Contents

Preface ---- VII

About the author —— IX

1	Introduction to sustainable processing —— 1
1.1	Sustainable development —— 1
1.2	Introduction to green chemistry —— 4
1.3	The 24 principles of green chemistry and green engineering —— 5
2	Green process metrics —— 13
2.1	Atom economy —— 13
2.2	Reaction mass efficiency —— 15
2.3	Carbon efficiency —— 15
2.4	Effective mass yield —— 16
2.5	Environmental factor —— 16
2.6	Mass intensity —— 19
2.7	Process mass intensity —— 20
2.8	Mass productivity —— 20
2.9	Wastewater intensity —— 20
2.10	Solvent intensity —— 21
2.11	Carbon footprint, carbon emission factor, and carbon intensity —— 21
2.11.1	Methodology for carbon footprint industrial standards —— 22
2.11.2	Carbon footprint in the pharmaceutical industry —— 24
2.11.3	Carbon footprint in the petrochemical industry —— 24
2.12	Health and safety hazards —— 26
2.13	Defining a good chemical process —— 28
3	The role of solvents in sustainable processes —— 32
3.1	Classification of solvents —— 33
3.2	Solvent usage and safety concerns — 34
3.3	Green solvents —— 37
3.4	Solvent selection guides —— 42
4	Sustainable process development from alpha to omega —— 48
4.1	PolarClean: a green polar aprotic solvent —— 48
4.2	The patented production of PolarClean —— 49
4.3	Toward the design of greener synthetic routes —— 51
4.4	Quality assessment —— 54
4.5	Green metrics analysis —— 56
451	Complexity and Ideality —— 56

4.5.2	Carbon intensity —— 57
4.5.3	Atom economy —— 60
4.5.4	Yield — 62
4.5.5	E-factors —— 63
4.5.6	Health and safety risks —— 65
4.5.7	Solvent intensity —— 67
4.6	Room for improvement: further optimization potential —— 68
5	Process intensification: methods and equipment —— 71
5.1	Evolution of chemical processes —— 74
5.2	Process-intensifying equipment —— 76
5.2.1	Microreactors —— 77
5.2.2	Rotating devices —— 80
5.3	Process-intensifying methods —— 82
5.3.1	Membrane reactors —— 83
5.3.2	Hybrid separations —— 85
5.3.3	Use of alternative energy: ultrasound and microwave —— 86
6	Continuous microflow processes —— 95
6.1	Introduction —— 95
6.2	The advantages and disadvantages of continuous microfluidic systems —— 96
6.3	The green attributes of continuous flow processes —— 98
6.3.1	Principle 1: prevention —— 99
6.3.2	Principle 2: atom economy —— 103
6.3.3	Principle 6: design for energy efficiency — 106
6.3.4	Principle 9: catalysis —— 106
6.3.5	Principle 11: real-time analysis for pollution prevention —— 108
6.3.6	Principle 12: safer chemistry for accident prevention —— 108
6.4	Microflow reactor systems —— 110
7	Continuous separation processes —— 117
7.1	Downstream processing in organic synthesis —— 117
7.2	Batch versus continuous separations —— 117
7.3	Continuous processing with supercritical fluids —— 119
7.4	Continuous membrane separations —— 120
7.5	Continuous crystallization processes —— 128
7.6	Centrifugal partition chromatography —— 131
7.7	Pressure and temperature swing adsorption —— 132
8	Solvent recovery and recycling —— 141
8.1	Distillation processes —— 142

8.2	Adsorption processes —— 146
8.3	Membrane-based solvent recovery processes and their comparison with
	distillation and adsorption — 148
9	Process analytical technology —— 158
9.1	Introduction —— 158
9.2	PAT for green chemistry and engineering —— 160
9.3	Development of PAT systems —— 161
9.4	Industry outlook —— 164
9.5	PAT methods —— 165
9.5.1	Infrared spectroscopy —— 165
9.5.2	Raman spectroscopy —— 167
9.5.3	Nuclear magnetic resonance spectroscopy —— 168
9.5.4	Ultraviolet-visible spectroscopy —— 168
9.6	Case studies —— 169
9.6.1	Control of ammonia content and reaction monitoring with FTIR —— 170
9.6.2	FTIR spectroscopy-enabled control strategy for brivanib alaninate
	manufacturing —— 172
9.6.3	Implementation of Raman spectroscopy in reaction monitoring —— 174
9.6.4	Process control of continuous synthesis and solid drug formulation by IR
	and Raman spectroscopy —— 175
10	Sustainable musless fuels 404
10	Sustainable nuclear fuels —— 181
10.1	Benefits of nuclear energy — 184
10.2	Disadvantages of nuclear energy —— 186
10.3	Uranium as a nuclear fuel — 187
10.3.1	Availability of uranium —— 188
10.3.2	Current methods for uranium sourcing —— 188
10.3.3	Sustainable extraction of uranium from seawater —— 189
10.4	Waste management —— 194
11	Toward sustainable biofuel production processes —— 200
11.1	Production of alcohols as fuels —— 201
11.1.1	Biochemical conversion of lignocellulosic biomass —— 203
11.1.2	Grinding — 203
11.1.3	Pretreatment —— 204
11.1.4	Hydrolysis/saccharification —— 205
11.1.5	Fermentation —— 206
11.1.6	Distillation/dehydration —— 207
11.1.7	Case study of a membrane integrated bioreactor system for the
11.1./	continuous production of bioethanol —— 208
11 2	Riodiesel and its conventional production —— 210
	DIGGE 30 AND 113 CONVENIONAL DIGGEN (1111) / 111

11.2.1	Alternative routes for biodiesel production —— 213
12 Gr	een polymers and green building blocks —— 222
12.1	Introduction —— 222
12.2	Polymers and the environment —— 224
12.3	Plastic waste management: methods and limitations —— 227
12.4	Bioplastics —— 229
12.5	Green polymers —— 231
12.6	Green monomers and building blocks —— 234
12.7	Extraction methods —— 241
12.7.1	Mechano-catalytic depolymerization —— 241
12.7.2	Integrated conversion —— 243
12.7.3	Ultrasound-assisted radical depolymerization —— 243
12.7.4	Fermentation —— 244
12.7.5	Segmented continuous flow fractionation —— 246
12.8	New design technology concepts for advanced polymer
	materials —— 247
12.8.1	Reactor design configuration —— 248
12.8.2	Online monitoring —— 248
12.8.3	Automation —— 249
12.8.4	Membranes —— 249
12.8.5	Membranes from chitosan and PLA —— 251
12.8.6	Production of bio-based polyethylene (bio-PE) —— 253
12.8.7	Bio-based 1,4-butanediol —— 255
12.8.8	BioFoam —— 256
12.8.9	Desmodur eco N —— 256
12.8.10	Rilsan HT and Rilsan Invent —— 257
12.8.11	Polycarbonates —— 257
13 So	lar powered engineering —— 263
13.1	Water harvesting from air —— 263
13.2	Solar-driven membrane processes —— 265
13.3	Concentrated solar power —— 269
13.4	Photochemistry and photocatalysis —— 273
13.4.1	Heterogeneous photocatalysis —— 274
13.4.2	Solar-driven advanced oxidation processes —— 276
13.4.3	Hybrid advanced oxidation processes —— 278
13.4.4	Homogeneous photocatalysis —— 279
13.4.5	Luminescent solar concentrator reactors —— 280
13.4.6	Cloud-inspired photochemical reactor —— 282
13.4.7	Chiral separation using light —— 284

14	Worked examples —— 288
14.1	Example 1 – Green metrics analysis for hazardous chemistry scale-up
	and decision-making —— 288
14.1.1	Part A problem statements —— 288
14.1.2	Part B problem statements —— 288
14.1.3	Part A solutions —— 289
14.1.4	Part B solutions —— 290
14.2	Example 2 – Green metric analysis of catalytic synthesis and purification
	of a pharmaceutical building block —— 292
14.2.1	Part A problem statements —— 293
14.2.2	Part B problem statements —— 293
14.2.3	Part A solutions —— 293
14.2.4	Part B solutions —— 294
14.3	Example 3 - Comparison of batch and microflow processes in
	diazomethane-based chemistry —— 296
14.3.1	Part A problem statements —— 297
14.3.2	Part B problem statements — 298
14.3.3	Part A solutions —— 299
14.3.4	Part B solutions —— 302
14.4	Example 4 – Bioethanol production: conventional batch fermentation
	versus continuous membrane bioreactor —— 304
14.4.1	Part A problem statements —— 304
14.4.2	Part A solutions —— 305
14.4.3	Part B problem statements —— 308
14.4.4	Part B solutions —— 309
14.5	Example 5 – Application of process analytical technologies in
	continuous catalytic hydrogenation —— 314
14.5.1	Problem statements —— 314
14.5.2	Solutions —— 315

Index ---- 317