Tertiary datum	X145
Theoretically Exact Dimension 51	λ149
Third angle projection 29	