

�

�

“buch” — 2020/7/28 — 15:55 — page 8 — #4

�

�

�

�

�

�

�

�

“buch” — 2020/7/28 — 15:55 — page 9 — #5

�

�

�

�

�

�

Vorwort

Vorwort

Immer, wenn mehrere Personen gemeinsam an einem Softwareprojekt arbeiten,

braucht es ein System, um alle durchgeführten Änderungen nachvollziehbar zu spei-

chern. Gleichzeitig gibt ein derartiges Versionsverwaltungssystem allen Entwicklern

Zugriff auf das gesamte Projekt. Jeder Programmierer weiß, was die anderen zuletzt

gemacht haben, jede Entwicklerin kann den Code der anderen ausprobieren und das

Zusammenspiel mit ihren eigenen Änderungen testen.

In der Vergangenheit gab es viele Versionsverwaltungssysteme, z. B. CVS, Subversion

(SVN) oder Visual SourceSafe. Im vergangenen Jahrzehnt hat sich aber Git zum De-

facto-Standard entwickelt.

Einen wesentlichen Anteil an diesem Erfolg hatte die Webplattform GitHub, die den

Einstieg und die Nutzung von Git wesentlich vereinfachte. Unzählige Open-Source-

Projekte nutzen das kostenlose Angebot GitHubs zum Projekt-Hosting. Kommer-

zielle Kunden, die den Quellcode nicht veröffentlichen wollten, zahlen für diesen

Service. GitHub ist natürlich nicht die einzige Git-Plattform: Wichtige Konkurrenten

sind z. B. GitLab, Azure DevOps und Bitbucket. Dessen ungeachtet kaufte Microsoft

2018 GitHub für unglaubliche 7,5 Milliarden US$. Im Gegensatz zu anderen Übernah-

men hat dies bisher der Popularität von GitHub nicht geschadet.

Die Geschichte von Git

Git entstand, weil Linus Torvalds für die Weiterentwicklung des Linux-Kernels ein

neues Versionsverwaltungssystembrauchte. Die Entwicklergemeindehatte zuvor das

Programm BitKeeper verwendet. Linux Torvalds war mit dem Programm grundsätz-

lich zufrieden, eine Lizenzänderung machte aber einen Wechsel erforderlich. Von

den damals verfügbaren Open-Source-Programmen genügte keines seinen hohen

Ansprüchen.

So stoppte der Linux-Chefentwickler kurzzeitig seine Hauptarbeit und schuf in nur

zwei Wochen das Grundgerüst von Git. Der NameGit steht sinngemäß für Blödmann

oder Depp, und auch die Hilfeseite man git bezeichnet das Programm als the stupid

content tracker.

Was für ein Understatement das ist, wurde erst nach und nach klar, als Linus Tor-

valds dieWeiterentwicklung von Git längst wieder aus der Hand gegeben hatte: Nicht

nur die Kernel-Entwickler stellten ihre Arbeit rasch und problemlos auf Git um, in

den folgenden Jahren wechselten immer mehr Softwareprojekte auch außerhalb der

Open-Source-Welt zu Git.

9

�

�

“buch” — 2020/7/28 — 15:55 — page 10 — #6

�

�

�

�

�

�

Vorwort

Den endgültigen Durchbruch schaffte Git, als sich Webplattformen wie GitHub und

GitLab etablierten. DieseWebsites vereinfachendasHosting vonGit-Projekten enorm

und sind heute aus demGit-Alltag nichtmehr wegzudenken. (Selbst der Linux-Kernel

befindet sichmittlerweile auf GitHub!)

Ein bisschen ist das eine Ironie des Schicksals: Linus Torvalds wichtigstes Ziel beim

Design von Git war es, ein dezentrales Versionsverwaltungssystem zu schaffen. Aber

erst der zentralistische Ansatz von GitHub und Co.machte Git für Entwickler abseits

der Guru-Liga richtig attraktiv.

Es gibt heute Stimmen, die die Bedeutung von Git ebenso hoch einschätzen wie die

von Linux. Damit ist es Linus Torvalds gleich zwei Mal gelungen, einen Bereich des

Software-Universums vollständig auf den Kopf zu stellen.

Jeder verwendet es, keiner versteht es

Bei aller Begeisterung für Git: Es ist unübersehbar, dass Git von Profis für Profis kon-

zipiert wurde. Wir wollen in diesem Buch gar nicht erst den Eindruck erwecken, Git

wäre einfach. Das ist es nicht:

Häufig führt nicht ein Weg zum Ziel, vielmehr gibt es mehrere Wege. Für die, die

Git schon beherrschen, ist das nützlich; aber wenn Sie Git gerade lernen, verwirrt

diese Vielfalt.

Vielen Open-Source-Projekten wird der Vorwurf gemacht, sie seien schlecht doku-

mentiert. Das kann man bei Git wirklich nicht sagen. Im Gegenteil! Jedes Git-

Kommando, jede Anwendungsmöglichkeit wird in man-Seiten sowie auf der Web-

seite https://git-scm.com/docs so ausführlich und mit allen erdenklichen Sonder-

fällen erläutert, dass man sich in den Details geradezu verliert.

Erschwerend kommt hinzu, dass es ähnliche Begriffemit unterschiedlichen Bedeu-

tungen gibt, leicht zu verwechselnde Subkommandos, die stark voneinander

abweichende Aufgaben erfüllen. Manche Begriffe haben je nach Kontext unter-

schiedliche Bedeutungen oder werden in der Dokumentation uneinheitlich ver-

wendet.

Wir geben es ganz offen zu: Trotz jahrelanger Git-Praxis haben wir beim Schreiben

dieses Buchs noch eine Menge Details dazugelernt!

Über dieses Buch

Natürlich ist es möglich, Git sehr minimalistisch zu verwenden. Allerdings können

kleine Abweichungen von der täglichen Routine dann zu überraschenden und oft

unverständlichen Nebenwirkungen oder Fehlern führen.

10

�

�

“buch” — 2020/7/28 — 15:55 — page 11 — #7

�

�

�

�

�

�

Vorwort

Jeder Git-Einsteiger kennt das Gefühl, wenn ein Git-Kommando eine unverständliche

Fehlermeldung liefert: Mit kaltem Schweiß überlegt man, ob man gerade das Reposi-

tory für alle Entwickler nachhaltig zerstört hat und wen man bitten könnte, Git mit

den richtigen Kommandos doch zur Weiterarbeit zu überreden.

Deswegen ist es nicht zielführend, Git zu beschreiben, ohne dabei in die Tiefe zu

gehen. Erst ein gutes Verständnis für die Funktionsweise von Git gibt die notwendige

Sicherheit, Merge-Konflikte oder andere Probleme sauber beheben zu können.

Gleichzeitigwar uns aber klar, dass dieses Buch nur funktionieren kann, wennwir den

wesentlichen Funktionen den Vorrang geben. Trotz 400 Seiten ist dieses Buch nicht

die allumfassende Anleitung zu Git, die auch den letzten Sonderfall berücksichtigt

und jedes noch so exotische Git-Subkommando vorstellt. Wir haben daher in diesem

Buch die Spreu vomWeizen getrennt.

Dieses Buch ist in überschaubare Kapitel gegliedert, die Sie wie bei einem Baustein-

system nach Bedarf lesen können:

Nach einer kurzen Einführung (»Git in zehn Minuten«) führen wir in den Kapi-

teln »Learning by Doing«, »Git-Grundlagen« und schließlich »Datenanalyse im

Git-Repository« in den Umgang mit Git ein. Dabei konzentrieren wir uns auf die

Nutzung von Git auf Kommandoebene und gehen nur am Rande auf Plattformen

wie GitHub bzw. auf andere Benutzeroberflächen ein.

Git-Einsteigern empfehlen wir, mit diesen vier Kapiteln zu starten. Selbst wenn Sie

schon etwas Git-Erfahrung haben, sollten Sie sich unbedingt ein paar Stunden Zeit

nehmen, um »Git-Grundlagen« zu lesen und einige der dort vorgestellten Techni-

ken (Merging, Rebasing etc.) in einem Test-Repository auszuprobieren.

Die folgenden drei Kapitel – »GitHub«, »GitLab« sowie »Azure DevOps, Bitbucket,

Gitea und Gitolite« – stellen die wichtigsten Git-Plattformen vor. Gerade für

komplexe Projekte bieten diese Plattformen nützliche Zusatzfunktionen, z. B. um

automatische Tests durchzuführen oder umContinuous Integration zu implemen-

tieren.

Selbstverständlich berücksichtigen wir auch den Fall, dass Sie Ihr Git-Repository

selbst hostenmöchten.Mit GitLab, Gitea oderGitolite lässt sichdieserWunsch rela-

tiv leicht realisieren.

Damit wenden wir uns von den Grundlagen der Praxis zu: Im Kapitel »Workflows«

zeigen wir populäre Muster, wie Sie die Arbeit vieler Entwickler mit Git in geord-

nete Bahnen (Branches) leiten.

Im Kapitel »Arbeitstechniken« stehen fortgeschrittene Git-Funktionen im Vorder-

grund, z. B. Hooks, Submodule, Subtrees sowie die Zwei-Faktor-Authentifizierung,

die alle größeren Git-Plattformen unterstützen.

11

�

�

“buch” — 2020/7/28 — 15:55 — page 12 — #8

�

�

�

�

�

�

Vorwort

»Git in der Praxis« zeigt, wie Sie auf Linux-Systemen Konfigurationsdateien (Dot-

files) bzw. das ganze /etc-Verzeichnis mit Git versionieren, wie Sie ein Projekt von

SVN auf Git umstellen oder wie Sie eine simpleWebsite schnell und einfachmit Git

und Hugo realisieren.

»Gängige Probleme und ihre Lösungen« helfen Ihnen bei schwer verständlichen

Fehlermeldungen aus der Sackgasse. Hier finden Sie auch Anleitungen, wie Sie

Sonderwünsche realisieren – z. B. wie Sie große Dateien aus dem Git-Repository

entfernen oder wie Sie einenMerge-Vorgang nur für eine ausgewählte Datei durch-

führen.

Die »Kommandoreferenz« fasst in aller Kürze diewichtigstenGit-Kommandosund

deren Optionen zusammen. Dabei haben wir uns vom Motto »weniger ist mehr«

leiten lassen. Unser Ziel war nicht eine vollständige Referenz, sondern eine Art

»Essenz von Git«.

Beispiel-Repositorys

Einige Beispiele aus dem Buch stellen wir Ihnen auf GitHub zur Verfügung. Werfen

Sie einen Blick auf die Begleitwebsite zum Buch bzw. direkt auf GitHub!

https://gitbuch.info

https://github.com/git-buch

Lieber Leser, liebe Leserin!

Uns ist bewusst, dass Sie vielleicht nicht mit großer Freude die Lektüre dieses Buchs

beginnen: Sie wollen oder müssen für ein Projekt Git verwenden. Aber Ihr Ziel ist

nicht Git an sich, vielmehr wollen Sie Code produzieren, Ihr Projekt vorantreiben.

Sie haben eigentlich weder Zeit noch Lust, sich mit Git zu beschäftigen – Sie wollen

gerade so viel wissen, dass Sie Git fehlerfrei anwenden können.

Wir haben dafür Verständnis. Trotzdemempfehlenwir Ihnen dringend, ein paar Stun-

denmehr als geplant zu investieren, um Git systematisch kennenzulernen.

Wir versprechen Ihnen: Sie gewinnen diese Zeit später zurück! Zuwenig Git-Verständ-

nis bedeutet zwangsläufig, dass Sie immerwieder im Internet nach der Lösung für ein

gerade aufgetretenes Problem suchenmüssen (oft unter Zeitdruck).

Auch wenn Sie aktuell primär Ihr Projekt im Fokus haben: Git-Kenntnisse sind lang-

fristig eine Kernkompetenz, die Sie als Entwickler(in) in vielen zukünftigen Projekten

brauchen werden! In diesem Sinne wünschen wir Ihnen viel Erfolgmit Git!

Michael Kofler (https://kofler.info)

Bernd Öggl (https://webman.at)

12

�

�

“buch” — 2020/7/28 — 15:55 — page 153 — #149

�

�

�

�

�

�

4

Kapitel 4

Datenanalyse im Git-Repository

In diesem Kapitel geht es darum, ein Repository gezielt nach Daten zu durchsuchen:

Welche Dateien sind unter Versionskontrolle? In welchen Commits wurde eine Datei

zuletzt geändert? Welche Änderungen wurden dabei durchgeführt? In welchen Com-

mits kommt ein bestimmter Begriff in der Commit-Message vor?

Wie im vorigen Kapitel konzentrieren wir uns dabei auf den Einsatz des Kommandos

git und gehen nur am Rande auf andere Tools ein:

Commits durchsuchen: git log, git reflog, git tag, git shortlog

Dateien durchsuchen: git show, git diff, git grep, git blame

Fehler suchen: git bisect

Statistik und Visualisierung: git shortlog, gitstats, Gitgraph.js

Wir wollen aber nicht unerwähnt lassen, dass Entwicklungsumgebungen, Editoren,

Weboberflächen von Git-Plattformen oder spezielle (oft kommerzielle) Programme

wie GitKraken beim Durchsuchen des Git-Repositorys mehr Komfort bieten. Auf

unseren persönlichen Favoriten, das Programm VSCode in Kombination mit der

Erweiterung GitLens, haben wir ja schonmehrfach hingewiesen.

Aber wie so oft gilt auch hier: Wenn Sie einmal verstanden haben, wie Git intern

funktioniert und welche Funktionen es auf Kommandoebene gibt, fällt Ihnen die

Anwendung solcher Tools umso leichter. Außerdem stößt jedes Tool früher an die

Grenzen als das Kommando git!

4.1 Commits durchsuchen (git log)

Das Kommando git log zeigt, ausgehend vom aktuellen Commit, die vorangegan-

genen Commits an. Das ist möglich, weil zusammen mit jedem Commit auch eine

Referenz auf den Parent-Commit gespeichert wird. (Bei Merge-Commits gibt es ent-

sprechendmindestens zwei Parents.)

Standardmäßig zeigt git log zu jedem Commit alle Metadaten (Datum, Autor, Zweig

etc.) sowie die jeweilige Commit-Message an (siehe Abbildung 4.1). Wenn es mehr

153

�

�

“buch” — 2020/7/28 — 15:55 — page 154 — #150

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

Commits gibt, als im Terminalfenster Platz finden, können Sie mit den Cursortasten

durch die Commit-Abfolge scrollen. (Q) beendet die Anzeige.

Abbildung 4.1 Commits des Linux-Kernels in einem Terminalfenster

Spielwiese Linux-Kernel

Wenn Sie sich gerade in Git einarbeiten, haben Sie vielleicht noch kein großes eigenes

Git-Repository. Verwenden Sie einfach den Linux-Kernel! Mit fast einer Million Com-

mits von unzähligen Entwicklern und über 600 mit Tags gekennzeichneten Releases

(StandMitte 2020) finden Sie einewunderbare Spielwiese vor – und sehen außerdem,

wie schnell Git selbst bei riesigen Repositorys funktioniert. Der einzige Nachteil: Mit

mehr als 4 GByte ist der Platzbedarf auf Ihrer Festplatte/SSD nicht unerheblich.

git clone https://github.com/torvalds/linux.git

Intern wird die Ausgabe von git log durch einen sogenannte Pager geleitet, wobei

üblicherweise das Kommando less zum Einsatz kommt. Dementsprechend gelten

die bei less üblichen Tastenkürzel (siehe Tabelle 4.1). Besonders praktisch ist die Such-

funktion, die Sie mit (/) starten.

154

�

�

“buch” — 2020/7/28 — 15:55 — page 155 — #151

�

�

�

�

�

�

4

4.1 Commits durchsuchen (git log)

Tastenkürzel Funktion

Cursortasten Scrollen durch den Text.

(G) Springt an den Beginn des Texts.

(ª)+(G) Springt an das Ende des Texts.

(/) abc (¢) Sucht vorwärts.

(?) abc (¢) Sucht rückwärts.

(N) Wiederholt die letzte Suche (vorwärts).

(ª)+(N) Wiederholt die letzte Suche (rückwärts).

(Q) Beendet less.

(H) Zeigt die Onlinehilfe an.

Tabelle 4.1 »less«-Tastenkürzel

Wenn git die Buchstaben ä, ö, ü undß, andere internationale Zeichen oder Emojis feh-

lerhaft anzeigt, liegt dies oft am fehlerhaften Zusammenspiel zwischen git und dem

Textanzeigekommando less. Abhilfe schafft vorübergehend die Option --no-pager,

dauerhaft das folgende Kommando:

git config --global core.pager 'less --raw -control -chars '

Übersichtliches Logging

Häufig zeigt git log mehr Details an, als Sie eigentlich brauchen. Dafür fehlen viel-

leicht andere Informationen. Abhilfe schaffen die folgenden zwei Optionen:

--graph: visualisiert Zweige (ASCII-Art)

--oneline: fasst Metadaten und Commit-Message in einer Zeile zusammen

Umgekehrt fehlt im Logging vielleicht genau die Information, nach der Sie suchen:

--all: zeigt auch Commits anderer Zweige an

--decorate: zeigt auch Tags an

--name-only: listet die veränderten Dateien auf

--name-status: listet die Art der Änderungen pro Datei auf (z. B. M fürmodified, D für

deleted, A für added)

--pretty=online|short|medium|full|fuller|...: vordefinierte Ausgabeformate

für die Metadaten und die Commit-Message

--numstat: listet die Anzahl der geänderten Zeilen pro Datei auf

--stat: listet den Umfang der Änderungen pro Datei als Balkendiagramm auf

155

�

�

“buch” — 2020/7/28 — 15:55 — page 156 — #152

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

Es ist eine gute Idee, die Wirkung der Optionen einfach einmal auszuprobie-

ren. Die meisten Optionen können miteinander kombiniert werden. Abbildung 4.2

zeigt nochmals die Commits des Linux-Kernels, diesmal mit den Optionen --graph

--oneline. Eine detailliertere Beschreibung der Syntax von git log folgt in Kapitel 12,

»Kommandoreferenz«.

Abbildung 4.2 Kompakte Commit-Darstellungmit Zweigvisualisierung

Eigene Formatierung (Pretty-Syntax)

Wenn Sie mit den vorgegebenen Formaten nicht zufrieden sind, können Sie die

Ausgabe der Commits durch die Option --pretty=format'<fmt>' selbst formatieren.

Dabei setzt sich <fmt> aus printf-ähnlichen Codes zusammen. Unzählige weitere

Codes dokumentiert man git-log. Das Format für die Ausgabe von Datum und Uhr-

zeit kann zusätzlich durch die Option --date=iso|local|short|... beeinflusst wer-

den.

Im folgenden Beispiel sollen nur der siebenstellige Commit-Code, die ersten 20 Zei-

chen des Entwicklernamens sowie die erste Zeile der Commit-Message angezeigt

werden:

git log --pretty =format :'%h % <(20)%an %s'
35870 e2 Michael Kofler bugfix y
ebdb53f Bernd Öggl added validation
9ae3fb8 Michael Kofler feature x

UmdenAutorennamen rot anzuzeigen,muss die Formatzeichenkette wie folgt umge-

baut werden:

git log --pretty =format :'%h % >(20)%Cred%an%Creset %s'

Die wichtigsten Codes listet Tabelle 4.2 für Sie auf.

156

�

�

“buch” — 2020/7/28 — 15:55 — page 157 — #153

�

�

�

�

�

�

4

4.1 Commits durchsuchen (git log)

Code Bedeutung

%H vollständiger Hashcode

%h siebenstelliger Hashcode

%ad Author Date

%cd Commit Date

%an Name des Entwicklers (Author)

%ae E-Mail-Adresse des Entwicklers

%s erste Zeile der Commit-Message (Subject)

%b Rest der Commit-Message (Body)

%n neue Zeile

%<(20) nächste Spalte 20 Zeichen linksbündig

%>(20) nächste Spalte 20 Zeichen rechtsbündig

%Cred ab hier Ausdruck rot darstellen

%Cgreen ab hier Ausdruck grün darstellen

%C... diverse weitere Farben

%Creset Farbe zurücksetzen

Tabelle 4.2 Pretty-Format-Codes

Commit-Messages durchsuchen

Mit der Option --grep 'pattern' zeigt git log nur die Commits an, in derenMessage

der Suchbegriff vorkommt. Dabei wird auch die Groß- und Kleinschreibung berück-

sichtigt. Wenn Sie das nicht wollen, geben Sie zusätzlich die Option -i an.

Das folgende Kommando sucht in allen Commits (nicht nur in denen des aktuellen

Zweigs) nach dem Suchbegriff »CVE« in beliebiger Groß- und Kleinschreibung:

git log --all -i --grep CVE

Leider werden die gefundenen Suchbegriffe nicht farblich hervorgehoben. Das kön-

nen Sie erreichen, indem Sie zuerst git log ohne die Option --grep ausführen, den

resultierenden Ergebnistext dann mit dem Kommando grep filtern und schließ-

lich durch less leiten. Diese Vorgehensweise ist allerdings nicht besonders effizient

und bietet weniger Optionen bei der Darstellung der Commits. (Die grep-Option

-5 bewirkt, dass außer der gefundenen Zeile jeweils die fünf Zeilen oberhalb und

157

�

�

“buch” — 2020/7/28 — 15:55 — page 158 — #154

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

unterhalb dargestellt werden. Die less-Option -R ist notwendig, damit die von grep

weitergeleiteten Farbcodes korrekt verarbeitet werden.)

git log --all | grep -i -5 --color=always CVE | less -R

Commits suchen, die bestimmte Dateien verändern

Oft sind Sie nicht an allen Commits interessiert, sondern nur an Commits, in denen

eine bestimmte Datei oder irgendeine Datei aus einem bestimmten Verzeichnis ver-

ändert wird. Dazu übergeben Sie an git log den Datei- oder Verzeichnisnamen. Falls

es eine Namensgleichheit mit Tags, Branches etc. gibt, müssen Sie -- voranstellen.

Das folgende Kommando filtert die Commits des Linux-Kernels heraus, in denen

Dateien des ext4-Treibers (im Verzeichnis fs/ext4) verändert wurden. Dank der

Option --stat werden auch gleich die Namen der geänderten Dateien und der

Umfang der Änderungen angezeigt.

git log --oneline --stat -- fs/ext4
959f75845129 ext4: fix fiemap size checks for bitmap files
fs/ext4/extents .c | 31 +++++++++++++++++++++++++++++++
fs/ext4/ioctl.c | 33 ++-------------------------------
2 files changed , 33 insertions (+) , 31 deletions (-)
...

54d3adbc29f0 ext4: save all error info in save_error_info ()
and drop ext4_set_errno ()

fs/ext4/balloc .c | 7 +++----
fs/ext4/block_validity .c | 18 +++++++-----------
fs/ext4/ext4.h | 54 ++++++++++++++++++++++++++++++

++++++------------------
fs/ext4/ext4_jbd2 .c | 13 ++++---------
...

Umbenannte Dateien verfolgen

git log -- <file> kommt nicht mit dem Fall zurecht, dass sich der Name einer

Datei ändert. In solchen Fällen müssen Sie die zusätzliche Option --follow verwen-
den, also git log --follow -- <file>.

Commits eines bestimmten Entwicklers suchen

Mit der Option --author <name> oder --author <email> filtern Sie die Commits eines

bestimmten Entwicklers heraus.Wie bei --grepwerden <name> bzw. <email> alsMuster

interpretiert.

158

�

�

“buch” — 2020/7/28 — 15:55 — page 159 — #155

�

�

�

�

�

�

4

4.1 Commits durchsuchen (git log)

Mit dem folgenden Beispiel bleiben wir beim Dateisystem-Code des Linux-Kernels

und suchen nach Commits von Theodore Ts’o. Der Apostroph im Namen macht die

Suche nicht einfacher. Geben Sie stattdessen einfach einen Punkt an. (Der Punkt wird

gemäß der Syntax für reguläre Ausdrücke als Platzhalter für ein beliebiges Zeichen

interpretiert.)

git log --oneline --author 'Theodore Ts.o'

Das zweite Beispiel sucht nach E-Mail-Adressen, in denen ibm.com vorkommt:

git log --author 'ibm.com'

Commit-Bereich einschränken (Range-Syntax)

Normalerweise liefert git log [<branch>] alle Commits des aktuellen bzw. des ange-

gebenen Zweigs bis zurück zum Anfang der Commit-Abfolge, also in der Regel bis

hin zum ersten Commit des Repositorys. Das ist nicht immer sinnvoll. Oft sind Sie

nur an Commits interessiert, die spezifisch für einen Branch oder mehrere Branches

gelten, nicht aber an der gemeinsamen Basis. In solchen Fällen können Sie die Range-

Syntax <branch1>..<branch2> bzw. <branch1>...<branch2> verwenden. Anstelle von

Zweignamen können Sie auch Hashcodes oder andere Revisionsangaben verwenden

(siehe auch Abschnitt 3.12, »Referenzen auf Commits«).

Abbildung 4.3 Commits in zwei Zweigen

Als Ausgangspunkt für die folgenden Beispiele gilt die in Abbildung 4.3 dargestellte

Commit-Abfolge, wobei die Commit-Messages einfach A, B, C usw. lauten. Momentan

ist der Zweig master aktiv. Ohne Range-Syntax werden jeweils alle Commits bis zurück

zum initialen Commit A angezeigt:

git checkout master
git log --oneline

159

�

�

“buch” — 2020/7/28 — 15:55 — page 160 — #156

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

ebdb53f (HEAD -> master) E
c9bb505 B
45c6cd4 A

git log --oneline feature
35870 e2 (feature) F
9ae3fb8 D
b115d39 C
c9bb505 B
45c6cd4 A

git log master..feature zeigt nur die nicht mit master zusammengeführten Com-

mits des Feature-Zweigs. Die gemeinsame Basis fällt weg (hier also die Commits A und

B). Anstelle von master..feature gibt es zwei alternative Schreibweisen, die eigentlich

syntaktisch klarer sind, in der Praxis aber selten vorkommen:

git log --oneline master ..feature
git log --oneline feature --not master (gleichwertig)
git log --oneline feature ^master (auch gleichwertig)

35870 e2 (feature) F
9ae3fb8 D
b115d39 C

git log master...feature mit drei Punkten funktioniert wie das obige Kommando,

berücksichtigt aber zusätzlich die seit der Trennung der Zweige in master durchge-

führten Commits. (Zum selben Ergebnis kommen Sie übrigens auch, wenn Sie die

Branch-Namen vertauschen.)

git log --oneline master ...feature
git log --oneline feature ...master (gleichwertig)

35870 e2 (feature) F
ebdb53f (HEAD -> master) E
9ae3fb8 D
b115d39 C

Commits zeitlich eingrenzen

Anstelle der im vorigen Abschnitt vorgestellten Range-Syntax, die den Commit-

Bereich anhand logischer Kriterien einschränkt, können Sie die von git log geliefer-

ten Commits mit Optionen auch zeitlich eingrenzen:

--since <date> bzw. --after <date> zeigt nur Commits, die nach <date> entstan-

den sind.

--until <date> bzw. --before <date> zeigt nur Commits, die vor/bis <date> durch-

geführt wurden.

160

�

�

“buch” — 2020/7/28 — 15:55 — page 161 — #157

�

�

�

�

�

�

4

4.1 Commits durchsuchen (git log)

Wenn Sie die im Mai 2020 entstandenen Commits ansehen möchten, führen Sie das

folgende Kommando aus:

git log --after 2020 -05 -01 --until 2020 -05 -31

Commits sortieren

Standardmäßig werden Commits durch git log zeitlich sortiert, der neueste Commit

zuerst. Das ändert sich allerdings, sobald Sie die Option --graph hinzufügen. git log

bündelt jetzt zusammengehörende Commits. Wenn Sie die Commits trotz --graph

im zeitlichen Ablauf ordnen wollen, verwenden Sie die Zusatzoption --date-order.

Umgekehrt können Sie die Gruppierung der Commits nach Zweigen auch ohne

--graphmit --topo-order erreichen.

Die folgenden Beispiele beziehen sich wieder auf Abbildung 4.3. Allerdings wurden

die Zweige mit Merge verbunden:

git checkout master
git merge feature

Normalerweise ordnet git log die Commits streng chronologisch. (Die Option

--pretty ermöglicht hier eine einzeilige Darstellung samt Commit-Datum. Zur Verbes-

serung der Übersicht haben wir die Originalausgaben ein wenig umformatiert und

Wochentage und Jahreszahlen entfernt.)

git log --pretty =format :"%h %cd %s" --date=local

52003 e9 Jun 13 07:06:25 Merge branch 'feature '
35870 e2 Jun 10 10:32:56 F
ebdb53f Jun 10 10:32:38 E
9ae3fb8 Jun 10 10:32:04 D
b115d39 Jun 10 10:30:36 C
c9bb505 Jun 10 10:29:24 B
45c6cd4 Jun 10 10:29:16 A

Mit der Option --graph werden die Commits C, D und F gruppiert:

git log --pretty =format :"%h %cd %s" --date=local --graph

* 52003e9 Jun 13 07:06:25 Merge branch 'feature '
|\
| * 35870e2 Jun 10 10:32:56 F
| * 9ae3fb8 Jun 10 10:32:04 D
| * b115d39 Jun 10 10:30:36 C

* | ebdb53f Jun 10 10:32:38 E
|/

* c9bb505 Jun 10 10:29:24 B

* 45c6cd4 Jun 10 10:29:16 A

161

�

�

“buch” — 2020/7/28 — 15:55 — page 162 — #158

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

DieOption --date-order stellt trotz Zweigdarstellung die ursprüngliche Ordnungwie-

der her:

git log --pretty =format :"%h %cd %s" --date=local --graph \
--date -order

* 52003e9 Jun 13 07:06:25 Merge branch 'feature '
|\
| * 35870e2 Jun 10 10:32:56 F

* | ebdb53f Jun 10 10:32:38 E
| * 9ae3fb8 Jun 10 10:32:04 D
| * b115d39 Jun 10 10:30:36 C
|/

* c9bb505 Jun 10 10:29:24 B

* 45c6cd4 Jun 10 10:29:16 A

Author Date versus Commit Date

Zusammen mit jedem Commit werden zwei Zeitangaben gespeichert, das Author

Date und das Commit Date. Normalerweise stimmen beide Zeitangaben überein. Bei

Commits, die durch Rebasing verändert wurden, ist das aber nicht der Fall: Dann gibt

das Author Date den Zeitpunkt an, zu dem der ursprüngliche Commit entstanden ist.

Das Commit Date verweist auf den Zeitpunkt des Rebasing.

Wenn Sie beim Sortieren der Commits das Author Date berücksichtigen wollen, ver-

wenden Sie die Option --author-date-order. Die Commits werden nun wie bei

--topo-order gruppiert, innerhalb der Zweige (von denen es dank Rebasing üblicher-

weise weniger oder gar keine gibt) wird aber das Author Date als Sortierkriterium

verwenden.

Markierte Commits (git tag)

git tag liefert eine Liste aller Tags. git tag <pattern> schränkt das Ergebnis auf

Tags ein, die dem Suchmuster entsprechen. Sobald Sie das gewünschte Tag ermittelt

haben, können Sie sich mit git log <tagname> die Commits ansehen, die zu diesem

Release geführt haben.

Alternativ können Sie mit git log --simplify-by-decoration nur solche Commits

anzeigen, die Tags enthalten oder auf die ein Zweig verweist. In großen Repositorys

ist das aber vergleichsweise langsam.

git log zeigt normalerweise keine Tags an. Wenn Sie diese Zusatzinformation wün-

schen, übergeben Sie an git log die Option --decorate. Wenn Sie dennoch eine

kompakte Anzeige wünschen, können Sie --decorate wie bisher mit --oneline kom-

binieren.

162

�

�

“buch” — 2020/7/28 — 15:55 — page 163 — #159

�

�

�

�

�

�

4

4.1 Commits durchsuchen (git log)

Referenzlog (git reflog)

Immer wenn von der Commit-Abfolge (also dem Commit Log) die Rede ist, müssen

wir auch auf das Referenz-Log hinweisen: Es enthält alle lokal durchgeführten Kom-

mandos, die den globalen HEAD oder den Head eines Zweiges verändert haben. Das

Kommando git reflog listet diese Aktionen samt den Hashcodes der Commits auf:

git reflog

ebdb53f (HEAD -> master) HEAD@{0}: checkout : moving from
feature to master

35870 e2 (feature) HEAD@ {1}: commit : F
9ae3fb8 HEAD@{2}: checkout : moving from master to feature
ebdb53f (HEAD -> master) HEAD@{3}: commit : E
c9bb505 HEAD@{4}: checkout : moving from feature to master
9ae3fb8 HEAD@{5}: commit : D

Wenn Sie die detaillierte Ausgabe von git log wünschen, aber gleichzeitig genau die

Commits sehen möchten, die git reflog liefert, führen Sie git log mit der Option

--walk-reflog aus:

git log --walk -reflogs

commit ebdb53f0db624c6dd4d754940903c3be905a9be (HEAD -> master)
Reflog : HEAD@{0} (Michael Kofler <...>)
Reflog message : checkout : moving from feature to master
Author : Michael Kofler <...>
Date: Wed Jun 10 10:32:38 2020 +0200

E

commit 35870e24fb49bb77622e17f5844cfaeb515c0a00 (feature)
Reflog : HEAD@{1} (Michael Kofler <...>)
Reflog message : commit : F
Author : Michael Kofler <...>
Date: Wed Jun 10 10:32:56 2020 +0200

F

Anstelle von --walk-reflog können Sie auch die Option --reflog verwenden. Damit

wird jeder Commit nur einmal angezeigt. (Bei --walk-reflog kann der gleiche Commit

mehrfach auftauchen, z. B. immer dann, wenn Sie zuvor mit git checkout den Zweig

gewechselt haben.)

163

�

�

“buch” — 2020/7/28 — 15:55 — page 164 — #160

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

4.2 Dateien durchsuchen

Währendwir uns Abschnitt 4.1, »Commits durchsuchen (git log)«, darauf konzentriert

haben, die Metadaten eines Repositorys zu durchsuchen, ist nun der Inhalt an der

Reihe: Welchen Inhalt hatte eine bestimmte Datei zu einem früheren Zeitpunkt? Was

hat sich seither geändert? Und wer ist dafür verantwortlich? Bei der Beantwortung

dieser und weiterer Fragen helfen ein ganzes Bündel von Kommandos, unter ande-

rem git show, git diff und git blame.

Alte Versionen einer Datei ansehen (git show)

Das Kommando git show <revision>:<file> haben wir in Abschnitt 3.4, »Commit-

Undo«, schon vorgestellt: Es gibt die Datei <file> in dem Zustand aus, den sie hatte,

als der Commit <revision> aktuell war. Wenn Sie also Version 2.0 Ihres Programms

mit dem Tag v2.0 gekennzeichnet haben und wissen wollen, wie die Datei index.php

damals aussah, führen Sie das folgende Kommando aus:

git show v2.0:index .php

Natürlich können Sie die Ausgabe auch in eine andereDatei umleiten, damit Sie beide

Versionen (die aktuelle und die alte) parallel zur Verfügung haben:

git show v2.0:index .php > old_index .php

Unterschiede zwischen Dateien ansehen (git diff)

Wenn Sie wissen möchten, was sich zwischen der aktuellen Version und einer alten

Version einer Datei geändert hat, verwenden Sie git diff. Das folgende Programm

zeigt an, wie sich die Datei index.php seit der Version 2.0 geändert hat. Die Ausgabe

besteht aus mehreren Blöcken, die mit @@ eingeleitet werden und die Position ange-

ben. Zur Orientierung helfen einige Zeilen Code, den Kontext herzustellen. Anschlie-

ßend folgen die geänderten Zeilen, denen - oder + vorangestellt ist, je nachdem, ob

sie gelöscht oder hinzugefügt wurden. (Im Terminal sind die gelöschten Zeilen rot

und die hinzugefügten Zeilen grün hervorgehoben, was in diesem Buch leider nicht

dargestellt werden kann.)

git diff v2.0 index .php

diff --git a/index.php b/index.php
index a41783c ..d1e3af2 100644
--- a/index .php
+++ b/index .php
@@ -10,9 +10 ,9 @@ try {

exit();
}

164

�

�

“buch” — 2020/7/28 — 15:55 — page 165 — #161

�

�

�

�

�

�

4

4.2 Dateien durchsuchen

-try {
- $ctl ->checkAccess ();
-} catch (Exception $e) {
+if ($ctl ->checkAccess () === TRUE) {
+ $ctl ->showRequestedPage ();
+} else {

if ($ctl ->isJSONRequest ()) {
$data = new stdClass ();
$data ->error = true;

@@ -29,4 +29 ,3 @@ try {
exit();

}
}

-$ctl ->showRequestedPage ();

Wenn Sie nur amUmfang der Änderungen interessiert sind, übergeben Sie zusätzlich

die Option --compact-summary:

git diff --compact -summary v2.0 index .php
index.php | 7 +++----
1 file changed , 3 insertions (+) , 4 deletions (-)

Der Befehl git diff <revision1>..<revision2> <file> zeigt die Änderungen zwi-

schen zwei alten Versionen an:

git diff --compact -summary v1.0..v2.0 index .php

Natürlich können Sie an git diff anstelle von Tags bzw. Versionen auch die Hash-

codes von Commits, die Namen von Zweigen oder sonstige Referenzen übergeben

(siehe Abschnitt 3.12, »Referenzen auf Commits«). Beachten Sie, dass die ausgespro-

chen praktische Schreibweise HEAD@{2.weeks.ago} zur zeitlichen Einordnung nur für

lokal durchgeführte Commits funktioniert, also nur für Aktionen, die im Reflog

gespeichert sind. Davon abgesehen gibt es keine Möglichkeiten, den Vergleichs-

Commit zeitlich festzulegen. Gegebenenfalls müssen Sie zuerst mit git log einen

zeitlich passenden Commit suchen und dessen Hashcode dann an git diff überge-

ben.

Range-Syntax mit drei Punkten

Die Variante git diff <rev1>...<rev2> ist vor allem dann zweckmäßig, wenn es

sich bei den Revisionen um Zweige handelt. In diesem Fall ermittelt git diff
zuerst die letzte gemeinsame Basis beider Zweige und zeigt dann an, was sich in

<rev2> im Vergleich zum letzten gemeinsamen Commit verändert hat. Anders als bei

<rev1>..<rev2>werden aber alle Änderungen ignoriert, die seither in <rev1> passiert
sind.

165

�

�

“buch” — 2020/7/28 — 15:55 — page 166 — #162

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

Unterschiede zwischen Commits ansehen

Wenn Sie bei git diff auf die Angabe einer Datei verzichten, zeigt es alle geänder-

ten Dateien seit der angegebenen Version bzw. zwischen zwei Versionen/Commits

an. Wiederum ist die Option --compact-summary hilfreich, wenn Sie vorerst nur einen

Überblick gewinnenmöchten.

Bei umfangreichen Änderungen fehlt der Platz, um für jede geänderte Zeile ein + oder

ein - auszugeben. Stattdessen wird nach | die Gesamtanzahl der geänderten Zeilen

angegeben. Die Anzahl der Plus- und Minus-Zeichen ist relativ zu der Datei mit den

größten Änderungen. Je länger der Balken aus den Zeichen ist, desto umfangreicher

sind die Änderungen ausgefallen.

git diff --compact -summary v1.0..v2.0 index .php

css/autocompleteList .css | 225 +-
css/editproject .css (new) | 13 +
css/edituser .css | 99 +-
css/iprot.css | 648 ++++ -
css/iprot/jquery -ui-1.8.13. custom .css | 2 +-
css/mobile .css (new) | 17 +
...
269 files changed , 22819 insertions (+) , 12792 deletions (-)

Selten sind Sie einfach an allen Änderungen interessiert. Zwei Optionen helfen dabei,

das Ergebnis gezielt einzuschränken:

Mit -G <pattern> geben Sie ein Suchmuster (einen regulären Ausdruck) an. git

diff liefert dann nur die Textdateien, deren Änderungen den Suchausdruck ent-

halten, wobei die Groß- und Kleinschreibung exakt übereinstimmenmuss.

--diff-filter=A|C|D|M|R filtert jene Dateien heraus, die hinzugefügt (added),

kopiert (copied), gelöscht (deleted), verändert (modified) oder umbenannt (rena-

med) wurden.

Das folgende Kommando liefert die Dateien, die zwischen Version 1.0 und 2.0 verän-

dert wurden und in deren Code der Suchtext PDF vorkommt.

git diff -G PDF --diff -filter =M --compact -summary v1.0..v2.0

Änderungen seit dem letzten Commit

Bevor Sie git commit ausführen, ist es oft eine gute Idee, sich einenÜberblick über die
Änderungen in allen für den Commit vorgemerkten Dateien zu verschaffen. Genau

das macht git diff --staged:

166

�

�

“buch” — 2020/7/28 — 15:55 — page 167 — #163

�

�

�

�

�

�

4

4.2 Dateien durchsuchen

Sollten Sie git add noch nicht ausgeführt haben bzw. vorhaben, git commit -a zu
verwenden, zeigt git diff ohne irgendwelcheweiteren Parameter alle zuletzt durch-

geführten Änderungen an. (Nicht berücksichtigt werden neueDateien, die noch nicht

unter Versionskontrolle stehen.)

Dateien durchsuchen (git grep)

An welchen Stellen in den zahlreichen Dateien aus Ihrem riesigen Projekt wird die

Funktion X aufgerufen oder ein Objekt der Klasse Y erzeugt? Antwort auf derartige

Fragen gibt git grep <pattern>. Standardmäßig berücksichtigt das Kommando alle

Dateien im Projektverzeichnis und listet die Zeilen auf, in denen der Suchausdruck

in exakter Groß- und Kleinschreibung auftritt. (Wenn Sie nicht zwischen Groß- und

Kleinschreibung differenzieren wollen, geben Sie zusätzlich die Option -i an.)

git grep SKAction
ios -pacman /Maze.swift: let setGlitter = SKAction .setTextur ...
ios -pacman /Maze.swift: let setStandard = SKAction .setText ...
ios -pacman /Maze.swift: let waitShort = SKAction .wait(forDu...
...

Ein kompakteres Suchergebnis erhalten Sie mit --count. In diesem Fall zeigt git grep

nur an, wie oft der Suchausdruck in den jeweiligen Dateien vorkommt:

git grep --count CGSize
ios -pacman /CGOperators .swift:6
ios -pacman /Global .swift :1
ios -pacman /Maze.swift:4
...

Durch die Angabe von Dateien oder Verzeichnisse können Sie die Suche einschrän-

ken. Das folgende Kommando durchsucht die Dateien im Verzeichnis css nach dem

Schlüsselwort margin. Wegen der Option -n wird zu jeder Fundstelle auch die Zeilen-

nummer angegeben.

git grep -n margin css/
css/config .json:100: "@form -group -margin -bottom ": "15px",
css/config .json:144: "@navbar -margin -bottom ": "@line -heig...
css/editglobal .css:25: margin -top: 1px;
css/editglobal .css:29: margin -top: 0px;
...

Natürlich können Sie auch alte Versionen Ihres Codes durchsuchen, indem Sie die

gewünschte Revision vor den Dateinamen oder Verzeichnissen angeben. Wenn der

Suchausdruck wie im folgenden Beispiel Sonder- oder Leerzeichen enthält, müssen

167

�

�

“buch” — 2020/7/28 — 15:55 — page 168 — #164

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

Sie ihn zwischen Apostrophe stellen. Das folgende Beispiel sucht in Version 2.0 des

Programms nach UPDATE-Kommandos, die die Tabelle person verändern:

git grep 'UPDATE person ' v2.0
v2.0:lib/delete .php: $sql = "UPDATE person SET sta...
v2.0:lib/person .php: $sql = sprintf ("UPDATE person ...
v2.0:lib/personengruppe .php: $sql = sprintf ("UPDATE person ...
...

Schwierig ist die Anwendung von git grep, wenn Sie nicht wissen, in welchem

Commit Sie suchen sollen bzw. wenn es sich um Änderungen handelt, die nur vor-

übergehend durchgeführt und später wieder aus der Codebasis entfernt wurden. In

solchen Fällen können Siemit git rev-list v1.0..v2.0 eine Listemit denHashcodes

aller Commits für den fraglichen Zeitraum erstellen. Diese Liste verarbeiten Sie dann

mit git grep.

Beispielsweise zählt das folgende Kommando, wie oft das SQL-Schlüsselwort UPDATE

in diversen Versionen der Datei lib/kapitel.php vorkommt. Wie bei git log wird der

neueste Commit zuerst berücksichtigt. Die Zeichen -- trennen die durch git rev-list

erzeugte Hashcode-Liste vomDateinamen.

git grep -c 'UPDATE ' $(git rev -list v1.0..v2.0) -- user.php
262d67fed686cda939092e7b0cb337bbc1e2dbe9 :user.php:5
96d0a06d389784ec93f252a097185ee3678a2c1c :user.php:5
c07c2f0ce5682bea898ba3a65a15bf5230dd23dc :user.php:4
...

Urheberschaft von Code herausfinden (git blame)

Wenn Sie mit den hier beschriebenen Kommandos die Datei gefunden haben, die Sie

eigentlich interessiert, ist die nächste Frage natürlich: Wer ist für den dort enthal-

tenen Code verantwortlich? Ein großartiges Hilfsmittel ist in diesem Fall git blame

<file>. Ohne weitere Optionen zeigt es die betreffende Datei zeilenweise an und gibt

bei jeder Zeile an, in welchem Commit von welchem Autor zu welchem Datum diese

Zeile verändert wurde (siehe Abbildung 4.4).

Mit der Option -L 100,200 berücksichtigen Sie nur die Zeilennummern 100 bis 200.

Eine große Hilfe beim Lesen der Ausgaben sind die beiden folgenden Optionen:

--color-lines stellt Fortsetzungszeilen aus dem gleichen Commit in blauer Farbe

dar.

--color-by-age kennzeichnet frisch geänderten Code rot (Änderungen im letzten

Monat) undmäßig neuen Code weiß (Änderungen im letzten Jahr).

168

�

�

“buch” — 2020/7/28 — 15:55 — page 169 — #165

�

�

�

�

�

�

4

4.3 Fehler suchen (git bisect)

Abbildung 4.4 Urheberschaft der Datei »signal.c« des Linux-Kernels

Eine noch übersichtlichere Darstellung der Blame-Ergebnisse bieten dieWebsites von

GitLab, GitHub und Co.Außerdem können Sie dort sich per Mausklick direkt den

betreffenden Commit ansehen.

Boundary Commits

Wenn im lokalen Repository nicht alle Commits enthalten sind, kommt es vor, dass

einzelnen Hashcodes das Zeichen ^ (Caret bzw. Circumflex) vorangestellt wird, z. B.

^1da177e4c3f4. Esweist auf einen Boundary Commithin, also auf den letzten imRepo-

sitory verfügbaren Commit.

4.3 Fehler suchen (git bisect)

Stellen Sie sich vor, Sie bemerken, dass in einem Feature Ihres Programms ein Feh-

ler auftritt, aber es gelingt Ihnen nicht, dessen Ursache zu finden oder auch nur

einzugrenzen. Vermutlich handelt es sich um eine Wechselwirkung, die erst durch

Änderungen in mehreren Dateien entstanden ist.

Sie sind sich sicher, dass der Fehler früher nicht aufgetreten ist.Mit git checkout v1.5

sind Sie vorübergehend zur Version 1.5 zurückgekehrt und haben diese nochmals

getestet. Dort ist die Welt noch in Ordnung. Seither gab es 357 Commits. (Das Kom-

mando git rev-list ist eine einfachere Variante zu git log, das normalerweise

anstelle von Commit-Messages einfach nur dieHashcodes der betreffenden Commits

liefert. Mit der Option --count zählt es die Commits zwischen zwei Punkten eines

Zweigs.)

169

�

�

“buch” — 2020/7/28 — 15:55 — page 170 — #166

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

git rev -list v1.5..HEAD --count
357

Um herauszufinden, was den Fehler verursacht, müssen Sie den ersten Commit fin-

den, in demder Fehler auftritt. Das klingt nach der sprichwörtlichen Suche nach einer

Nadel im Heuhaufen.

Glücklicherweise unterstützt Sie git bisect bei dem Unterfangen. Die Idee von git

bisect besteht darin, dass Sie zuerst den letzten bekannten »guten« und »schlechten«

Commit angeben – in diesem Beispiel den Commit mit dem Tag v1.5 sowie den aktu-

ellen Commit (also HEAD). git bisect führt nun einen Checkout in der Mitte des

Commit-Bereichs aus, halbiert also den Suchbereich. (Damit liegt der Fall eines Deta-

ched HEADS vor, d. h. HEAD verweist nicht auf das Ende eines Zweigs, sondern auf

irgendeinen Commit in der Vergangenheit.)

git bisect start
git bisect bad HEAD
git bisect good v1.5

Bisecting : 178 revisions left to test after this
(roughly 8 steps)

[e84fd83319c1280bcef38400299fd55925ea25e6] Merge branch ...

Jetzt liegt es an Ihnen zu testen, ob der Fehler bei diesem Commit noch immer auf-

tritt.Wie Sie diesen Test durchführen, hängt ganz von der Art des Codes ab. Eventuell

müssen Sie Ihr Programm kompilieren, um es zu testen. Bei einer Webapplikation

reicht dagegen ein Test im Browser. Je nachdem, wie der Test ausfällt, melden Sie das

Ergebnis mit git bisect bad oder mit git bisect good:

git bisect bad
Bisecting : 89 revisions left to test after this

(roughly 7 steps)
[cea22541893ded6e6e9f6a9d40bf6d0c2ec806d8] bugfix xy ...

Abhängig von Ihrer Antwort weiß git bisect nun, ob es in der oberen oder unteren

Hälfte des Commit-Bereichs weitersuchen soll. Das Kommando führt einen weiteren

Checkout in der Mitte des verbleibenden Suchbereichs aus. Der Suchbereich wurde

damit auf ca. ein Viertel reduziert.

Abermals müssen Sie nun den Test wiederholen, ob der Fehler noch auftritt oder

nicht, und diese Information an git weiterleiten. Auf diese Weise fahren Sie fort, bis

git bisect schließlichmeldet:

git bisect good
4127d9d06ecbae0d4d9babaaa8aacebc0c8853cb is the first bad
commit ...

170

�

�

“buch” — 2020/7/28 — 15:55 — page 171 — #167

�

�

�

�

�

�

4

4.4 Statistik und Visualisierung

Damit wissen Sie, zu welchem Zeitpunkt in der Vergangenheit der Fehler erstmals

aufgetreten ist. Die Suche nach der Ursache des Fehlers steht jetzt noch aus – aber

eigentlich sollte git diff HEAD^, also die Zusammenfassung der Änderungen im Ver-

gleich zu vorigen Commit, Sie auf die richtige Spur bringen.

Mit git bisect reset beenden Sie schließlich git bisect und kehren zurück zum

Head des Zweiges, in dem Sie sich zu Beginn der Suche befanden. Dort versuchen

Sie nun, den jetzt eingegrenzten Fehler endgültig zu beheben.

git bisect reset
Previous HEAD position was ef81d5c fix: getLink for csv ...
Switched to branch 'develop '

4.4 Statistik und Visualisierung

Bei großen Repositorys sieht man oft den Wald vor lauter Bäumen (in unserem Fall

eigentlich: vor lauter Zweigen) nicht mehr. In diesem Abschnitt stellen wir Ihnen

git-Kommandos sowie diverse Werkzeuge vor, mit denen Sie wieder den Durchblick

erlangen.

Einfache Zahlenspiele (git shortlog)

Ein praktisches Kommando, um einen ersten Überblick zu erhalten, ist git shortlog.

In seiner einfachsten Form liefert es eine alphabetisch geordnete Liste aller Commit-

Autoren, wobei zu jedem Autor die Anzahl der Commits sowie jeweils die erste Zeile

jeder Commit-Message angegeben wird.

Durch diverse Optionen können Sie die Ausgabe weiter verkürzen. Das folgende Kom-

mando liefert eine Liste der Entwickler und Entwicklerinnen des Linux-Kernels, die

seit Anfang 2019 die meisten Commits aufzuweisen haben, wobei Merge-Commits

nicht gerechnet werden:

git shortlog --summary --numbered --email --no-merges \
--since 2019 -01 -01

1488 Chris Wilson <chris@chris -wilson .co.uk>
1104 Christoph Hellwig <hch@lst .de>
1065 YueHaibing <yuehaibing@huawei .com >
875 Thomas Gleixner <tglx@linutronix .de>
852 Takashi Iwai <tiwai@suse .de>
799 Colin Ian King <colin.king@canonical .com >
...

Die Gesamtanzahl aller Commits (über alle Zweige) ermitteln Sie mit git rev-list:

171

�

�

“buch” — 2020/7/28 — 15:55 — page 172 — #168

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

git rev -list --all --count
917418

Die Anzahl der Dateien im aktuellen Zweig ermitteln Sie, indem Sie die Ausgabe von

git ls-files an wc (word count) weiterleiten:

git ls-files | wc -l
67975

Analog können Sie auch die Anzahl der Branches und Tags herausfinden:

git branch -a | wc -l
3

git tag | wc -l
652

Den Umfang der Änderungen zwischen zwei Versionen/Zweigen/Revisionen Ihres

Projekts können Sie mit git diff --shortstat ermitteln:

git diff --shortstat v5.5..v5.6
11533 files changed

600555 insertions (+)
285511 deletions (-)

Statistik-Tools und -Scripts

Das Internet ist voll von Scripts und Programmen, die aus einemGit-Repositorymehr

Details als die obigen Kommandos herausholen können. Einen guten Startpunkt bie-

tet der folgende Stack-Overflow-Artikel:

https://stackoverflow.com/questions/1828874

Beliebt und unter Linux einfach anzuwenden ist das Python-Script gitstats. Nachder

Installation übergeben Sie an das Script den Pfad zum Repository sowie ein Verzeich-

nis, in dem die Ergebnisdateien gespeichert werden sollen. Ausgehend von der Datei

index.html können Sie sich in einem Webbrowser dann diverse statistische Auswer-

tungen ansehen. Das Erscheinungsbild der dazugehörenden Grafiken ist allerdings

ein wenig minimalistisch.

sudo apt install gnuplot
git clone git://repo.or.cz/gitstats .git
mkdir result
gitstats /gitstats <path/to/repo > results /
google -chrome results /index.html

172

�

�

“buch” — 2020/7/28 — 15:55 — page 173 — #169

�

�

�

�

�

�

4

4.4 Statistik und Visualisierung

Zweige visualisieren

Gerade in Git-Schulungen oder bei dem Versuch, Kollegen die Funktionsweise von

Git zu verdeutlichen, besteht der Wunsch, die über mehrere Zweige verteilten Com-

mits »ordentlich« zu visualisieren. Die Ergebnisse von git log --graph sind dazu

aber ungeeignet.

Schon ein wenig besser ist die Darstellung durch das auf vielen Rechnern installierte

Programm gitk (siehe Abbildung 4.5). Es wird üblicherweise aus demTerminal heraus

gestartet und zeigt die Commit-Abfolge für den gerade aktuellen Zweig.

Abbildung 4.5 Visualisierung von Zweigen durch »gitk«

Falls Sie Wert auf eine übersichtlichere Darstellung von Zweigen legen, haben wir ein

paar Vorschläge für Sie:

Das kommerzielle Programm GitKraken zeigt nicht nur die Commit-Abfolge in

einer ansprechenden Form an (siehe Abbildung 4.6), sondern bietet eine Menge

weiterer Funktionen, die bei der Administration von Git-Repositorys helfen. Die

kostenlose Version kann nur für öffentliche Repositorys verwendet werden.

173

�

�

“buch” — 2020/7/28 — 15:55 — page 174 — #170

�

�

�

�

�

�

4 Datenanalyse im Git-Repository

Auch manche Git-Plattformen enthalten Visualisierungsfunktionen. Beispiels-

weise zeigt GitLab auf der Teilseite Repository •Graph eine übersichtliche Dar-

stellung des Commit-Verlaufs (siehe Abbildung 4.7).

GitHub-Anwender, die diesbezüglich weniger verwöhnt sind, sollten sich das kom-

merzielle Projekt GFC (Git Flow Chart) ansehen: Die Website https://gfc.io kann

die Commit-Abfolge von Repositorys auf GitHub und Bitbucket visualisieren. Die

Grundfunktionen stehen für öffentliche Repositorys kostenlos zur Verfügung.

Wenn Sie GFC für private Repositorys bzw. in Kombination mit den GitHub-Team-

funktionen einsetzen wollen, müssen Sie einen monatlichen Obolus leisten.

Abbildung 4.6 Das Programm »GitKraken«

Abbildung 4.7 Darstellung von Zweigen in GitLab

174

�

�

“buch” — 2020/7/28 — 15:55 — page 175 — #171

�

�

�

�

�

�

4

4.4 Statistik und Visualisierung

GitGraph.js

Vielleicht ist es Ihnen aufgefallen: Alle Abbildungen in diesem Buch, die die Commit-

Abfolge mehrerer Zweige zeigen, haben ein einheitliches Aussehen. Das ist natürlich

kein Zufall. Mit der Open-Source-Bibliothek GitGraph.js und wenigen Zeilen eigenem

JavaScript-Code lassen sich viele Visualisierungswünsche erfüllen. Das Ergebnis ist

dann im Webbrowser zu bewundern. Werfen Sie einen Blick auf die Projektwebsite

https://gitgraphjs.com, die elementare Arbeitstechniken in Form einer Präsentation

zusammenfasst!

Leider ist GitGraph.js nicht in der Lage, echte Commits aus einem Repository zu

zeichnen. Sie müssen die Commit-Struktur also durch entsprechende JavaScript-An-

weisungen zusammensetzen, was mit einigem Aufwand verbunden ist (den wir für

dieses Buch natürlich nicht gescheut haben).

Die folgenden Zeilen zeigen den Code für Abbildung 4.3. graphContainer verweist auf

die Stelle im HTML-Code, wo das Diagramm dargestellt werden soll. mytemplate ent-

hält einige Optionen, um Commits ohne Autoren und Hashcodes, Zweige aber mit

ihren Namen anzuzeigen. createGitGraph erzeugt die vorerst leere Commit-Abfolge.

Mit branch und commit werden dann Commits und Zweige hinzugefügt.

<!doctype html >
<html ><head >
<script src="https://cdn.jsdelivr .net/npm/@gitgraph /js">
</script >
</head >
<body >
<div id="graph"></div>
<script >
const graphContainer = document .getElementById ("graph");
const mytemplate = GitgraphJS .templateExtend (

GitgraphJS .TemplateName .Metro , {
commit : { message : { displayAuthor : false ,

displayHash : false } },
branch : { label: { display : true } }

});
const gitgraph = GitgraphJS .createGitgraph (

graphContainer ,
{ author : " ", template : mytemplate });

const master = gitgraph .branch ("master ").commit ("A").commit ("B")
const develop = master .branch ("feature ").commit ("C").commit ("D")
master .commit ("E")
develop .commit ("F")
</script >
</body ></html >

175

�

�

“buch” — 2020/7/28 — 15:55 — page 335 — #331

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

10.5 Ein Blogmit Git und Hugo

Von Git zum Blogsystem – das heißt, den inhaltlichen Bogen dieses Buchs schon bei-

nahe zu überspannen. Keine Angst, wir werden Ihnen gleich zeigen, dass sich Git in

Kombination mit bestimmten Blogsystemen sehr gewinnbringend einsetzen lässt

und den Blog-Arbeitsablauf dramatisch vereinfachen kann. Das gilt insbesondere

dann, wenn Sie mit Markdown vertraut sind, beim Schreiben einen eher techni-

schen Ansatz vorziehen und keinen Bedarf an überladenen Weboberflächen zur

CMS-Administration haben. Außerdem gibt uns dieser Abschnitt die Möglichkeit, die

interessante Git-Erweiterung Git LFS vorzustellen. LFS steht für Large File Storage.

VonWordPress zu Hugo

Wenn man heute über Software für Blogs oder Content Management Systems (CMS)

spricht, kommt schnell WordPress ins Spiel: Diese PHP/MySQL-Software hat einen

wahren Siegeszug hingelegt und ist aktuell das amweitesten verbreitete CMS.

Doch die Webtechnologie hat sich weiterentwickelt, und das serverseitige Erzeugen

von Webseiten, wie es WordPress mit PHP und MySQL macht, ist nicht mehr in allen

Bereichen State of the Art. Zunehmend beliebt sind Single-Page Applications. Sie ent-

lasten den Server und verlagern einen Teil der Rechenleistung mittels JavaScript auf

den Client. REST-APIs liefern die Daten im JSON-Format an das Frontend.

In diesem Abschnitt lassen wir PHP und JavaScript freilich links liegen und stellen

Ihnen eine weitereWebtechnologie vor, die in den letzten Jahren viel Beachtung fand:

Mit einem Static Site Generator lässt sich Text im Markdown-Format mit der Hilfe

von HTML-Vorlagen in eine vollständige Website umwandeln. Navigationselemente,

RSS-Feeds, Verlinkungen zu Kategorien und Tags werden alle beim Programmaufruf

erzeugt und in statischen Dateien gespeichert.

Was auf den ersten Blick etwas altbacken klingt, bringt große Vorteile mit sich: Die

Inhalte können sehr schnell ausgeliefert werden, ohne den Server mit Datenbank-

abfragen zu belasten. Der wohl größte Vorteil ist aber der enorme Sicherheitsgewinn:

Auf dem Server selbst läuft keine Programmiersprachemehr, die Angreifer gerne als

Einfallstor verwenden.

Ein prominenter Vertreter dieser Software ist Jekyll, das von Tom Preston-Werner,

einem der GitHub-Gründer, bereits 2008 entwickelt wurde. Die Open-Source-

Software ist heute noch bei GitHub im Einsatz und kann für GitHub Pages verwendet

werden. Andere prominente Vertreter dieser Zunft sind Next.js, Nuxt.js oder Hugo.

Während Next.js oder Nuxt.js eigentlich JavaScript-Frameworks für Single-Page App-

lications sind, können Sie Hugo ganz ohne JavaScript-Kenntnisse verwenden. Das

Programm konvertiert blitzschnell Markdown-Dateien in HTML und kann einfach

mit Templates und Themes gesteuert werden.

335

�

�

“buch” — 2020/7/28 — 15:55 — page 336 — #332

�

�

�

�

�

�

10 Git in der Praxis

Hugo

Wir haben uns für Hugo entschieden, da wir schon in einem anderen Projekt posi-

tive Erfahrungen damit gemacht haben. Es lässt sich rasch installieren und ist sehr

effizient im Betrieb. Sie laden einfach das Binary für die Plattform von der GitHub-

Projekt-Website:

https://github.com/gohugoio/hugo/releases

Das Kommandozeilenprogramm hat eine Option, die zur Einrichtung eines neuen

Blogs dient. Damit starten wir unser kleines Projekt:

hugo new site my-blog

Congratulations ! Your new Hugo site is created in /src/my-blog.
...

Hugo hat eine Verzeichnisstruktur angelegt, in der sich nur zwei Dateien befinden.

Der Ordner my-blog sieht so aus:

|-- archetypes
| `-- default .md
|-- config .toml
|-- content
|-- data
|-- layouts
|-- static
`-- themes

Wir initialisieren ein neuesGit-Repository darin, dennwirwollen alle Schritte unseres

Blogs dokumentieren:

git init
git add .
git status

On branch master
No commits yet
Changes to be committed :

(use "git rm --cached <file >..." to unstage)
new file: archetypes /default .md
new file: config .toml

Dabei stoßen wir gleich auf eine Eigenheit von Git: Obwohl wir mit git add . alle

Einträge im aktuellen Verzeichnis zum Index hinzugefügt haben, werden nur die bei-

denDateien default.md und config.toml für den Commit vorgesehen. Das liegt daran,

dass Git nur den Inhalt von Dateien verfolgt; leere Verzeichnisse gehören nicht dazu.

336

�

�

“buch” — 2020/7/28 — 15:55 — page 337 — #333

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

In unserem Fall ist das kein Problem.Wir werden in der lokalenArbeitskopie weiterar-

beiten, und sobald sich die Verzeichnisse mit Inhalt füllen, werden sie automatisch

in das Repository aufgenommen. Manchmal möchte man aber explizit ein leeres

Verzeichnis in das Repository inkludieren. Zum Beispiel könnte ein Programm im

laufenden Betrieb dort Daten hineinschreiben, ohne das Verzeichnis zuvor zu erstel-

len. Die einzige Lösung für das Problem besteht darin, in den leeren Verzeichnissen

Dateien anzulegen. Sie können dazu .gitignore-Dateien verwenden, wie es die Git-

FAQ empfiehlt (https://links.gitbuch.info/empty-dir), aber es eignet sich auch jede

andere Datei.

Hugo Themes als Git Submodule

Wie Hugo die Inhalte in HTML und CSS konvertiert, wird durch das verwendete

Theme gesteuert. Wir haben uns für das Theme Beautiful Hugo entschieden, das

sowohl am Desktop als auch auf mobilen Geräten gut und responsive funktioniert

und unter der freien MIT-Lizenz auf GitHub zu finden ist:

https://themes.gohugo.io/beautifulhugo/

Um das Theme zu verwenden, fügen wir sein Repository als Submodul (siehe

Abschnitt 9.3) dem Unterordner themes hinzu:

git submodule add \
https://github .com/halogenica /beautifulhugo .git \
themes /beautifulhugo

Cloning into '/src/my-blog/themes /beautifulhugo '...
...

Sollte der Autor das Themeweiter verbessern, habenwir durch die Submodul-Technik

die Möglichkeit, das Update einfach auszuprobieren. Mit dem submodule add-Aufruf

wurde das Theme geklont, und die Änderungen wurden gleich zum Index hinzuge-

fügt. Schließlich stellen wir das Theme in der Konfigurationsdatei ein und probieren

es mit dem in Hugo integrierten Webserver aus:

echo 'theme = "beautifulhugo "' >> config .toml
hugo serve

...
Web Server is available at http://localhost :1313/ ...
Press Ctrl+C to stop

Wir öffnen die angegebene URL http://localhost:1313 und sehen das durchaus noch

verbesserungsfähige Ergebnis (siehe Abbildung 10.3). Damit ist es Zeit für den ersten

Commit. Das Gerüst unseres Blogs ist bereits fertig.

337

�

�

“buch” — 2020/7/28 — 15:55 — page 338 — #334

�

�

�

�

�

�

10 Git in der Praxis

Abbildung 10.3 Das Hugo Theme »Beautiful Hugo« ohne Anpassungen

Wie wir der dem Theme mitgelieferten Beispielseite entnehmen, können wir noch

einige Änderungen in der Konfigurationsdatei config.toml vornehmen. Wir ergän-

zen hier unter anderem einen Untertitel, das Datumsformat und Informationen zum

Autor. Außerdem stellen wir das Hauptmenü in den Abschnitten [[menu.main]] ein.

Datei config .toml
...
theme = "beautifulhugo "

[Params]
subtitle = "Reisenotizen "
dateFormat = "2. January 2006"
...

[Author]
name = "bernd"
github = "git-buch"
gitlab = "gitbuch "
...

[[menu.main]]
name = "Blog"
url = ""
weight = 1

[[menu.main]]
name = "About"
url = "pages/about/"
weight = 2
...

338

�

�

“buch” — 2020/7/28 — 15:55 — page 339 — #335

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

Blog mit Inhalt füllen

Nun müssen wir uns um den Content kümmern. Unser erster Eintrag dokumentiert

z. B. die Reise zur Messe Intergeo in Stuttgart im September 2019. Wir verwenden

Hugo, um die Struktur für den neuen Eintrag zu erzeugen. Der Eintrag soll im Ord-

ner posts/2019-09-19 unterhalb des content-Ordners liegen.

hugo new posts/2019 -09 -19/index .md

/src/my-blog/content /posts/2019 -09 -19/index.md created

Obwohl der noch geöffnete Webbrowser die Webseite bei jeder Änderung an Dateien

neu lädt und das auch gerade gemacht hat, sehen wir nichts von unserem neuen

Eintrag. Schuld ist die Meta-Anweisung draft: true im Kopfteil der neu erstellten

index.md-Datei. Sobald wir diese Zeile löschenoder denWert von true in false ändern,

erscheint der Eintrag auf der Startseite des Blogs.

Wir kopieren ein Handyfoto von der Messe in den Ordner und ergänzen die

Markdown-Datei um ein paar Anekdoten dieser Reise. Bevor wir diese Änderungen

per Commit speichern, wenden wir uns dem eingangs erwähnten Git-LFS-Modul zu.

Git LFS

Die Erweiterung Git Large File Storage (LFS) entstand aufgrund der Problematik, dass

Git mit binären Dateien nicht besonders gut umgehen kann. Speziell wenn es sich

um große binäre Dateien handelt, die womöglich schlecht komprimierbar sind und

sich häufig ändern, wächst die Größe des Repositorys stark an.

Jetzt kann man natürlich argumentieren, dass große binäre Dateien eben nichts in

einem Git-Repository verloren haben. Aber nehmen wir unser Beispiel mit den Fotos

und denBlogeinträgen:Würdeman Text und Bilder getrennt verwalten und vielleicht

auch getrennt sichern, stiege die Gefahr, dass man irgendwann Daten verliert (wir

sprechen hier leider aus persönlicher Erfahrung).

Git LFS löst das Problem der zu groß werdenden Repositorys, indem per LFS verwal-

tete Dateien nicht im Repository selbst, sondern an einem anderen Speicherort abge-

legt werden. Die Datei selbst enthält nur einen Verweis auf den Hashcode der Datei

(einen Pointer in der LFS-Nomenklatur). LFS verwendet dabei den Hash-Algorithmus

SHA-256, der wesentlich sicherer ist als das aktuell von Git eingesetzte Verfahren

SHA-1 (siehe Abschnitt 3.13, »Git-Interna«).

Als Anwender von git lfs bekommen wir von den LFS-Pointern nie etwas zu sehen.

Grund dafür ist der ausgeklügelte Filtermechanismus, der die Textdateien durch

binären Originalinhalte ersetzt. Damit die Filter in Kraft treten können, müssen wir

zuerst Git LFS installieren und aktivieren. Unter Debian oder Ubuntu reicht dazu der

Aufruf von sudo apt install git-lfs. Installationspakete für alle gängigen Plattfor-

339

�

�

“buch” — 2020/7/28 — 15:55 — page 340 — #336

�

�

�

�

�

�

10 Git in der Praxis

men finden Sie unter https://github.com/git-lfs/git-lfs/releases. Um Git LFS für unser

Repository zu aktivieren, verwenden wir folgendes Kommando:

git lfs install

Updated git hooks.
Git LFS initialized .

Dabei werdenmehrere Schritte ausgeführt. Wird das Kommando zum erstenMal auf

diesem Computer ausgeführt, fügt LFS einen neuen Abschnitt in unsere persönliche

Git-Konfigurationsdatei ein:

[filter "lfs"]
clean = git-lfs clean -- %f
smudge = git-lfs smudge -- %f
process = git -lfs filter -process
required = true

Der clean-Filter speichert den binären Inhalt der Datei in einem Unterordner von

.git/lfs ab und ersetzt die Originaldatei durch den oben beschriebenen LFS-Pointer.

Dieser Vorgang geschieht bei git add, also wenn die Datei auf dem Git-Index hinzu-

gefügt wird. Umgekehrt holt der smudge-Filter den binären Inhalt aus dem .git/lfs-

Ordner und ersetzt den Pointer durch die korrekten Inhalte.

Zu den Filtern werden noch Git-Hooks installiert, die sich unter anderem um den

Upload und Download der Binärdateien vom LFS-Speicherplatz kümmern. Doch

damit genug der Theorie; wir fügen jetzt das Foto zum LFS-Speicher hinzu. Damit das

funktioniert, müssen wir Git anweisen, welche Dateitypen mit LFS verwaltet werden

sollen.

git lfs track '*.jpg'
git add .
git status

On branch master
Changes to be committed :

(use "git restore --staged <file >..." to unstage)
new file: .gitattributes
new file: content /posts /2019 -09 -19/index.md
new file: content /posts /2019 -09 -19/intergeo .jpg

Wir lassen also Dateien, die auf .jpg enden, von LFS verwalten. Bei dem anschlie-

ßenden add und status sehen wir keine Veränderung. Das ist auch das besonders

Angenehme anGit LFS: Ist LFS einmal eingerichtet, brauchenwir uns umnichtsmehr

zu kümmern, wir merken gar nicht, dass es aktiv ist.

340

�

�

“buch” — 2020/7/28 — 15:55 — page 341 — #337

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

Für unser lokales Repository bringt LFS noch keinen entscheidenden Vorteil: Alle Ver-

änderungen – auch an den von LFS verwalteten Bildern – bleiben im lokalen Ordner

.git/lfs. Wir legen jetzt unser Remote Repository bei GitHub an und übertragen den

aktuellen Stand dorthin:

git remote add origin git@github .com:git-buch/my-blog.git
git push -u origin master

Uploading LFS objects : 100% (1/1) , 1.1 MB | 0 B/s, done.
Enumerating objects : 21, done.
...

* [new branch] master -> master
Branch 'master ' set up to track remote branch 'master ' from
'origin '.

Wir sehen einen neuen Eintrag in der sonst schon bekannten Ausgabe von git push:

Mit Uploading LFS objects teilt uns Git mit, dass die von LFS verwalteten Objekte

getrennt vom restlichen Repository hochgeladenwerden. Wie bereits erwähnt, bleibt

der Vorgang völlig transparent, und wir merken gar nicht, dass die Bilder in irgend-

einer Weise anders verwaltet werden. Einzig der Hinweis in der GitHub-Oberflä-

che Stored with Git LFS zeigt uns, dass das Bild von LFS verwaltet wird (siehe

Abbildung 10.4).

Abbildung 10.4 Ein mit LFS verwaltetes Foto in der GitHub-Oberfläche

Wir haben inzwischen einen zweiten Blogeintrag hinzugefügt, und uns fällt auf, dass

wir mit der Qualität der Bilder gar nicht zufrieden sind. Daher bearbeiten wir beide

Bilder, committen und pushen die Änderungen. In unserem lokalen .git/lfs-Ordner

sind jetzt jeweils zwei Versionen der Bilder gespeichert, und sie belegen insgesamt 3,6

MByte an Platz (das Programm du errechnet die Disk Usage eines Ordners).

341

�

�

“buch” — 2020/7/28 — 15:55 — page 342 — #338

�

�

�

�

�

�

10 Git in der Praxis

du -h .git/lfs

480K .git/lfs/objects /ca/99
...
3,6M .git/lfs

Spannend wird die Sache, wenn wir einen neuen Klon von unserem Remote Repo-

sitory anlegen und darin die Größe des .git/lfs-Ordners untersuchen. Im letzten

Schritt von git clone werden die oben angesprochenen Filter aktiv: Git holt nur-

mehr genau die Version der Bilder vom LFS-Speicherplatz, die für den aktuellen HEAD

gebraucht werden. Die Ausgabe von du -h ergibt dann folglich nur mehr 1,1 MByte,

was der Summe der beiden geänderten Bilder entspricht.

git clone https://github .com/git-buch/my-blog.git

Cloning into 'my-blog '...
...
Filtering content : 100% (2/2) , 1.01 MiB | 576.00 KiB/s, done.

du -h my-blog/.git/lfs

...
1,1M my-blog/.git/lfs

Mit Ausnahme von Gitolite unterstützen alle in diesem Buch vorgestellten Git-

Hosting-Provider Git LFS. Allerdings können Sie bei Azure Repos SSH nicht verwen-

den, wenn Sie LFS in Ihrem Repository aktiviert haben. Bei Gitea muss Git LFS in der

Konfigurationsdatei explizit aktiviert werden.

Als Abschluss dieses Beispiels wollen wir unseren Blog natürlich noch veröffentli-

chen. Dazu werden wir Ihnen gleich zwei verschiedene Möglichkeiten zeigen. Die

erste Variante kann über ein paar Mausklicks in Ihrem Webbrowser aktiviert werden

und verwendet den Dienst von Netlify, die zweite Variante besteht aus einer GitHub

Action und verwendet GitHub Pages.

Deploy mit Netlify

Netlify hat sich genau auf diesen Use Case spezialisiert. Der Dienst verbindet sichmit

GitHub (oder auch GitLab oder Bitbucket) und konvertiert automatisch Ihren Quell-

code mit einem Static Site Generator Ihrer Wahl und liefert die fertige Webseite auf

dem eigenen Content Delivery Network (CDN) aus.

Zum Einstieg bietet Netlify einen kostenlosen Zugang an, auf dem immerhin bis zu

500 Projekte gehostet werden können.

342

�

�

“buch” — 2020/7/28 — 15:55 — page 343 — #339

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

Um unser Projekt auf Netlify online zu bringen, beginnen wir auf der Website von

Netlify https://www.netlify.com. Unter Sign Up erlauben wir den Zugriff auf unseren

GitHub-Account. Im folgenden Assistenten werden wir durch drei Schritte geführt, in

denen neben demGitHub-Repository auch das Build-Kommando angegeben werden

muss. Da Netlify erkennt, dass es sich bei unserem Repository um eine Hugo-Seite

handelt, ist das Feld schon korrekt ausgefüllt (siehe Abbildung 10.5).

Abbildung 10.5 Der Import unseres GitHub-Projekts in Netlify

Netlify stellt uns automatisch einen Domainnamen zur Verfügung (in unserem Fall

ist das nervous-ardinghelli-90e87e.netlify.app), und wir können optional einen

eigenen DNS-Namen für die Seite angeben (wir verwenden my-blog.gitbuch.info). In

der eigenen DNS-Verwaltung müssen wir dazu einen CNAME-Eintrag für den zufällig

generierten Netlify-Hostname und den eigenen Domainnamen erstellen. Beim ers-

ten Deployment erstellt Netlify automatisch SSL-Zertifikate für beide Namen, und

unser Blog ist binnenwenigerMinutenmitHTTPS online. Daswar einfach! Sobaldwir

eine Änderung auf GitHub hochladen, startet Netlify einen neuen Build- und Deploy-

Vorgang, und die Updates sind online.

Deploy mit GitHub Action und GitHub Pages

Wenn Sie dengerade vorgestelltenWorkflowmitNetlify nicht verwendenwollen, kön-

nen Sie automatische Builds natürlich auch auf GitHub laufen lassen. Die GitHub

343

�

�

“buch” — 2020/7/28 — 15:55 — page 344 — #340

�

�

�

�

�

�

10 Git in der Praxis

Action dazu müssen Sie gar nicht selbst schreiben, denn wenig überraschend hat das

schon jemand gemacht.

Im Zusammenhang mit Git LFS und Submodulen wollen wir aber noch auf ein paar

Details aufmerksam machen. Die schon aus Abschnitt 5.2 bekannte GitHub Action

checkout wird um zwei Parameter erweitert, damit Submodule korrekt geklont und

die Filter für LFS aktiviert werden:

on:
push:

branches : [master]
pull_request :

branches : [master]
jobs:

build :
runs -on: ubuntu -latest
- uses: actions /checkout@v2

with:
lfs: true
submodules : true

In drei Schritten verwandeln wir unseren Quellcode in HTML und laden das Ergeb-

nis mit Push in einen Branch in unserem Repository hoch. Wir verwenden dazu zwei

Actions vom GitHub-User peaceiris, die im GitHub Marketplace zum Download zur

Verfügung stehen.

Der erste Schritt, denwir Hugo setup benannt haben, installiertmitHilfe der Action

peaceiris/actions-hugo das Programm Hugo in unserer Umgebung. Der Zusatz

extended: true lädt die erweiterte Hugo-Version, die auch Sass-Stylesheets umwan-

deln kann.

Im Build-Schritt starten wir Hugo ohne weitere Parameter, wodurch die fertige

Webseite im Ordner public gespeichert wird.

Im dritten und letzten Schritt wird der Inhalt des public-Ordners mit der Action

peaceiris/actions-gh-pages in den Branch gh-pages hochgeladen (Commit und

Push). Das geheime GITHUB_TOKEN, das für die Push-Aktion benötigt wird, ist als

Variable in allen GitHub Actions automatisch verfügbar.

- name: Hugo setup
uses: peaceiris /actions -hugo@v2 .4.12
with:

extended : true
- name: Build

run: hugo
- name: Deploy

uses: peaceiris /actions -gh-pages@v3

344

�

�

“buch” — 2020/7/28 — 15:55 — page 345 — #341

�

�

�

�

�

�

10

10.5 Ein Blog mit Git und Hugo

with:
github_token : ${{ secrets .GITHUB_TOKEN }}
publish_dir : ./public

Beachten Sie, dass der gh-pages-Branch nur die fertige Webseite enthält und nicht

den Quellcode aus dem Master-Branch. Die Ordnerstruktur zwischen master und

gh-pages ist völlig unterschiedlich, was für unsere bisherige Verwendung von Bran-

ches sehr ungewöhnlich ist. Um dieses Verhalten zu erreichen, sieht die GitHub-

Weboberfläche die Option vor, den gh-pages-Branch öffentlich zugänglich zumachen

(siehe Abbildung 10.6).

Abbildung 10.6 Die Einstellung für GitHub Pages am Branch gh-pages in GitHub

Sobald wir diese Einstellung aktivieren (Settings •Options •GitHub Pages) und

unsere GitHub Action fehlerfrei läuft, ist der Blog bei GitHub online.

Wir haben das Layout der Startseite (eigentlich der Komponente, die Listen in Hugo

erzeugt) noch etwas angepasst, damit die Bilder nicht so viel Platz einnehmen.

Den Quellcode für das gesamte Beispiel finden Sie natürlich auf unserem GitHub-

Account:

https://github.com/git-buch/my-blog

345

Auf einen Blick

1	 Git in zehn Minuten ..	 13

2	 Learning by Doing ..	 21

3	 Git-Grundlagen ..	 75

4	 Datenanalyse im Git-Repository ...	 153

5	 GitHub ...	 177

6	 GitLab ..	 209

7	 Azure DevOps, Bitbucket, Gitea und Gitolite ...	 235

8	 Workflows ..	 257

9	 Arbeitstechniken ..	 281

10	 Git in der Praxis ..	 315

11	 Git-Probleme und ihre Lösung ..	 347

12	 Kommandoreferenz ..	 369

Auf einen Blick

�

�

“buch” — 2020/7/28 — 15:55 — page 5 — #1

�

�

�

�

�

�

Inhalt

Inhalt

Vorwort .. 9

1 Git in zehnMinuten ... 13

1.1 Was ist Git? .. 13

1.2 Software von GitHub herunterladen ... 16

1.3 Programmieren lernen mit Backup und Undo .. 18

2 Learning by Doing .. 21

2.1 git-Kommando installieren ... 21

2.2 GitHub-Account und -Repositorys einrichten ... 28

2.3 Mit dem Kommando »git« arbeiten ... 32

2.4 Authentifizierung ... 45

2.5 Git spielerisch lernen (Githug) ... 55

2.6 Entwicklungsumgebungen und Editoren ... 56

2.7 An einem fremden GitHub-Projekt mitarbeiten .. 70

2.8 Synchronisation und Backups .. 72

3 Git-Grundlagen ... 75

3.1 Nomenklatur ... 75

3.2 Die Git-Datenbank ... 80

3.3 Commits .. 84

3.4 Commit-Undo ... 92

3.5 Branches .. 100

3.6 Merge ... 105

3.7 Stashing .. 113

3.8 Remote Repositorys ... 115

3.9 Merge-Konflikte lösen .. 126

3.10 Rebasing .. 133

3.11 Tags ... 139

3.12 Referenzen auf Commits ... 144

3.13 Git-Interna .. 149

5

�

�

“buch” — 2020/7/28 — 15:55 — page 6 — #2

�

�

�

�

�

�

Inhalt

4 Datenanalyse im Git-Repository ... 153

4.1 Commits durchsuchen (git log) ... 153

4.2 Dateien durchsuchen .. 164

4.3 Fehler suchen (git bisect) ... 169

4.4 Statistik und Visualisierung .. 171

5 GitHub .. 177

5.1 Pull-Requests ... 178

5.2 Actions ... 183

5.3 Paketmanager (GitHub Packages) ... 191

5.4 Automatische Sicherheits-Scans ... 194

5.5 Weitere GitHub-Funktionen ... 198

5.6 GitHub CLI .. 204

6 GitLab .. 209

6.1 On Premises versus Cloud ... 210

6.2 Installation ... 211

6.3 Das erste Projekt ... 218

6.4 Pipelines .. 220

6.5 Merge-Requests .. 231

6.6 Web-IDE .. 233

7 Azure DevOps, Bitbucket, Gitea und Gitolite 235

7.1 Azure DevOps .. 235

7.2 Bitbucket ... 240

7.3 Gitea ... 242

7.4 Gitolite ... 252

8 Workflows ... 257

8.1 Anweisungen für das Team ... 257

8.2 Solo-Entwicklung ... 258

8.3 Feature-Branches für Teams ... 260

8.4 Merge/Pull-Requests .. 267

8.5 Long-Running Branches – Gitflow .. 271

6

�

�

“buch” — 2020/7/28 — 15:55 — page 7 — #3

�

�

�

�

�

�

Inhalt

8.6 Trunk-based Development .. 276

8.7 Welcher Workflow ist der Richtige? ... 279

9 Arbeitstechniken ... 281

9.1 Hooks ... 281

9.2 Prägnante Commit-Messages .. 287

9.3 Submodule und Subtrees .. 294

9.4 Mehr Komfort in Bash und Zsh .. 304

9.5 Zwei-Faktor-Authentifizierung .. 307

10 Git in der Praxis .. 315

10.1 Etckeeper .. 316

10.2 Dotfiles mit Git verwalten ... 319

10.3 Zugriff auf Subversionmit git-svn .. 326

10.4 Von SVN zu Git migrieren .. 330

10.5 Ein Blog mit Git und Hugo ... 335

11 Git-Problemeund ihre Lösung .. 347

11.1 Git-Fehlermeldungen (Ursache und Lösung) ... 347

11.2 Merge für eine einzelne Datei .. 354

11.3 Dateien permanent aus Git löschen .. 355

11.4 Ein Projekt aufteilen .. 363

11.5 Commits in einen anderen Branch verschieben ... 364

12 Kommandoreferenz ... 369

12.1 git-Kommando .. 369

12.2 Revisionssyntax .. 401

12.3 git-Konfiguration .. 402

Index ... 409

7

