Bernd Ogg|
Michael Kofler

o @it effektiv nutzen und sicher administrieren
¢ Features von GitHub und GitLab einsetzen
e Best Practices & Workflows fiir eigene Repositorys

® Rheinwerk

@ Beispiele zum Download und Klonen Computing

Vorwort

Vorwort

Immer, wenn mehrere Personen gemeinsam an einem Softwareprojekt arbeiten,
braucht es ein System, um alle durchgefiihrten Anderungen nachvollziehbar zu spei-
chern. Gleichzeitig gibt ein derartiges Versionsverwaltungssystem allen Entwicklern
Zugriff auf das gesamte Projekt. Jeder Programmierer weif3, was die anderen zuletzt
gemacht haben, jede Entwicklerin kann den Code der anderen ausprobieren und das
Zusammenspiel mit ihren eigenen Anderungen testen.

In der Vergangenheit gab es viele Versionsverwaltungssysteme, z. B. CVS, Subversion
(SVN) oder Visual SourceSafe. Im vergangenen Jahrzehnt hat sich aber Git zum De-
facto-Standard entwickelt.

Einen wesentlichen Anteil an diesem Erfolg hatte die Webplattform GitHub, die den
Einstieg und die Nutzung von Git wesentlich vereinfachte. Unzahlige Open-Source-
Projekte nutzen das kostenlose Angebot GitHubs zum Projekt-Hosting. Kommer-
zielle Kunden, die den Quellcode nicht veroffentlichen wollten, zahlen fur diesen
Service. GitHub ist nattirlich nicht die einzige Git-Plattform: Wichtige Konkurrenten
sind z.B. GitLab, Azure DevOps und Bitbucket. Dessen ungeachtet kaufte Microsoft
2018 GitHub fiir unglaubliche 7,5 Milliarden US$. Im Gegensatz zu anderen Ubernah-
men hat dies bisher der Popularitat von GitHub nicht geschadet.

Die Geschichte von Git

Git entstand, weil Linus Torvalds fir die Weiterentwicklung des Linux-Kernels ein
neues Versionsverwaltungssystem brauchte. Die Entwicklergemeinde hatte zuvor das
Programm BitKeeper verwendet. Linux Torvalds war mit dem Programm grundsatz-
lich zufrieden, eine Lizenzanderung machte aber einen Wechsel erforderlich. Von
den damals verfugbaren Open-Source-Programmen gentigte keines seinen hohen
Ansprichen.

So stoppte der Linux-Chefentwickler kurzzeitig seine Hauptarbeit und schuf in nur
zwei Wochen das Grundgerust von Git. Der Name Git steht sinngemaf3 fiir Blodmann
oder Depp, und auch die Hilfeseite man git bezeichnet das Programm als the stupid
content tracker.

Was fiir ein Understatement das ist, wurde erst nach und nach klar, als Linus Tor-
valds die Weiterentwicklung von Git langst wieder aus der Hand gegeben hatte: Nicht
nur die Kernel-Entwickler stellten ihre Arbeit rasch und problemlos auf Git um, in
den folgenden Jahren wechselten immer mehr Softwareprojekte auch aufderhalb der
Open-Source-Welt zu Git.

Vorwort

Den endgiiltigen Durchbruch schaffte Git, als sich Webplattformen wie GitHub und
GitLab etablierten. Diese Websites vereinfachen das Hosting von Git-Projekten enorm
und sind heute aus dem Git-Alltag nicht mehr wegzudenken. (Selbst der Linux-Kernel
befindet sich mittlerweile auf GitHub!)

Ein bisschen ist das eine Ironie des Schicksals: Linus Torvalds wichtigstes Ziel beim
Design von Git war es, ein dezentrales Versionsverwaltungssystem zu schaffen. Aber
erst der zentralistische Ansatz von GitHub und Co. machte Git fur Entwickler abseits
der Guru-Liga richtig attraktiv.

Es gibt heute Stimmen, die die Bedeutung von Git ebenso hoch einschatzen wie die
von Linux. Damit ist es Linus Torvalds gleich zwei Mal gelungen, einen Bereich des
Software-Universums vollstindig auf den Kopf zu stellen.

Jeder verwendet es, keiner versteht es

Bei aller Begeisterung fiir Git: Es ist untibersehbar, dass Git von Profis flr Profis kon-
zipiert wurde. Wir wollen in diesem Buch gar nicht erst den Eindruck erwecken, Git
ware einfach. Das ist es nicht:

» Haufig fihrt nicht ein Weg zum Ziel, vielmehr gibt es mehrere Wege. Fiir die, die
Git schon beherrschen, ist das niitzlich; aber wenn Sie Git gerade lernen, verwirrt
diese Vielfalt.

» Vielen Open-Source-Projekten wird der Vorwurf gemacht, sie seien schlecht doku-
mentiert. Das kann man bei Git wirklich nicht sagen. Im Gegenteil! Jedes Git-
Kommando, jede Anwendungsmaoglichkeit wird in man-Seiten sowie auf der Web-
seite https://git-scm.com/docs so ausfihrlich und mit allen erdenklichen Sonder-
fallen erlautert, dass man sich in den Details geradezu verliert.

» Erschwerend kommt hinzu, dass es dhnliche Begriffe mit unterschiedlichen Bedeu-
tungen gibt, leicht zu verwechselnde Subkommandos, die stark voneinander
abweichende Aufgaben erfiillen. Manche Begriffe haben je nach Kontext unter-
schiedliche Bedeutungen oder werden in der Dokumentation uneinheitlich ver-
wendet.

Wir geben es ganz offen zu: Trotz jahrelanger Git-Praxis haben wir beim Schreiben
dieses Buchs noch eine Menge Details dazugelernt!

Uber dieses Buch

Natirlich ist es moglich, Git sehr minimalistisch zu verwenden. Allerdings konnen
kleine Abweichungen von der taglichen Routine dann zu tiberraschenden und oft
unverstandlichen Nebenwirkungen oder Fehlern fithren.

10

Vorwort

Jeder Git-Einsteiger kennt das Gefiihl, wenn ein Git-Kommando eine unverstandliche
Fehlermeldung liefert: Mit kaltem Schweif3 tiberlegt man, ob man gerade das Reposi-
tory fiir alle Entwickler nachhaltig zerstort hat und wen man bitten konnte, Git mit
den richtigen Kommandos doch zur Weiterarbeit zu tiberreden.

Deswegen ist es nicht zielfihrend, Git zu beschreiben, ohne dabei in die Tiefe zu
gehen. Erst ein gutes Verstandnis fur die Funktionsweise von Git gibt die notwendige
Sicherheit, Merge-Konflikte oder andere Probleme sauber beheben zu kénnen.

Gleichzeitig war uns aber klar, dass dieses Buch nur funktionieren kann, wenn wir den
wesentlichen Funktionen den Vorrang geben. Trotz 400 Seiten ist dieses Buch nicht
die allumfassende Anleitung zu Git, die auch den letzten Sonderfall bertcksichtigt
und jedes noch so exotische Git-Subkommando vorstellt. Wir haben daher in diesem
Buch die Spreu vom Weizen getrennt.

Dieses Buch ist in Uiberschaubare Kapitel gegliedert, die Sie wie bei einem Baustein-
system nach Bedarflesen konnen:

» Nach einer kurzen Einflihrung (»Git in zehn Minuten«) fiihren wir in den Kapi-
teln »Learning by Doing«, »Git-Grundlagen« und schlief3lich »Datenanalyse im
Git-Repository« in den Umgang mit Git ein. Dabei konzentrieren wir uns auf die
Nutzung von Git auf Kommandoebene und gehen nur am Rande auf Plattformen
wie GitHub bzw. auf andere Benutzeroberflachen ein.

Git-Einsteigern empfehlen wir, mit diesen vier Kapiteln zu starten. Selbst wenn Sie
schon etwas Git-Erfahrung haben, sollten Sie sich unbedingt ein paar Stunden Zeit
nehmen, um »Git-Grundlagen« zu lesen und einige der dort vorgestellten Techni-
ken (Merging, Rebasing etc.) in einem Test-Repository auszuprobieren.

» Die folgenden drei Kapitel — »GitHub«, »GitLab« sowie »Azure DevOps, Bitbucket,
Gitea und Gitolite« — stellen die wichtigsten Git-Plattformen vor. Gerade fiir
komplexe Projekte bieten diese Plattformen niitzliche Zusatzfunktionen, z. B. um
automatische Tests durchzufiihren oder um Continuous Integration zu implemen-
tieren.

Selbstverstandlich berticksichtigen wir auch den Fall, dass Sie Thr Git-Repository
selbst hosten mochten. Mit GitLab, Gitea oder Gitolite 1asst sich dieser Wunsch rela-
tiv leicht realisieren.

» Damit wenden wir uns von den Grundlagen der Praxis zu: Im Kapitel »Workflows«
zeigen wir populdre Muster, wie Sie die Arbeit vieler Entwickler mit Git in geord-
nete Bahnen (Branches) leiten.

Im Kapitel »Arbeitstechniken« stehen fortgeschrittene Git-Funktionen im Vorder-
grund, z. B. Hooks, Submodule, Subtrees sowie die Zwei-Faktor-Authentifizierung,
die alle grofieren Git-Plattformen unterstiitzen.

n

Vorwort

»Git in der Praxis« zeigt, wie Sie auf Linux-Systemen Konfigurationsdateien (Dot-
files) bzw. das ganze /etc-Verzeichnis mit Git versionieren, wie Sie ein Projekt von
SVN auf Git umstellen oder wie Sie eine simple Website schnell und einfach mit Git
und Hugo realisieren.

»Giangige Probleme und ihre Losungen« helfen Thnen bei schwer verstandlichen
Fehlermeldungen aus der Sackgasse. Hier finden Sie auch Anleitungen, wie Sie
Sonderwtinsche realisieren — z. B. wie Sie grofie Dateien aus dem Git-Repository
entfernen oder wie Sie einen Merge-Vorgang nur fiir eine ausgewahlte Datei durch-
fihren.

» Die »Kommandoreferenz« fasst in aller Kiirze die wichtigsten Git-Kommandos und
deren Optionen zusammen. Dabei haben wir uns vom Motto »weniger ist mehr«
leiten lassen. Unser Ziel war nicht eine vollstindige Referenz, sondern eine Art
»Essenz von Git«.

Beispiel-Repositorys

Einige Beispiele aus dem Buch stellen wir hnen auf GitHub zur Verfligung. Werfen
Sie einen Blick auf die Begleitwebsite zum Buch bzw. direkt auf GitHub!
https://gitbuch.info

https://github.com/git-buch

Lieber Leser, liebe Leserin!

Uns ist bewusst, dass Sie vielleicht nicht mit grofRer Freude die Lekttire dieses Buchs
beginnen: Sie wollen oder miussen fiir ein Projekt Git verwenden. Aber Ihr Ziel ist
nicht Git an sich, vielmehr wollen Sie Code produzieren, Thr Projekt vorantreiben.
Sie haben eigentlich weder Zeit noch Lust, sich mit Git zu beschéftigen — Sie wollen
gerade so viel wissen, dass Sie Git fehlerfrei anwenden konnen.

Wir haben dafiir Verstandnis. Trotzdem empfehlen wir [hnen dringend, ein paar Stun-
den mehr als geplant zu investieren, um Git systematisch kennenzulernen.

Wir versprechen Ihnen: Sie gewinnen diese Zeit spater zurtick! Zu wenig Git-Verstand-
nis bedeutet zwangslaufig, dass Sie immer wieder im Internet nach der Losung fiir ein
gerade aufgetretenes Problem suchen miissen (oft unter Zeitdruck).

Auch wenn Sie aktuell primar Thr Projekt im Fokus haben: Git-Kenntnisse sind lang-
fristig eine Kernkompetenz, die Sie als Entwickler(in) in vielen zukiinftigen Projekten
brauchen werden! In diesem Sinne wiinschen wir Thnen viel Erfolg mit Git!

Michael Kofler (https://kofler.info)
Bernd Oggl (https.//webman.at)

12

Kapitel 4
Datenanalyse im Git-Repository

In diesem Kapitel geht es darum, ein Repository gezielt nach Daten zu durchsuchen:
Welche Dateien sind unter Versionskontrolle? In welchen Commits wurde eine Datei
zuletzt gedndert? Welche Anderungen wurden dabei durchgefiihrt? In welchen Com-
mits kommt ein bestimmter Begriff in der Commit-Message vor?

Wie im vorigen Kapitel konzentrieren wir uns dabei auf den Einsatz des Kommandos
git und gehen nur am Rande auf andere Tools ein:

» Commits durchsuchen: git log, git reflog, git tag, git shortlog
» Dateien durchsuchen: git show, git diff,git grep, git blame

» Fehler suchen: git bisect

» Statistik und Visualisierung: git shortlog, gitstats, Gitgraph.js

Wir wollen aber nicht unerwédhnt lassen, dass Entwicklungsumgebungen, Editoren,
Weboberflachen von Git-Plattformen oder spezielle (oft kommerzielle) Programme
wie GitKraken beim Durchsuchen des Git-Repositorys mehr Komfort bieten. Auf
unseren personlichen Favoriten, das Programm VSCode in Kombination mit der
Erweiterung GitLens, haben wir ja schon mehrfach hingewiesen.

Aber wie so oft gilt auch hier: Wenn Sie einmal verstanden haben, wie Git intern
funktioniert und welche Funktionen es auf Kommandoebene gibt, fallt Thnen die
Anwendung solcher Tools umso leichter. Aufierdem stofit jedes Tool friher an die
Grenzen als das Kommando git!

4.1 Commits durchsuchen (git log)

Das Kommando git log zeigt, ausgehend vom aktuellen Commit, die vorangegan-
genen Commits an. Das ist moglich, weil zusammen mit jedem Commit auch eine
Referenz auf den Parent-Commit gespeichert wird. (Bei Merge-Commits gibt es ent-
sprechend mindestens zwei Parents.)

StandardmaRig zeigt git log zu jedem Commit alle Metadaten (Datum, Autor, Zweig
etc.) sowie die jeweilige Commit-Message an (siehe Abbildung 4.1). Wenn es mehr

153

4 Datenanalyse im Git-Repository

Commits gibt, als im Terminalfenster Platz finden, konnen Sie mit den Cursortasten
durch die Commit-Abfolge scrollen. (o] beendet die Anzeige.

kofler@p1: ~/no-sync/github-clones/linux

HEAD -> origin/master, origin/HEAD
IMerge: 3301f6ae2d4c f17936993af0
lAuther: Linus Torvalds <torvalds@linux-foundation.org>
Date: Wed May 27 11:03:24 20208 -0700

Merge tag 'fsnotify_for_v5.7-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs

Pull fanotify FAN_DIR_MODIFY disabling from Jan Kara:
"A single patch that disables FAN_DIR_MODIFY support that was merged in
this merge window.

when discussing further functionality we realized it may be more
logical to guard it with a feature flag or to call things slightly
differently (or maybe not) so let's not set the API in stone for now."

* tag 'fsnotify for_v5.7-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
fanetify: turn off support for FAN_DIR_MODIFY

IMerge: ©@6f38alc3dc eecs8fdez77e3
lAuthor: Linus Torvalds <torvalds@linux-foundation.org>
Date: Wed May 27 108:58:19 2020 -0700

Merge branch 'for-5.7-fixes' of git://git.kernel.org/pubfscm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- Reverted stricter synchrenization for cgroup recursive stats which
was prepping it for event counter usage which never got merged. The

change was causing performation regressions in some cases.

- Restore bpf-based device-cgroup operation even when cgroupl device
cgroup is disabled.

- An out-param init fix.
* 'for-5.7-fixes' of git://git.kernel.org/pub/sem/linux/kernel/git/tj/cgroup:
device_cgroup: Cleanup cgroup eBPF device filter code

xattr: fix uninitialized out-param
Revert "cgroup: Add memory barriers to plug cgroup_rstat_updated() race window"

lAuthor: Amir Goldstein <amir73il@gmail.com>
Date: Wed May 27 15:54:55 2020 +0300
fanotify: turn off support for FAN_DIR_MODIFY

FAN_DIR_MODIFY has been enabled by commit 44d7e5be37eb ("fanotify:
report name info for FAN_DIR_MODIFY event") inm 5.7-rcl. Now we are

Abbildung 4.1 Commits des Linux-Kernels in einem Terminalfenster

Spielwiese Linux-Kernel

Wenn Sie sich gerade in Git einarbeiten, haben Sie vielleicht noch kein grof3es eigenes
Git-Repository. Verwenden Sie einfach den Linux-Kernel! Mit fast einer Million Com-
mits von unzahligen Entwicklern und tiber 600 mit Tags gekennzeichneten Releases
(Stand Mitte 2020) finden Sie eine wunderbare Spielwiese vor — und sehen auRerdem,
wie schnell Git selbst bei riesigen Repositorys funktioniert. Der einzige Nachteil: Mit
mehr als 4 GByte ist der Platzbedarf auf lhrer Festplatte/SSD nicht unerheblich.

git clone https://github.com/torvalds/linux.git

Intern wird die Ausgabe von git log durch einen sogenannte Pager geleitet, wobei
tiblicherweise das Kommando less zum Einsatz kommt. Dementsprechend gelten
die bei less tiblichen Tastenkiirzel (siehe Tabelle 4.1). Besonders praktisch ist die Such-
funktion, die Sie mit starten.

154

4.1 Commits durchsuchen (git log)

Tastenkiirzel | Funktion

Cursortasten | Scrollen durch den Text.

Springt an den Beginn des Texts.

(o]+(c] Springt an das Ende des Texts.
abc Sucht vorwarts.
abc Sucht riickwarts.

Wiederholt die letzte Suche (vorwarts).
(o)+(N] Wiederholt die letzte Suche (riickwarts).
(a] Beendet less.

Zeigt die Onlinehilfe an.

Tabelle 4.1 »less«-Tastenkiirzel

Wenn git die Buchstaben &, 6, i und 3, andere internationale Zeichen oder Emojis feh-
lerhaft anzeigt, liegt dies oft am fehlerhaften Zusammenspiel zwischen git und dem
Textanzeigekommando less. Abhilfe schafft voriibergehend die Option --no-pager,
dauerhaft das folgende Kommando:

git config --global core.pager 'less --raw-control-chars'

Ubersichtliches Logging

Haufig zeigt git log mehr Details an, als Sie eigentlich brauchen. Dafiir fehlen viel-
leicht andere Informationen. Abhilfe schaffen die folgenden zwei Optionen:

» --graph: visualisiert Zweige (ASCII-Art)

» --oneline: fasst Metadaten und Commit-Message in einer Zeile zusammen

Umgekehrt fehlt im Logging vielleicht genau die Information, nach der Sie suchen:

--all: zeigt auch Commits anderer Zweige an
--decorate: zeigt auch Tags an
--name-only: listet die verdnderten Dateien auf

vV v.v v

--name-status: listet die Art der Anderungen pro Datei auf (z. B. M fiir modified, D fir
deleted, A fiir added)
» --pretty=online|short|medium|full|fuller|...: vordefinierte Ausgabeformate
flir die Metadaten und die Commit-Message
--numstat: listet die Anzahl der geanderten Zeilen pro Datei auf
» --stat:listet den Umfang der Anderungen pro Datei als Balkendiagramm auf

155

4 Datenanalyse im Git-Repository

Es ist eine gute Idee, die Wirkung der Optionen einfach einmal auszuprobie-
ren. Die meisten Optionen kénnen miteinander kombiniert werden. Abbildung 4.2
zeigt nochmals die Commits des Linux-Kernels, diesmal mit den Optionen --graph
--oneline. Eine detailliertere Beschreibung der Syntax von git log folgt in Kapitel 12,
»Kommandoreferenz«.

kofler@p1: ~/no-sync/github-clones/linux

HEAD -> origin/master. origin/HEAD) Merge tag 'fsnotify_for_vs.7-rc8' of git://git.kernel.org/pub/scn/linux/kernel/git/jack/linux-fs

b
|

| * fanotify: turn off support for FAN_DIR_MODIFY

* Merge branch 'for-5.7-fixes' of git://git.kernel.org/pub/scn/linux/kernel/git/tj/cgroup

device_cgroup: Cleanup cgroup eBPF device filter code
xattr: fix uninitialized out-param
Revert "cgroup: Add memory barriers to plug cgroup_rstat_updated() race window"
Merge branch 'exec-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiedern/user-namespace

exec: Always set cap_ambient in cap_bprm_set_creds
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arn

ARM: 8977/1: ptrace: Fix mask for thumb breakpoint hook
Merge branch 'uaccess' into fixes

ARM: uaccess: fix DACR mismatch with nested exceptions
ARM: uaccess: integrate uaccess_save and uaccess_restore
ARM: uaccess: consolidate uaccess asm to asm/uaccess-asm.h
ARM: 8973/1: Add missing newline terminator to kernel message
ARM: 8970/1: decompressor: increase tag size
Linux 5.7-rc7
Merge tag 'efi-urgent-2020-65-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

\ Merge tag 'efi-fixes-for-v5.7-rce' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/urgent
|

| tpm: check event log version before reading final events

Abbildung 4.2 Kompakte Commit-Darstellung mit Zweigvisualisierung

Eigene Formatierung (Pretty-Syntax)

Wenn Sie mit den vorgegebenen Formaten nicht zufrieden sind, kénnen Sie die
Ausgabe der Commits durch die Option --pretty=format'<fmt>" selbst formatieren.
Dabei setzt sich <fmt> aus printf-dhnlichen Codes zusammen. Unzdhlige weitere
Codes dokumentiert man git-log. Das Format fiir die Ausgabe von Datum und Uhr-
zeit kann zuséatzlich durch die Option --date=iso|local|short]... beeinflusst wer-
den.

Im folgenden Beispiel sollen nur der siebenstellige Commit-Code, die ersten 20 Zei-
chen des Entwicklernamens sowie die erste Zeile der Commit-Message angezeigt
werden:

git log --pretty=format:'%h %<(20)%an %s'

35870e2 Michael Kofler bugfix y
ebdb53f Bernd Oggl added validation
9ae3fb8 Michael Kofler feature x

Um den Autorennamen rot anzuzeigen, muss die Formatzeichenkette wie folgt umge-
baut werden:

git log --pretty=format:'%h %>(20)%Cred%an%Creset %s'

Die wichtigsten Codes listet Tabelle 4.2 fiir Sie auf.

156

4.1 Commits durchsuchen (git log)

Code Bedeutung

%H vollstandiger Hashcode

%h siebenstelliger Hashcode

%ad Author Date

%cd Commit Date

%an Name des Entwicklers (Author)

%ae E-Mail-Adresse des Entwicklers

%S erste Zeile der Commit-Message (Subject)
%b Rest der Commit-Message (Body)

%n neue Zeile

%<(20) nachste Spalte 20 Zeichen linksbiindig

%>(20) nachste Spalte 20 Zeichen rechtsbiindig

%Cred ab hier Ausdruck rot darstellen

%Cgreen | ab hier Ausdruck grin darstellen

%C. .. diverse weitere Farben

%Creset | Farbe zuriicksetzen

Tabelle 4.2 Pretty-Format-Codes

Commit-Messages durchsuchen

Mit der Option --grep 'pattern’ zeigtgit log nur die Commits an, in deren Message
der Suchbegriff vorkommt. Dabei wird auch die Grof3- und Kleinschreibung bertick-
sichtigt. Wenn Sie das nicht wollen, geben Sie zusatzlich die Option -i an.

Das folgende Kommando sucht in allen Commits (nicht nur in denen des aktuellen
Zweigs) nach dem Suchbegriff »CVE« in beliebiger Gro3- und Kleinschreibung:

git log --all -i --grep CVE

Leider werden die gefundenen Suchbegriffe nicht farblich hervorgehoben. Das kén-
nen Sie erreichen, indem Sie zuerst git log ohne die Option --grep ausfithren, den
resultierenden Ergebnistext dann mit dem Kommando grep filtern und schlie3-
lich durch less leiten. Diese Vorgehensweise ist allerdings nicht besonders effizient
und bietet weniger Optionen bei der Darstellung der Commits. (Die grep-Option
-5 bewirkt, dass aufier der gefundenen Zeile jeweils die fiinf Zeilen oberhalb und

157

4 Datenanalyse im Git-Repository

unterhalb dargestellt werden. Die less-Option -R ist notwendig, damit die von grep
weitergeleiteten Farbcodes korrekt verarbeitet werden.)

git log --all | grep -i -5 --color=always CVE | less -R

Commits suchen, die bestimmte Dateien verandern

Oft sind Sie nicht an allen Commits interessiert, sondern nur an Commits, in denen
eine bestimmte Datei oder irgendeine Datei aus einem bestimmten Verzeichnis ver-
andert wird. Dazu ibergeben Sie an git log den Datei- oder Verzeichnisnamen. Falls
es eine Namensgleichheit mit Tags, Branches etc. gibt, miissen Sie -- voranstellen.

Das folgende Kommando filtert die Commits des Linux-Kernels heraus, in denen
Dateien des ext4-Treibers (im Verzeichnis fs/ext4) verdndert wurden. Dank der
Option --stat werden auch gleich die Namen der gednderten Dateien und der
Umfang der Anderungen angezeigt.

git log --oneline --stat -- fs/ext4
959175845129 ext4: fix fiemap size checks for bitmap files
fs/extd/extents.c | 31 +++++++t+tttttttrtttttritttt+4
fs/extd4/ioctl.c | 33 44---mmmmm -
2 files changed, 33 insertions(+), 31 deletions(-)

54d3adbc29f0 ext4: save all error info in save error info()
and drop ext4 set errno()

fs/ext4/balloc.c | 7 bt
fs/ext4/block validity.c | 18 ++++t+t-----------
fs/ext4/exts.h [

At mm e e e e e e e e e
fs/ext4/exts _jbd2.c | 13 4ddd---mmmm--

Umbenannte Dateien verfolgen

git log -- <file> kommt nicht mit dem Fall zurecht, dass sich der Name einer
Datei andert. In solchen Fallen mussen Sie die zusatzliche Option --follow verwen-
den, alsogit log --follow -- <file>.

Commits eines bestimmten Entwicklers suchen

Mit der Option --author <name> oder --author <email> filtern Sie die Commits eines
bestimmten Entwicklers heraus. Wie bei --grep werden <name> bzw. <email> als Muster
interpretiert.

158

4.1 Commits durchsuchen (git log)

Mit dem folgenden Beispiel bleiben wir beim Dateisystem-Code des Linux-Kernels
und suchen nach Commits von Theodore Ts'o. Der Apostroph im Namen macht die
Suche nicht einfacher. Geben Sie stattdessen einfach einen Punkt an. (Der Punkt wird
gemaf} der Syntax flr regulare Ausdriicke als Platzhalter fiir ein beliebiges Zeichen
interpretiert.)

git log --oneline --author 'Theodore Ts.o'
Das zweite Beispiel sucht nach E-Mail-Adressen, in denen ibm.com vorkommt:

git log --author ‘'ibm.com'

Commit-Bereich einschranken (Range-Syntax)

Normalerweise liefert git log [<branch>] alle Commits des aktuellen bzw. des ange-
gebenen Zweigs bis zuriick zum Anfang der Commit-Abfolge, also in der Regel bis
hin zum ersten Commit des Repositorys. Das ist nicht immer sinnvoll. Oft sind Sie
nur an Commits interessiert, die spezifisch fiir einen Branch oder mehrere Branches
gelten, nicht aber an der gemeinsamen Basis. In solchen Fillen konnen Sie die Range-
Syntax <branchl>..<branch2> bzw. <branchl>...<branch2> verwenden. Anstelle von
Zweignamen konnen Sie auch Hashcodes oder andere Revisionsangaben verwenden
(siehe auch Abschnitt 3.12, »Referenzen auf Commits«).

I\ feature) F

Abbildung 4.3 Commits in zwei Zweigen

Als Ausgangspunkt flr die folgenden Beispiele gilt die in Abbildung 4.3 dargestellte
Commit-Abfolge, wobei die Commit-Messages einfach A, B, C usw. lauten. Momentan
ist der Zweig master aktiv. Ohne Range-Syntax werden jeweils alle Commits bis zurtick
zum initialen Commit A angezeigt:

git checkout master
git log --oneline

159

4 Datenanalyse im Git-Repository

ebdb53f (HEAD -> master) E
c9bb505 B
45c6cd4 A

git log --oneline feature
35870e2 (feature) F
9ae3fb8 D
b115d39 C
c9bb505 B
45c6cd4 A

git log master..feature zeigt nur die nicht mit master zusammengefiithrten Com-
mits des Feature-Zweigs. Die gemeinsame Basis fallt weg (hier also die Commits A und
B). Anstelle von master. . feature gibt es zwei alternative Schreibweisen, die eigentlich
syntaktisch klarer sind, in der Praxis aber selten vorkommen:

git log --oneline master..feature

git log --oneline feature --not master (gleichwertig)

git log --oneline feature “"master (auch gleichwertig)
35870e2 (feature) F
9ae3fb8 D
b115d39 C

git log master...feature mit drei Punkten funktioniert wie das obige Kommando,
berticksichtigt aber zusatzlich die seit der Trennung der Zweige in master durchge-
flhrten Commits. (Zum selben Ergebnis kommen Sie tibrigens auch, wenn Sie die
Branch-Namen vertauschen.)

git log --oneline master...feature
git log --oneline feature...master (gleichwertig)
35870e2 (feature) F
ebdb53f (HEAD -> master) E
9ae3fb8 D
b115d39 C

Commits zeitlich eingrenzen

Anstelle der im vorigen Abschnitt vorgestellten Range-Syntax, die den Commit-
Bereich anhand logischer Kriterien einschrankt, konnen Sie die von git log geliefer-
ten Commits mit Optionen auch zeitlich eingrenzen:

» --since <date> bzw. --after <date> zeigt nur Commits, die nach <date> entstan-
den sind.

» --until <date> bzw. --before <date> zeigt nur Commits, die vor/bis <date> durch-
gefiihrt wurden.

160

4.1 Commits durchsuchen (git log)

Wenn Sie die im Mai 2020 entstandenen Commits ansehen mochten, fiihren Sie das
folgende Kommando aus:

git log --after 2020-05-01 --until 2020-05-31

Commits sortieren

Standardmafdig werden Commits durch git log zeitlich sortiert, der neueste Commit
zuerst. Das andert sich allerdings, sobald Sie die Option --graph hinzufiigen. git log
biindelt jetzt zusammengehorende Commits. Wenn Sie die Commits trotz --graph
im zeitlichen Ablauf ordnen wollen, verwenden Sie die Zusatzoption --date-order.
Umgekehrt konnen Sie die Gruppierung der Commits nach Zweigen auch ohne
--graph mit --topo-order erreichen.

Die folgenden Beispiele beziehen sich wieder auf Abbildung 4.3. Allerdings wurden
die Zweige mit Merge verbunden:

git checkout master
git merge feature

Normalerweise ordnet git log die Commits streng chronologisch. (Die Option
--pretty ermoglicht hier eine einzeilige Darstellung samt Commit-Datum. Zur Verbes-
serung der Ubersicht haben wir die Originalausgaben ein wenig umformatiert und
Wochentage und Jahreszahlen entfernt.)

git log --pretty=format:"%h %cd %s" --date=local

52003e9 Jun 13 07:06:25 Merge branch 'feature'
35870e2 Jun 10 10:32:56
ebdb53f Jun 10 10:32:38
9ae3fb8 Jun 10 10:32:04
b115d39 Jun 10 10:30:36
c9bb505 Jun 10 10:29:24
45c6cd4 Jun 10 10:29:16

> N O m M

Mit der Option --graph werden die Commits C, D und F gruppiert:

git log --pretty=format:"%h %cd %s" --date=local --graph

* 52003e9 Jun 13 07:06:25 Merge branch 'feature'
A

| = 35870e2 Jun 10 10:32:56 F

| * 9ae3fb8 Jun 10 10:32:04 D

| * Db115d39 Jun 10 10:30:36 C

x | ebdb53f Jun 10 10:32:38 E

|/

* c9bb505 Jun 10 10:29:24 B

* 45c6cd4 Jun 10 10:29:16 A

161

4 Datenanalyse im Git-Repository

Die Option --date-order stellt trotz Zweigdarstellung die urspriingliche Ordnung wie-
der her:

git log --pretty=format:"%h %cd %s" --date=local --graph \
--date-order

52003e9 Jun 13 07:06:25 Merge branch 'feature'

*

|

| = 35870e2 Jun 10 10:32:56
x | ebdb53f Jun 10 10:32:38
| *= 9ae3fb8 Jun 10 10:32:04
| =

|

*

*

N O m M

b115d39 Jun 10 10:30:36

c9bb505 Jun 10 10:29:24
45c6cd4 Jun 10 10:29:16

Author Date versus Commit Date

Zusammen mit jedem Commit werden zwei Zeitangaben gespeichert, das Author
Date und das Commit Date. Normalerweise stimmen beide Zeitangaben tberein. Bei
Commits, die durch Rebasing verandert wurden, ist das aber nicht der Fall: Dann gibt
das Author Date den Zeitpunkt an, zu dem der urspriingliche Commit entstanden ist.
Das Commit Date verweist auf den Zeitpunkt des Rebasing.

Wenn Sie beim Sortieren der Commits das Author Date berticksichtigen wollen, ver-
wenden Sie die Option --author-date-order. Die Commits werden nun wie bei
--topo-order gruppiert, innerhalb der Zweige (von denen es dank Rebasing tiblicher-
weise weniger oder gar keine gibt) wird aber das Author Date als Sortierkriterium
verwenden.

Markierte Commits (git tag)

git tag liefert eine Liste aller Tags. git tag <pattern> schriankt das Ergebnis auf
Tags ein, die dem Suchmuster entsprechen. Sobald Sie das gewiinschte Tag ermittelt
haben, konnen Sie sich mit git log <tagname> die Commits ansehen, die zu diesem
Release gefiihrt haben.

Alternativ konnen Sie mit git log --simplify-by-decoration nur solche Commits
anzeigen, die Tags enthalten oder auf die ein Zweig verweist. In grofien Repositorys
ist das aber vergleichsweise langsam.

git log zeigt normalerweise keine Tags an. Wenn Sie diese Zusatzinformation wiin-
schen, tUbergeben Sie an git log die Option --decorate. Wenn Sie dennoch eine
kompakte Anzeige wiinschen, kdnnen Sie --decorate wie bisher mit --oneline kom-
binieren.

162

4.1 Commits durchsuchen (git log)

Referenzlog (git reflog)

Immer wenn von der Commit-Abfolge (also dem Commit Log) die Rede ist, miissen
wir auch auf das Referenz-Log hinweisen: Es enthalt alle lokal durchgefiihrten Kom-
mandos, die den globalen HEAD oder den Head eines Zweiges verandert haben. Das
Kommando git reflog listet diese Aktionen samt den Hashcodes der Commits auf:

git reflog

ebdb53f (HEAD -> master) HEAD@{O0}: checkout: moving from
feature to master

35870e2 (feature) HEAD@{1}: commit: F

9ae3fb8 HEAD@{2}: checkout: moving from master to feature

ebdb53f (HEAD -> master) HEAD@{3}: commit: E

c9bb505 HEAD@{4}: checkout: moving from feature to master

9ae3fb8 HEAD@{5}: commit: D

Wenn Sie die detaillierte Ausgabe von git log wiinschen, aber gleichzeitig genau die
Commits sehen mochten, die git reflog liefert, fihren Sie git log mit der Option
--walk-reflog aus:

git log --walk-reflogs

commit ebdb53f0db624c6dd4d754940903c3be905a9be (HEAD -> master)
Reflog: HEAD@{0} (Michael Kofler <...>)

Reflog message: checkout: moving from feature to master
Author: Michael Kofler <...>

Date: Wed Jun 10 10:32:38 2020 +0200

commit 35870e24fb49bb77622e17f5844cfaeb515c0a00 (feature)
Reflog: HEAD@{1} (Michael Kofler <...>)

Reflog message: commit: F

Author: Michael Kofler <...>

Date: Wed Jun 10 10:32:56 2020 +0200

F

Anstelle von --walk-reflog konnen Sie auch die Option --reflog verwenden. Damit
wird jeder Commit nur einmal angezeigt. (Bei --walk-reflog kann der gleiche Commit
mehrfach auftauchen, z. B. immer dann, wenn Sie zuvor mit git checkout den Zweig
gewechselt haben.)

163

4 Datenanalyse im Git-Repository

4.2 Dateien durchsuchen

Wahrend wir uns Abschnitt 4.1, »Commits durchsuchen (git log)«, darauf konzentriert
haben, die Metadaten eines Repositorys zu durchsuchen, ist nun der Inhalt an der
Reihe: Welchen Inhalt hatte eine bestimmte Datei zu einem fritheren Zeitpunkt? Was
hat sich seither gedndert? Und wer ist dafir verantwortlich? Bei der Beantwortung
dieser und weiterer Fragen helfen ein ganzes Blindel von Kommandos, unter ande-
remgit show,git diffundgit blame.

Alte Versionen einer Datei ansehen (git show)

Das Kommando git show <revision>:<file> haben wir in Abschnitt 3.4, »Commit-
Undog, schon vorgestellt: Es gibt die Datei <file> in dem Zustand aus, den sie hatte,
als der Commit <revision> aktuell war. Wenn Sie also Version 2.0 Ihres Programms
mit dem Tag v2.0 gekennzeichnet haben und wissen wollen, wie die Datei index.php
damals aussah, fiihren Sie das folgende Kommando aus:

git show v2.0:index.php

Natirlich kénnen Sie die Ausgabe auch in eine andere Datei umleiten, damit Sie beide
Versionen (die aktuelle und die alte) parallel zur Verfligung haben:

git show v2.0:index.php > old index.php

Unterschiede zwischen Dateien ansehen (git diff)

Wenn Sie wissen mochten, was sich zwischen der aktuellen Version und einer alten
Version einer Datei gedndert hat, verwenden Sie git diff. Das folgende Programm
zeigt an, wie sich die Datei index.php seit der Version 2.0 gedndert hat. Die Ausgabe
besteht aus mehreren Blocken, die mit @@ eingeleitet werden und die Position ange-
ben. Zur Orientierung helfen einige Zeilen Code, den Kontext herzustellen. Anschlie-
Rend folgen die gednderten Zeilen, denen - oder + vorangestellt ist, je nachdem, ob
sie geloscht oder hinzugefligt wurden. (Im Terminal sind die geldschten Zeilen rot
und die hinzugefligten Zeilen griin hervorgehoben, was in diesem Buch leider nicht
dargestellt werden kann.)

git diff v2.0 index.php

diff --git a/index.php b/index.php
index a41783c..dle3af2 100644
--- a/index.php
+++ b/index.php
@@ -10,9 +10,9 @@ try {
exit();
}

164

4.2 Dateien durchsuchen

“try {
- $ctl->checkAccess();
-} catch (Exception $e) {
+if ($ctl->checkAccess () === TRUE) {
+ $ctl->showRequestedPage();
+} else {
if ($ctl->isISONRequest()) {
$data = new stdClass();
$data->error = true;
@@ -29,4 +29,3 @@ try {
exit();
}

}
-$ctl->showRequestedPage();

Wenn Sie nur am Umfang der Anderungen interessiert sind, iibergeben Sie zusétzlich
die Option --compact-summary:

git diff --compact-summary v2.0 index.php
index.php | 7 +++----
1 file changed, 3 insertions(+), 4 deletions(-)

Der Befehl git diff <revisionl>..<revision2> <file> zeigt die Anderungen zwi-
schen zwei alten Versionen an:

git diff --compact-summary v1.0..v2.0 index.php

Natiirlich kdnnen Sie an git diff anstelle von Tags bzw. Versionen auch die Hash-
codes von Commits, die Namen von Zweigen oder sonstige Referenzen tibergeben
(siehe Abschnitt 3.12, »Referenzen auf Commits«). Beachten Sie, dass die ausgespro-
chen praktische Schreibweise HEAD@{2.weeks.ago} zur zeitlichen Einordnung nur fiir
lokal durchgefiihrte Commits funktioniert, also nur fiir Aktionen, die im Reflog
gespeichert sind. Davon abgesehen gibt es keine Moglichkeiten, den Vergleichs-
Commit zeitlich festzulegen. Gegebenenfalls miissen Sie zuerst mit git log einen
zeitlich passenden Commit suchen und dessen Hashcode dann an git diff tiberge-
ben.

Range-Syntax mit drei Punkten

Die Variante git diff <revl>...<rev2> ist vor allem dann zweckmaRig, wenn es
sich bei den Revisionen um Zweige handelt. In diesem Fall ermittelt git diff
zuerst die letzte gemeinsame Basis beider Zweige und zeigt dann an, was sich in
<rev2> im Vergleich zum letzten gemeinsamen Commit verandert hat. Anders als bei
<revl>..<rev2>werden aber alle Anderungen ignoriert, die seither in <revl> passiert
sind.

165

4 Datenanalyse im Git-Repository

Unterschiede zwischen Commits ansehen

Wenn Sie bei git diff auf die Angabe einer Datei verzichten, zeigt es alle geander-
ten Dateien seit der angegebenen Version bzw. zwischen zwei Versionen/Commits
an. Wiederum ist die Option --compact-summary hilfreich, wenn Sie vorerst nur einen
Uberblick gewinnen mdochten.

Bei umfangreichen Anderungen fehlt der Platz, um fir jede geénderte Zeile ein + oder
ein - auszugeben. Stattdessen wird nach | die Gesamtanzahl der gednderten Zeilen
angegeben. Die Anzahl der Plus- und Minus-Zeichen ist relativ zu der Datei mit den
grofiten Anderungen. Je linger der Balken aus den Zeichen ist, desto umfangreicher
sind die Anderungen ausgefallen.

git diff --compact-summary v1.0..v2.0 index.php
css/autocompletelist.css 225 +-

|
css/editproject.css (new) \ 13 +
css/edituser.css \ 99 +-

|

|

|

css/iprot.css 648 ++++-
css/iprot/jquery-ui-1.8.13.custom.css 2 +-
css/mobile.css (new) 17 +

269 files changed, 22819 insertions(+), 12792 deletions(-)

Selten sind Sie einfach an allen Anderungen interessiert. Zwei Optionen helfen dabei,
das Ergebnis gezielt einzuschranken:

» Mit -G <pattern> geben Sie ein Suchmuster (einen reguldren Ausdruck) an. git
diff liefert dann nur die Textdateien, deren Anderungen den Suchausdruck ent-
halten, wobei die Grof3- und Kleinschreibung exakt tibereinstimmen muss.

» --diff-filter=A|C|D|M|R filtert jene Dateien heraus, die hinzugefiigt (added),
kopiert (copied), geldscht (deleted), verandert (modified) oder umbenannt (rena-
med) wurden.

Das folgende Kommando liefert die Dateien, die zwischen Version 1.0 und 2.0 veran-
dert wurden und in deren Code der Suchtext PDF vorkommt.

git diff -G PDF --diff-filter=M --compact-summary v1.0..v2.0

Anderungen seit dem letzten Commit

Bevor Siegit commit ausfiihren,ist es oft eine gute Idee, sich einen Uberblick Gber die
Anderungen in allen fiir den Commit vorgemerkten Dateien zu verschaffen. Genau
das macht git diff --staged:

166

4.2 Dateien durchsuchen

Sollten Sie git add noch nicht ausgefiihrt haben bzw. vorhaben, git commit -a zu
verwenden, zeigt git diff ohne irgendwelche weiteren Parameter alle zuletzt durch-
geflhrten Anderungen an. (Nicht berticksichtigt werden neue Dateien, die noch nicht
unter Versionskontrolle stehen.)

Dateien durchsuchen (git grep)

An welchen Stellen in den zahlreichen Dateien aus Threm riesigen Projekt wird die
Funktion X aufgerufen oder ein Objekt der Klasse Y erzeugt? Antwort auf derartige
Fragen gibt git grep <pattern>. Standardmaflig berticksichtigt das Kommando alle
Dateien im Projektverzeichnis und listet die Zeilen auf, in denen der Suchausdruck
in exakter Grof3- und Kleinschreibung auftritt. (Wenn Sie nicht zwischen Grof3- und
Kleinschreibung differenzieren wollen, geben Sie zusétzlich die Option -i an.)

git grep SKAction

ios-pacman/Maze.swift: let setGlitter = SKAction.setTextur...
ios-pacman/Maze.swift: let setStandard = SKAction.setText...
ios-pacman/Maze.swift: let waitShort = SKAction.wait(forDu...

Ein kompakteres Suchergebnis erhalten Sie mit --count. In diesem Fall zeigt git grep
nur an, wie oft der Suchausdruck in den jeweiligen Dateien vorkommt:

git grep --count CGSize
ios-pacman/CGOperators.swift:6
ios-pacman/Global.swift:1
ios-pacman/Maze.swift:4

Durch die Angabe von Dateien oder Verzeichnisse konnen Sie die Suche einschran-
ken. Das folgende Kommando durchsucht die Dateien im Verzeichnis css nach dem
Schlisselwort margin. Wegen der Option -n wird zu jeder Fundstelle auch die Zeilen-
nummer angegeben.

git grep -n margin css/
css/config.json:100: "@form-group-margin-bottom": "15px",
css/config.json:144: "@navbar-margin-bottom": "@line-heig...
css/editglobal.css:25: margin-top: 1px;
css/editglobal.css:29: margin-top: Opx;

Natiirlich konnen Sie auch alte Versionen Ihres Codes durchsuchen, indem Sie die
gewiinschte Revision vor den Dateinamen oder Verzeichnissen angeben. Wenn der
Suchausdruck wie im folgenden Beispiel Sonder- oder Leerzeichen enthalt, miissen

167

4 Datenanalyse im Git-Repository

Sie ihn zwischen Apostrophe stellen. Das folgende Beispiel sucht in Version 2.0 des
Programms nach UPDATE-Kommandos, die die Tabelle person verandern:

git grep 'UPDATE person' v2.0
v2.0:1ib/delete.php: $sql
v2.0:1ib/person.php: $sql
v2.0:1ib/personengruppe.php: $sql

"UPDATE person SET sta...
sprintf ("UPDATE person...
sprintf ("UPDATE person...

Schwierig ist die Anwendung von git grep, wenn Sie nicht wissen, in welchem
Commit Sie suchen sollen bzw. wenn es sich um Anderungen handelt, die nur vor-
tibergehend durchgefiihrt und spater wieder aus der Codebasis entfernt wurden. In
solchen Fallen konnen Sie mit git rev-1list v1.0..v2.0 eine Liste mit den Hashcodes
aller Commits fiir den fraglichen Zeitraum erstellen. Diese Liste verarbeiten Sie dann
mitgit grep.

Beispielsweise zahlt das folgende Kommando, wie oft das SQL-Schliisselwort UPDATE
in diversen Versionen der Datei 1ib/kapitel.php vorkommt. Wie bei git log wird der
neueste Commit zuerst berticksichtigt. Die Zeichen - - trennen die durch git rev-list
erzeugte Hashcode-Liste vom Dateinamen.

git grep -c 'UPDATE' $(git rev-list v1.0..v2.0) -- user.php
262d67fed686cda939092e7b0cb337bbcle2dbe9 :user.php:5
96d0a06d389784ec93f252a097185ee3678a2clc:user.php:5
c07c2f0ce5682bea898ba3ab5al5bf5230dd23dc :user.php:4

Urheberschaft von Code herausfinden (git blame)

Wenn Sie mit den hier beschriebenen Kommandos die Datei gefunden haben, die Sie
eigentlich interessiert, ist die nachste Frage natiirlich: Wer ist fiir den dort enthal-
tenen Code verantwortlich? Ein groflartiges Hilfsmittel ist in diesem Fall git blame
<file>. Ohne weitere Optionen zeigt es die betreffende Datei zeilenweise an und gibt
bei jeder Zeile an, in welchem Commit von welchem Autor zu welchem Datum diese
Zeile verandert wurde (siehe Abbildung 4.4).

Mit der Option -L 100,200 berticksichtigen Sie nur die Zeilennummern 100 bis 200.
Eine grofe Hilfe beim Lesen der Ausgaben sind die beiden folgenden Optionen:

» --color-lines stellt Fortsetzungszeilen aus dem gleichen Commit in blauer Farbe
dar.

» --color-by-age kennzeichnet frisch geinderten Code rot (Anderungen im letzten
Monat) und maRig neuen Code weif’ (Anderungen im letzten Jahr).

168

4.3 Fehler suchen (git bisect)

kofler@p1: ~/no-sync/github-clones/linux

(Tr_mmas Gleixner 2019-05-19 13: SPDX-License-Identifier: GPL-2.@-only
? 2 * linux/kernel/signal.c

Copyright (C) 1991, 1992 Linus Torvalds

1997-11-02 Modified for POSIX.1b signals by Richard Henderson

2003-06-02 Jim Houston - Concurrent Computer Corp.
changes to use preallocated sigqueue structures
to allow signals to be sent reliably.

cooaaaaaaaa

!
e

6 14) #include <linux/slab.h>

9984de1a5a8a9 (Paul Gortmaker 2011-05-23 14: 15) #include <linux/export.h>
~1da177e4c3f4 (Linus Torvalds 2005-04-16 15: 16) #include <linux/init.h>
589ee62844e04 (Ingo Molnar 2017-02-04 00: 17) #include <linux/sched/mm.h>
8703eBad65ble (Ingo Molnar 2017-02-08 18: 18) #include <linux/sched/user.h>

b17b61533b719 (Ingo Molnar 2617-62-08 18:
299360258d1bc (Ingo Molnar 2617-62-08 18:
68dboCcf106786 (Ingo Molnar 2017-62-08 18
32ef5517c2980 (Ingo Molnar 2617-62-05 11:
3eb39f47934f9 (Christian Brauner
~1da177e4c3f4 (Linus Torvalds B
3eb39f47934f9 (Christian Brauner 2018-11-19 00: 25) #include <linux/proc_fs.h>
~1da177e4c3f4 (Linus Torvalds 2005-04-16 15 26) #include <linux/tty.h>

*1da177e4c3f4 (Linus Torvalds 2005-04-16 15: -0700 27) #include <linux/binfmts.h>
179899fd5dc78 (Alex Kelly 2012-10-04 17:15:24 -0700 28) #include <linux/coredump.h>

19) #include <linux/sched/debug.h>
20) #include <linux/sched/task.h>

21) #include <linux/sched/task_stack.h>
22) #include <linux/sched/cputime.h>
23) #include <linux/file.h>

24) #include <linux/fs.h>

Abbildung 4.4 Urheberschaft der Datei »signal.c« des Linux-Kernels

Eine noch ubersichtlichere Darstellung der Blame-Ergebnisse bieten die Websites von
GitLab, GitHub und Co.Auflerdem konnen Sie dort sich per Mausklick direkt den
betreffenden Commit ansehen.

Boundary Commits

Wenn im lokalen Repository nicht alle Commits enthalten sind, kommt es vor, dass
einzelnen Hashcodes das Zeichen * (Caret bzw. Circumflex) vorangestellt wird, z. B.
~1dal77e4c3f4. Es weist aufeinen Boundary Commit hin, also auf den letzten im Repo-
sitory verfligbaren Commit.

4.3 Fehler suchen (git bisect)

Stellen Sie sich vor, Sie bemerken, dass in einem Feature Ihres Programms ein Feh-
ler auftritt, aber es gelingt Thnen nicht, dessen Ursache zu finden oder auch nur
einzugrenzen. Vermutlich handelt es sich um eine Wechselwirkung, die erst durch
Anderungen in mehreren Dateien entstanden ist.

Sie sind sich sicher, dass der Fehler frither nicht aufgetreten ist. Mit git checkout v1.5
sind Sie voriibergehend zur Version 1.5 zuriickgekehrt und haben diese nochmals
getestet. Dort ist die Welt noch in Ordnung. Seither gab es 357 Commits. (Das Kom-
mando git rev-list ist eine einfachere Variante zu git log, das normalerweise
anstelle von Commit-Messages einfach nur die Hashcodes der betreffenden Commits
liefert. Mit der Option --count zdhlt es die Commits zwischen zwei Punkten eines
Zweigs.)

169

4 Datenanalyse im Git-Repository

git rev-list v1.5..HEAD --count
357

Um herauszufinden, was den Fehler verursacht, miissen Sie den ersten Commit fin-
den, in dem der Fehler auftritt. Das klingt nach der sprichwortlichen Suche nach einer
Nadel im Heuhaufen.

Glucklicherweise unterstiitzt Sie git bisect bei dem Unterfangen. Die Idee von git
bisect besteht darin, dass Sie zuerst den letzten bekannten »guten« und »schlechten«
Commit angeben —in diesem Beispiel den Commit mit dem Tag v1.5 sowie den aktu-
ellen Commit (also HEAD). git bisect fiihrt nun einen Checkout in der Mitte des
Commit-Bereichs aus, halbiert also den Suchbereich. (Damit liegt der Fall eines Deta-
ched HEADS vor, d.h. HEAD verweist nicht auf das Ende eines Zweigs, sondern auf
irgendeinen Commit in der Vergangenheit.)

git bisect start
git bisect bad HEAD
git bisect good v1.5
Bisecting: 178 revisions left to test after this
(roughly 8 steps)
[e841d83319c1280bcef38400299fd55925ea25e6] Merge branch

Jetzt liegt es an Ihnen zu testen, ob der Fehler bei diesem Commit noch immer auf-
tritt. Wie Sie diesen Test durchfiihren, hangt ganz von der Art des Codes ab. Eventuell
mussen Sie Ihr Programm kompilieren, um es zu testen. Bei einer Webapplikation
reicht dagegen ein Test im Browser. Je nachdem, wie der Test ausfallt, melden Sie das
Ergebnis mit git bisect bad oder mitgit bisect good:

git bisect bad
Bisecting: 89 revisions left to test after this
(roughly 7 steps)
[cea22541893ded6e6e9T6a9d40bf6d0c2ec806d8] bugfix xy

Abhidngig von Threr Antwort weif3 git bisect nun, ob es in der oberen oder unteren
Halfte des Commit-Bereichs weitersuchen soll. Das Kommando fiihrt einen weiteren
Checkout in der Mitte des verbleibenden Suchbereichs aus. Der Suchbereich wurde
damit auf ca. ein Viertel reduziert.

Abermals miussen Sie nun den Test wiederholen, ob der Fehler noch auftritt oder
nicht, und diese Information an git weiterleiten. Auf diese Weise fahren Sie fort, bis
git bisect schlieflich meldet:

git bisect good
4127d9d06ecbae0d4d9babaaa8aacebc0c8853¢cb is the first bad
commit

170

4.4 Statistik und Visualisierung

Damit wissen Sie, zu welchem Zeitpunkt in der Vergangenheit der Fehler erstmals
aufgetreten ist. Die Suche nach der Ursache des Fehlers steht jetzt noch aus — aber
eigentlich sollte git diff HEAD*, also die Zusammenfassung der Anderungen im Ver-
gleich zu vorigen Commit, Sie auf die richtige Spur bringen.

Mit git bisect reset beenden Sie schlie8lich git bisect und kehren zuriick zum
Head des Zweiges, in dem Sie sich zu Beginn der Suche befanden. Dort versuchen
Sie nun, den jetzt eingegrenzten Fehler endgtiltig zu beheben.

git bisect reset
Previous HEAD position was ef8ld5c fix: getlink for csv
Switched to branch 'develop'

4.4 Statistik und Visualisierung

Bei grof3en Repositorys sieht man oft den Wald vor lauter Biumen (in unserem Fall
eigentlich: vor lauter Zweigen) nicht mehr. In diesem Abschnitt stellen wir Thnen
git-Kommandos sowie diverse Werkzeuge vor, mit denen Sie wieder den Durchblick
erlangen.

Einfache Zahlenspiele (git shortlog)

Ein praktisches Kommando, um einen ersten Uberblick zu erhalten, ist git shortlog.
In seiner einfachsten Form liefert es eine alphabetisch geordnete Liste aller Commit-
Autoren, wobei zu jedem Autor die Anzahl der Commits sowie jeweils die erste Zeile
jeder Commit-Message angegeben wird.

Durch diverse Optionen konnen Sie die Ausgabe weiter verkurzen. Das folgende Kom-
mando liefert eine Liste der Entwickler und Entwicklerinnen des Linux-Kernels, die
seit Anfang 2019 die meisten Commits aufzuweisen haben, wobei Merge-Commits
nicht gerechnet werden:

git shortlog --summary --numbered --email --no-merges \
--since 2019-01-01

1488 Chris Wilson <chris@chris-wilson.co.uk>
1104 Christoph Hellwig <hch@lst.de>

1065 VYueHaibing <yuehaibing@huawei.com>

875 Thomas Gleixner <tglx@linutronix.de>

852 Takashi Iwai <tiwai@suse.de>

799 Colin Ian King <colin.king@canonical.com>

Die Gesamtanzahl aller Commits ({iber alle Zweige) ermitteln Sie mit git rev-list:

m

4 Datenanalyse im Git-Repository

git rev-list --all --count
917418

Die Anzahl der Dateien im aktuellen Zweig ermitteln Sie, indem Sie die Ausgabe von
git ls-files anwc (word count) weiterleiten:

git 1s-files | wc -1
67975

Analog konnen Sie auch die Anzahl der Branches und Tags herausfinden:

git branch -a | wc -1
3

git tag | wc -1
652

Den Umfang der Anderungen zwischen zwei Versionen/Zweigen/Revisionen Ihres
Projekts konnen Sie mit git diff --shortstat ermitteln:

git diff --shortstat v5.5..v5.6
11533 files changed
600555 insertions (+)
285511 deletions(-)

Statistik-Tools und -Scripts

Das Internet ist voll von Scripts und Programmen, die aus einem Git-Repository mehr
Details als die obigen Kommandos herausholen konnen. Einen guten Startpunkt bie-
tet der folgende Stack-Overflow-Artikel:

https://stackoverflow.com/questions/1828874

Beliebt und unter Linux einfach anzuwenden ist das Python-Script gitstats. Nach der
Installation tibergeben Sie an das Script den Pfad zum Repository sowie ein Verzeich-
nis, in dem die Ergebnisdateien gespeichert werden sollen. Ausgehend von der Datei
index.html kénnen Sie sich in einem Webbrowser dann diverse statistische Auswer-
tungen ansehen. Das Erscheinungsbild der dazugehdrenden Grafiken ist allerdings
ein wenig minimalistisch.

sudo apt install gnuplot

git clone git://repo.or.cz/gitstats.git
mkdir result

gitstats/gitstats <path/to/repo> results/
google -chrome results/index.html

172

Zweige visualisieren

Gerade in Git-Schulungen oder bei dem Versuch, Kollegen die Funktionsweise von
Git zu verdeutlichen, besteht der Wunsch, die tiber mehrere Zweige verteilten Com-
mits »ordentlich« zu visualisieren. Die Ergebnisse von git log --graph sind dazu

aber ungeeignet.

Schon ein wenig besser ist die Darstellung durch das auf vielen Rechnern installierte
Programm gitk (siehe Abbildung 4.5). Es wird tiblicherweise aus dem Terminal heraus
gestartet und zeigt die Commit-Abfolge flir den gerade aktuellen Zweig.

x

- | iprot: All files - gitk

Datei Bearbeiten Ansicht Hilfe

4.4 Statistik und Visualisierung

+

Vergleich 7 Alte Version — Neue Version Kontextzeilen:
@ -134Z,13 +1343,10 @d Class Fraintnecper {

$erstereintrag = FALSE;

// Uploads: Schleife iber alle Uploads
$sql = "SELECT kommentar, mime, filename, br
$sql = "SELECT id, kommentar, mime, filename
FROM uploads
WHERE unterpunkt=$e->id
ORDER BY id";
$uploads = $db->queryObjectArray($sql);
if($uploads & count(suploads)=0) {
foreach{$uploads as $u) {

/¢ ids merken

4

I [l

Update .gitlab-ci.yml Bernd Oggl <bernd 2020-01-07 14:59:59 B
Update .gitlab-ci.yml Bernd Oggl <bernd 2020-01-07 14:59:41 L
Update .gitlab-ci.yml Bernd Oggl <bernd 2020-01-07 14:58:50
build: update zendframework in docker Bernd Oeggl <bern 2020-01-07 14:54:28
build: update node packages Bernd Oeggl <bern 2020-01-07 14:32:56
test: fix testuser in docker demo db Bernd Oeggl <bern. 2020-01-07 13:22:06
feat: remove DEBUG constant Bernd Oeggl <bern. 2020-01-07 13:02:05
fix: remove unused PRODUCTION constant Bernd Oeggl <bern. 2020-01-07 12:44:36
fix: IPROT-155 make sure kundenlego scope=3 Bernd Oeggl <bern 2020-01-07 12:30:21
IPROT-149 Stephan Lenhart <@ 2019-11-12 15:27:03
bump version Bernd Oeggl <bern. 2019-11-09 11:33:53
feat: IPROT-149 release notes Bernd Oeggl <bern. 2019-11-09 11:15:38
release Bernd Oeggl <bern 2019-11-07 19:40:26
fix: IPROT-148 remove login info Bernd Oeggl <bern. 2019-10-23 19:29:51
[J DEBUG aus sendpdf.php entfernt Michael <kofler@ko 2020-01-07 15:00:28
@ bugfix Sammel-ZIP Michael <kofler@ko 2019-09-11 11:19:26
@ Finetuning Sammel-ZIP Michael <kofler@ko 2019-09-11 11:16:11
@ Neuer Versuch, die Uberfillige Zeit richtig auszurechnen Michael <kofler@ko 2019-09-11 10:57:20
Merge remote-tracking branch 'origin/develop' inte develop Michael <kofler@ko 2019-08-13 10:54:41
feat: auto download zip after login with link Bernd Oeggl <bern. 2019-08-13 18:30:14
build: update docker cenfig Bernd Oeggl <bern. 2019-08-13 18:28:10
ZIP fiir Suchergebnisse Michael <kofler@ko 2019-08-13 10:32:36
Bugfix in faellig(} Michael <kofler@ko 2019-08-13 09:19:24
ZIP-Download: Dateiname mit Protokolltyp + Nummer Michael <kofler@ko 2019-08-12 19:04:49
Sammel-ZIPs, erster Entwurf Michael <kofler@ko 2019-08-03 12:47:31
PDF Projekthandbuch Michael <kofler@ko 2019-08-02 11:10:21
ueberfaellige Termine in PDF kennzeichnen Michael <kofler@ko 2019-08-02 09:13:33
IPROT-141 Stephan Lenhart <: 2019-07-09 15:40:40 =

Beschreibung
raj lib/printhelper.php

TN T PR - 75375423 c5d9eeh6a0532810acafof6d487d9ac e| Zeile| 62/ 1965 | |
Suche - |4 Version nach Beschreibung: J |Exakt ﬂlAlle Felder +
Suchen # Patch ™ Baum

Abbildung 4.5 Visualisierung von Zweigen durch »gitk«

Falls Sie Wert auf eine tibersichtlichere Darstellung von Zweigen legen, haben wir ein

paar Vorschlage fiir Sie:

» Das kommerzielle Programm GitKraken zeigt nicht nur die Commit-Abfolge in
einer ansprechenden Form an (siehe Abbildung 4.6), sondern bietet eine Menge
weiterer Funktionen, die bei der Administration von Git-Repositorys helfen. Die
kostenlose Version kann nur fiir 6ffentliche Repositorys verwendet werden.

173

4 Datenanalyse im Git-Repository

» Auch manche Git-Plattformen enthalten Visualisierungsfunktionen. Beispiels-
weise zeigt GitLab auf der Teilseite REPOSITORY * GRAPH eine Ubersichtliche Dar-
stellung des Commit-Verlaufs (siehe Abbildung 4.7).

» GitHub-Anwender, die diesbeziiglich weniger verwohnt sind, sollten sich das kom-
merzielle Projekt GFC (Git Flow Chart) ansehen: Die Website https://gfc.io kann
die Commit-Abfolge von Repositorys auf GitHub und Bitbucket visualisieren. Die
Grundfunktionen stehen fiir o6ffentliche Repositorys kostenlos zur Verfiigung.
Wenn Sie GFC fir private Repositorys bzw. in Kombination mit den GitHub-Team-
funktionen einsetzen wollen, miissen Sie einen monatlichen Obolus leisten.

% - o GitKraken

File Edit View Help

o

docker-buch ~ master ~

272 file changes in working directory

@ viewing 2/2 Show All
= — | v2: grafana screenshots
a it: +
= | v2: g et commit: 017531 *
O oca A D | v2:do kapieel
¥ master v2: cicd erste updates
: | Merge branch master* of github.com:MichaelKofler/docker-buch
> REMOTE 11 -
E orgn v | 2icd psate Bernd Oeggl parent: 004490
| Merge branch master* of github.com:MichaelKofler/docker-buch authored 10.11.2019 @ 16:38
master
PULL REQUESTS . | Kapitel zum Korrekturlesen vorbereitet
)5
< = | v2: updare Dockerfle for cied branches omraiiE = i HEEEE [A
= ISSUES —
v2: clcd erste updates 1% =rPath EETree View all files
Select an issue tracker for) | 2 rog updates done - cod g/content/about.md
this repo
D | v2:php updace | g L first-postmd
@ Gitkraken Boards
D) | Javascript und java updates fuer vz] g o /CHANGELOG.md
@ Jira Cloud] | podman fertig i g g config.toml
| Forts. Uberarbeitung ‘
& Jira server S B cod. g creating-a-new-theme.md
| weiter mit podiman, vorwort tberarbeitet
& cod g g... /goisforlovers.md
© None | Podman-anhang gestartet
| & cod g hugoisforlovers.md
basics fertig
© TAGS 0/0 o . .
Update available (7.0.1) 7 days of Gitkraken Pro Remaining - Upgrade Now = @ @100% |Feedback| @ MEEN

Abbildung 4.6 Das Programm »GitKraken«

T Project overview master

You can move around the graph by using the arrow keys.

B Repository
Files ¢ g n O Begin with the selected commit
Commits T
Eaie & revert: eval needed for agent to run
Tags & build: remove eval of ssh-agent
il @ Merge branch ‘develop' into async
— & fix: IPROT-151 wrong filename for pdf test
[feat: IPROT-151 convert pdf2jpg for previeus
Compas @/ build: update for docker for new php
O [feat: IPROT-153 respect overdue settings in gui
[@]build: update Dockerfile for new php version
2 Jira IPROT-153 Beriicksichtigung von iiberfalligen Aufgaben in der GUI.
14 Merge Requests 5 sinnlose Falligkeitsanzeige jetzt auf Projektebene ein/aus
erster Versuch PDF-Preview in PDF, Teil 2
« ci/co erster Versuch PDF-Preview in PDF
% Operations einmal hin + retour: Option, Uberfalligkeit doch nicht anzeigen
Merge branch ‘develop’ of ssh://git.komplett.cc:2222/iprot/iprot into develop
© Packages & Registries Beilagenlisten in PHB immer unten
L4t Analytics & initial work on JSON API
(@ fix: remove all DEBUG from code
0 wiki L Merge branch 'develop’ of ssh://git.komplett.cc:2222/iprot/iprot into develop
£y i r (@ update .gitlab-ci.yml

Abbildung 4.7 Darstellung von Zweigen in GitLab

174

4.4 Statistik und Visualisierung

GitGraph.js

Vielleicht ist es IThnen aufgefallen: Alle Abbildungen in diesem Buch, die die Commit-
Abfolge mehrerer Zweige zeigen, haben ein einheitliches Aussehen. Das ist nattirlich
kein Zufall. Mit der Open-Source-Bibliothek GitGraph.js und wenigen Zeilen eigenem
JavaScript-Code lassen sich viele Visualisierungswiinsche erfiillen. Das Ergebnis ist
dann im Webbrowser zu bewundern. Werfen Sie einen Blick auf die Projektwebsite
https://gitgraphjs.com, die elementare Arbeitstechniken in Form einer Présentation
zusammenfasst!

Leider ist GitGraph.js nicht in der Lage, echte Commits aus einem Repository zu
zeichnen. Sie mussen die Commit-Struktur also durch entsprechende JavaScript-An-
weisungen zusammensetzen, was mit einigem Aufwand verbunden ist (den wir fiir
dieses Buch natiirlich nicht gescheut haben).

Die folgenden Zeilen zeigen den Code fiir Abbildung 4.3. graphContainer verweist auf
die Stelle im HTML-Code, wo das Diagramm dargestellt werden soll. mytemplate ent-
hilt einige Optionen, um Commits ohne Autoren und Hashcodes, Zweige aber mit
ihren Namen anzuzeigen. createGitGraph erzeugt die vorerst leere Commit-Abfolge.
Mit branch und commit werden dann Commits und Zweige hinzugefigt.

<ldoctype html>
<html><head>
<script src="https://cdn.jsdelivr.net/npm/@gitgraph/js">
</script>
</head>
<body>
<div id="graph"></div>
<script>
const graphContainer = document.getElementById("graph");
const mytemplate = GitgraphlS.templateExtend(
GitgraphJS.TemplateName.Metro, {
commit: { message: { displayAuthor: false,
displayHash: false oy,
branch: { 1label: { display: true } }
1)
const gitgraph = GitgraphJS.createGitgraph(
graphContainer,
{ author: " ", template: mytemplate });
const master = gitgraph.branch("master").commit("A").commit("B")
const develop master.branch("feature").commit ("C").commit ("D")
master.commit ("E")
develop.commit ("F")
</script>
</body></html>

175

10.5 Ein Blog mit Git und Hugo

10.5 Ein Blog mit Git und Hugo

Von Git zum Blogsystem — das heif3t, den inhaltlichen Bogen dieses Buchs schon bei-
nahe zu tiberspannen. Keine Angst, wir werden Ihnen gleich zeigen, dass sich Git in
Kombination mit bestimmten Blogsystemen sehr gewinnbringend einsetzen lasst
und den Blog-Arbeitsablauf dramatisch vereinfachen kann. Das gilt insbesondere
dann, wenn Sie mit Markdown vertraut sind, beim Schreiben einen eher techni-
schen Ansatz vorziehen und keinen Bedarf an tiberladenen Weboberflachen zur
CMS-Administration haben. Aufierdem gibt uns dieser Abschnitt die Moglichkeit, die
interessante Git-Erweiterung Git LFS vorzustellen. LFS steht fiir Large File Storage.

Von WordPress zu Hugo

Wenn man heute iiber Software fiir Blogs oder Content Management Systems (CMS)
spricht, kommt schnell WordPress ins Spiel: Diese PHP/MySQL-Software hat einen
wahren Siegeszug hingelegt und ist aktuell das am weitesten verbreitete CMS.

Doch die Webtechnologie hat sich weiterentwickelt, und das serverseitige Erzeugen
von Webseiten, wie es WordPress mit PHP und MySQL macht, ist nicht mehr in allen
Bereichen State of the Art. Zunehmend beliebt sind Single-Page Applications. Sie ent-
lasten den Server und verlagern einen Teil der Rechenleistung mittels JavaScript auf
den Client. REST-APIs liefern die Daten im JSON-Format an das Frontend.

In diesem Abschnitt lassen wir PHP und JavaScript freilich links liegen und stellen
Thnen eine weitere Webtechnologie vor, die in den letzten Jahren viel Beachtung fand:
Mit einem Static Site Generator lasst sich Text im Markdown-Format mit der Hilfe
von HTML-Vorlagen in eine vollstandige Website umwandeln. Navigationselemente,
RSS-Feeds, Verlinkungen zu Kategorien und Tags werden alle beim Programmaufruf
erzeugt und in statischen Dateien gespeichert.

Was auf den ersten Blick etwas altbacken klingt, bringt grofe Vorteile mit sich: Die
Inhalte kdnnen sehr schnell ausgeliefert werden, ohne den Server mit Datenbank-
abfragen zu belasten. Der wohl grofdte Vorteil ist aber der enorme Sicherheitsgewinn:
Auf dem Server selbst lauft keine Programmiersprache mehr, die Angreifer gerne als
Einfallstor verwenden.

Ein prominenter Vertreter dieser Software ist Jekyll, das von Tom Preston-Werner,
einem der GitHub-Grunder, bereits 2008 entwickelt wurde. Die Open-Source-
Software ist heute noch bei GitHub im Einsatz und kann fiir GitHub Pages verwendet
werden. Andere prominente Vertreter dieser Zunft sind Next.js, Nuxt.js oder Hugo.
Wahrend Next.js oder Nuxt.js eigentlich JavaScript-Frameworks fiir Single-Page App-
lications sind, konnen Sie Hugo ganz ohne JavaScript-Kenntnisse verwenden. Das
Programm konvertiert blitzschnell Markdown-Dateien in HTML und kann einfach
mit Templates und Themes gesteuert werden.

335

10 Gitin der Praxis

Hugo

Wir haben uns fur Hugo entschieden, da wir schon in einem anderen Projekt posi-
tive Erfahrungen damit gemacht haben. Es ldsst sich rasch installieren und ist sehr
effizient im Betrieb. Sie laden einfach das Binary fiir die Plattform von der GitHub-
Projekt-Website:

https://github.com/gohugoio/hugo/releases

Das Kommandozeilenprogramm hat eine Option, die zur Einrichtung eines neuen
Blogs dient. Damit starten wir unser kleines Projekt:

hugo new site my-blog

Congratulations! Your new Hugo site is created in /src/my-blog.

Hugo hat eine Verzeichnisstruktur angelegt, in der sich nur zwei Dateien befinden.
Der Ordner my-blog sieht so aus:

|-- archetypes

| “-- default.md
|-- config.toml

| -- content

|-- data

|-- layouts

|-- static

“-- themes

Wir initialisieren ein neues Git-Repository darin, denn wir wollen alle Schritte unseres
Blogs dokumentieren:

git init
git add
git status

On branch master
No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: archetypes/default.md
new file: config.toml

n

Dabei stofien wir gleich auf eine Eigenheit von Git: Obwohl wir mit git add . alle
Eintrage im aktuellen Verzeichnis zum Index hinzugefiigt haben, werden nur die bei-
den Dateien default.md und config.toml fiir den Commit vorgesehen. Das liegt daran,
dass Git nur den Inhalt von Dateien verfolgt; leere Verzeichnisse gehoren nicht dazu.

336

10.5 Ein Blog mit Git und Hugo

In unserem Fall ist das kein Problem. Wir werden in der lokalen Arbeitskopie weiterar-
beiten, und sobald sich die Verzeichnisse mit Inhalt fullen, werden sie automatisch
in das Repository aufgenommen. Manchmal moéchte man aber explizit ein leeres
Verzeichnis in das Repository inkludieren. Zum Beispiel konnte ein Programm im
laufenden Betrieb dort Daten hineinschreiben, ohne das Verzeichnis zuvor zu erstel-
len. Die einzige Losung fiir das Problem besteht darin, in den leeren Verzeichnissen
Dateien anzulegen. Sie kdnnen dazu .gitignore-Dateien verwenden, wie es die Git-
FAQ empfiehlt (https://links.gitbuch.info/empty-dir), aber es eignet sich auch jede
andere Datei.

Hugo Themes als Git Submodule

Wie Hugo die Inhalte in HTML und CSS konvertiert, wird durch das verwendete
Theme gesteuert. Wir haben uns fir das Theme Beautiful Hugo entschieden, das
sowohl am Desktop als auch auf mobilen Gerdten gut und responsive funktioniert
und unter der freien MIT-Lizenz auf GitHub zu finden ist:

https.//themes.gohugo.io/beautifulhugo/

Um das Theme zu verwenden, fligen wir sein Repository als Submodul (siehe
Abschnitt 9.3) dem Unterordner themes hinzu:

git submodule add \
https://github.com/halogenica/beautifulhugo.git \
themes/beautifulhugo

Cloning into '/src/my-blog/themes/beautifulhugo'...

Sollte der Autor das Theme weiter verbessern, haben wir durch die Submodul-Technik
die Moglichkeit, das Update einfach auszuprobieren. Mit dem submodule add-Aufruf
wurde das Theme geklont, und die Anderungen wurden gleich zum Index hinzuge-
flgt. Schlieflich stellen wir das Theme in der Konfigurationsdatei ein und probieren
es mit dem in Hugo integrierten Webserver aus:

echo 'theme = "beautifulhugo"' >> config.toml
hugo serve

Web Server is available at http://localhost:1313/
Press Ctrl+C to stop

Wir 6ffnen die angegebene URL http://localhost:1313 und sehen das durchaus noch
verbesserungsfihige Ergebnis (siehe Abbildung 10.3). Damit ist es Zeit fiir den ersten
Commit. Das Gerust unseres Blogs ist bereits fertig.

337

10 Gitin der Praxis

@ My New Hugo Site- My x | +
& > C @ localhost:1313 hid o :

My New Hugo Site

My New Hugo
Site

© 0001 + My New Hugo Site

Hugo v0.73.0 powered * Theme Beautiful Hugo adapted from Beautiful Jekyll

Abbildung 10.3 Das Hugo Theme »Beautiful Hugo« ohne Anpassungen

Wie wir der dem Theme mitgelieferten Beispielseite entnehmen, konnen wir noch
einige Anderungen in der Konfigurationsdatei config.toml vornehmen. Wir ergéin-
zen hier unter anderem einen Untertitel, das Datumsformat und Informationen zum
Autor. AuBerdem stellen wir das Hauptment in den Abschnitten [[menu.main]] ein.

Datei config.toml

theme = "beautifulhugo"

[Params]
subtitle = "Reisenotizen"
dateFormat = "2. January 2006"
[Author]
name = "bernd"

github = "git-buch"”
gitlab = "gitbuch"

[[Qééu.main]]

name = "Blog"

url = ""

weight = 1
[[menu.main]]

name = "About"

url = "pages/about/"

weight = 2
338

10.5 Ein Blog mit Git und Hugo

Blog mit Inhalt fiillen

Nun missen wir uns um den Content kimmern. Unser erster Eintrag dokumentiert
z.B. die Reise zur Messe Intergeo in Stuttgart im September 2019. Wir verwenden
Hugo, um die Struktur fiir den neuen Eintrag zu erzeugen. Der Eintrag soll im Ord-
ner posts/2019-09-19 unterhalb des content-Ordners liegen.

hugo new posts/2019-09-19/index.md

/src/my-blog/content/posts/2019-09-19/index.md created

Obwohl der noch gedffnete Webbrowser die Webseite bei jeder Anderung an Dateien
neu ladt und das auch gerade gemacht hat, sehen wir nichts von unserem neuen
Eintrag. Schuld ist die Meta-Anweisung draft: true im Kopfteil der neu erstellten
index.md-Datei. Sobald wir diese Zeile 16schen oder den Wert von true in false andern,
erscheint der Eintrag auf der Startseite des Blogs.

Wir kopieren ein Handyfoto von der Messe in den Ordner und erginzen die
Markdown-Datei um ein paar Anekdoten dieser Reise. Bevor wir diese Anderungen
per Commit speichern, wenden wir uns dem eingangs erwahnten Git-LFS-Modul zu.

Git LFS

Die Erweiterung Git Large File Storage (LFS) entstand aufgrund der Problematik, dass
Git mit bindren Dateien nicht besonders gut umgehen kann. Speziell wenn es sich
um grof3e bindre Dateien handelt, die womdglich schlecht komprimierbar sind und
sich haufig dndern, wachst die Grof3e des Repositorys stark an.

Jetzt kann man nattrlich argumentieren, dass grofie bindre Dateien eben nichts in
einem Git-Repository verloren haben. Aber nehmen wir unser Beispiel mit den Fotos
und den Blogeintrdgen: Wiirde man Text und Bilder getrennt verwalten und vielleicht
auch getrennt sichern, stiege die Gefahr, dass man irgendwann Daten verliert (wir
sprechen hier leider aus personlicher Erfahrung).

Git LFS 16st das Problem der zu grof? werdenden Repositorys, indem per LFS verwal-
tete Dateien nicht im Repository selbst, sondern an einem anderen Speicherort abge-
legt werden. Die Datei selbst enthalt nur einen Verweis auf den Hashcode der Datei
(einen Pointer in der LFS-Nomenklatur). LFS verwendet dabei den Hash-Algorithmus
SHA-256, der wesentlich sicherer ist als das aktuell von Git eingesetzte Verfahren
SHA-1 (siehe Abschnitt 3.13, »Git-Internac).

Als Anwender von git 1fs bekommen wir von den LFS-Pointern nie etwas zu sehen.
Grund dafiir ist der ausgekliigelte Filtermechanismus, der die Textdateien durch
bindren Originalinhalte ersetzt. Damit die Filter in Kraft treten konnen, missen wir
zuerst Git LFS installieren und aktivieren. Unter Debian oder Ubuntu reicht dazu der
Aufruf von sudo apt install git-1fs. Installationspakete fiir alle gangigen Plattfor-

339

10 Gitin der Praxis

men finden Sie unter https://github.com/qgit-Ifs/git-Ifs/releases. Um Git LFS fiir unser
Repository zu aktivieren, verwenden wir folgendes Kommando:

git 1fs install

Updated git hooks.
Git LFS initialized.

Dabei werden mehrere Schritte ausgefiihrt. Wird das Kommando zum ersten Mal auf
diesem Computer ausgefiihrt, fligt LFS einen neuen Abschnitt in unsere personliche
Git-Konfigurationsdatei ein:

[filter "1fs"]
clean = git-1fs clean -- %f
smudge = git-1fs smudge -- %f
process = git-1fs filter-process
required = true

Der clean-Filter speichert den bindren Inhalt der Datei in einem Unterordner von
.git/1fs ab und ersetzt die Originaldatei durch den oben beschriebenen LFS-Pointer.
Dieser Vorgang geschieht bei git add, also wenn die Datei auf dem Git-Index hinzu-
gefiigt wird. Umgekehrt holt der smudge-Filter den bindren Inhalt aus dem .git/1fs-
Ordner und ersetzt den Pointer durch die korrekten Inhalte.

Zu den Filtern werden noch Git-Hooks installiert, die sich unter anderem um den
Upload und Download der Binardateien vom LFS-Speicherplatz kiimmern. Doch
damit genug der Theorie; wir flgen jetzt das Foto zum LFS-Speicher hinzu. Damit das
funktioniert, muissen wir Git anweisen, welche Dateitypen mit LFS verwaltet werden
sollen.

git 1fs track 'x.jpg'
git add
git status

On branch master
Changes to be committed:
(use "git restore --staged <file>...
new file: .gitattributes
new file: content/posts/2019-09-19/index.md
new file: content/posts/2019-09-19/intergeo.jpg

n

to unstage)

Wir lassen also Dateien, die auf .jpg enden, von LFS verwalten. Bei dem anschlie-
Benden add und status sehen wir keine Veranderung. Das ist auch das besonders
Angenehme an Git LFS: Ist LFS einmal eingerichtet, brauchen wir uns um nichts mehr
zu kimmern, wir merken gar nicht, dass es aktiv ist.

340

10.5 Ein Blog mit Git und Hugo

Fiir unser lokales Repository bringt LFS noch keinen entscheidenden Vorteil: Alle Ver-
anderungen — auch an den von LFS verwalteten Bildern — bleiben im lokalen Ordner
.git/1fs. Wir legen jetzt unser Remote Repository bei GitHub an und ibertragen den
aktuellen Stand dorthin:

git remote add origin git@github.com:git-buch/my-blog.git
git push -u origin master

Uploading LFS objects: 100% (1/1), 1.1 MB | 0 B/s, done.
Enumerating objects: 21, done.

x [new branch] master -> master

Branch 'master' set up to track remote branch 'master' from
‘origin'.

Wir sehen einen neuen Eintrag in der sonst schon bekannten Ausgabe von git push:
Mit Uploading LFS objects teilt uns Git mit, dass die von LFS verwalteten Objekte
getrennt vom restlichen Repository hochgeladen werden. Wie bereits erwdhnt, bleibt
der Vorgang vollig transparent, und wir merken gar nicht, dass die Bilder in irgend-
einer Weise anders verwaltet werden. Einzig der Hinweis in der GitHub-Oberfla-
che Stored with Git LFS zeigt uns, dass das Bild von LFS verwaltet wird (siehe
Abbildung 10.4).

) my-blog/vs.jpg at mas x | +

< C & github.com/git-buch/my-blog/blob/master/content/posts/2019- bg * e :
git-buch / my-blog @Umatche 2 frSar 0 Y Fak 0
<> Code Issues Pull requests Actions Projects Wiki Security Insights Settings
¥ Branch: master ~ | my-blog / content / posts / 2019-09-30 / vs.jpg Gotofie
=g beoe add second post View Source Conference Amsterdam Latest commit e664309 28 minutes ago) History
A 1 contributor
1.43 M8 (D Stored with Git LFS Downioad £

Abbildung 10.4 Ein mit LFS verwaltetes Foto in der GitHub-Oberflache

Wir haben inzwischen einen zweiten Blogeintrag hinzugefiigt, und uns fallt auf, dass
wir mit der Qualitat der Bilder gar nicht zufrieden sind. Daher bearbeiten wir beide
Bilder, committen und pushen die Anderungen. In unserem lokalen .git/1fs-Ordner
sind jetzt jeweils zwei Versionen der Bilder gespeichert, und sie belegen insgesamt 3,6
MByte an Platz (das Programm du errechnet die Disk Usage eines Ordners).

341

10 Gitin der Praxis

du -h .git/1fs

480K .git/1lfs/objects/ca/99

3,6M .git/1fs
Spannend wird die Sache, wenn wir einen neuen Klon von unserem Remote Repo-
sitory anlegen und darin die Grole des .git/1fs-Ordners untersuchen. Im letzten
Schritt von git clone werden die oben angesprochenen Filter aktiv: Git holt nur-
mehr genau die Version der Bilder vom LFS-Speicherplatz, die fiir den aktuellen HEAD

gebraucht werden. Die Ausgabe von du -h ergibt dann folglich nur mehr 1,1 MByte,
was der Summe der beiden geanderten Bilder entspricht.

git clone https://github.com/git-buch/my-blog.git
Cloning into 'my-blog'...
Filtering content: 100% (2/2), 1.01 MiB | 576.00 KiB/s, done.

du -h my-blog/.git/1fs

1,1M my-blog/.git/1fs

Mit Ausnahme von Gitolite unterstiitzen alle in diesem Buch vorgestellten Git-
Hosting-Provider Git LFS. Allerdings konnen Sie bei Azure Repos SSH nicht verwen-
den, wenn Sie LFS in Threm Repository aktiviert haben. Bei Gitea muss Git LFS in der
Konfigurationsdatei explizit aktiviert werden.

Als Abschluss dieses Beispiels wollen wir unseren Blog nattrlich noch veréffentli-
chen. Dazu werden wir Thnen gleich zwei verschiedene Mdoglichkeiten zeigen. Die
erste Variante kann Uber ein paar Mausklicks in Ihrem Webbrowser aktiviert werden
und verwendet den Dienst von Netlify, die zweite Variante besteht aus einer GitHub
Action und verwendet GitHub Pages.

Deploy mit Netlify

Netlify hat sich genau auf diesen Use Case spezialisiert. Der Dienst verbindet sich mit
GitHub (oder auch GitLab oder Bitbucket) und konvertiert automatisch Ihren Quell-
code mit einem Static Site Generator Ihrer Wahl und liefert die fertige Webseite auf
dem eigenen Content Delivery Network (CDN) aus.

Zum Einstieg bietet Netlify einen kostenlosen Zugang an, auf dem immerhin bis zu
500 Projekte gehostet werden konnen.

342

10.5 Ein Blog mit Git und Hugo

Um unser Projekt auf Netlify online zu bringen, beginnen wir auf der Website von
Netlify https.//www.netlify.com. Unter SIGN UP erlauben wir den Zugriff auf unseren
GitHub-Account. Im folgenden Assistenten werden wir durch drei Schritte gefiihrt, in
denen neben dem GitHub-Repository auch das Build-Kommando angegeben werden
muss. Da Netlify erkennt, dass es sich bei unserem Repository um eine Hugo-Seite
handelt, ist das Feld schon korrekt ausgefillt (siehe Abbildung 10.5).

Create a new site

From zero to hero, three easy steps to get your site on Netiiy.

provider 2. Pick a repositor 3. Build options, and deploy!

Deploy settings for git-buch/my-blog

Get more control over how Netlify builds and deploys your site with these settings.

Owiner

Bernd Oggl's team v

Branch to deploy

master v

Basic build settings
If you're using a static site generator or build tool, we'll need these settings to build your site

Learn more in the docs

Build command
hugo
Publich drectory

public

Show advanced

Deploy site

Abbildung10.5 Der Import unseres GitHub-Projekts in Netlify

Netlify stellt uns automatisch einen Domainnamen zur Verfiigung (in unserem Fall
ist das nervous-ardinghelli-90e87e.netlify.app), und wir kdnnen optional einen
eigenen DNS-Namen fiir die Seite angeben (wir verwenden my-blog.gitbuch.info).In
der eigenen DNS-Verwaltung miissen wir dazu einen CNAME-Eintrag fir den zufillig
generierten Netlify-Hostname und den eigenen Domainnamen erstellen. Beim ers-
ten Deployment erstellt Netlify automatisch SSL-Zertifikate flir beide Namen, und
unser Blog ist binnen weniger Minuten mit HTTPS online. Das war einfach! Sobald wir
eine Anderung auf GitHub hochladen, startet Netlify einen neuen Build- und Deploy-
Vorgang, und die Updates sind online.

Deploy mit GitHub Action und GitHub Pages

Wenn Sie den gerade vorgestellten Workflow mit Netlify nicht verwenden wollen, kon-
nen Sie automatische Builds natiirlich auch auf GitHub laufen lassen. Die GitHub

343

10 Gitin der Praxis

Action dazu missen Sie gar nicht selbst schreiben, denn wenig tiberraschend hat das
schon jemand gemacht.

Im Zusammenhang mit Git LFS und Submodulen wollen wir aber noch auf ein paar
Details aufmerksam machen. Die schon aus Abschnitt 5.2 bekannte GitHub Action
checkout wird um zwei Parameter erweitert, damit Submodule korrekt geklont und
die Filter flr LFS aktiviert werden:

on:
push:
branches: [master]
pull request:
branches: [master]
jobs:
build:
runs-on: ubuntu-latest
- uses: actions/checkout@v?2
with:
1fs: true
submodules: true

In drei Schritten verwandeln wir unseren Quellcode in HTML und laden das Ergeb-
nis mit Push in einen Branch in unserem Repository hoch. Wir verwenden dazu zwei
Actions vom GitHub-User peaceiris, die im GitHub Marketplace zum Download zur
Verfiigung stehen.

» Der erste Schritt, den wirHugo setup benannt haben, installiert mit Hilfe der Action
peaceiris/actions-hugo das Programm Hugo in unserer Umgebung. Der Zusatz
extended: truelddtdie erweiterte Hugo-Version, die auch Sass-Stylesheets umwan-
deln kann.

» Im Build-Schritt starten wir Hugo ohne weitere Parameter, wodurch die fertige
Webseite im Ordner public gespeichert wird.

» Im dritten und letzten Schritt wird der Inhalt des public-Ordners mit der Action
peaceiris/actions-gh-pages in den Branch gh-pages hochgeladen (Commit und
Push). Das geheime GITHUB TOKEN, das fiir die Push-Aktion bendtigt wird, ist als
Variable in allen GitHub Actions automatisch verfiigbar.

- name: Hugo setup
uses: peaceiris/actions-hugo@v2.4.12
with:
extended: true
- name: Build
run: hugo
- name: Deploy
uses: peaceiris/actions-gh-pages@v3

344

10.5 Ein Blog mit Git und Hugo

with:
github_token: ${{ secrets.GITHUB TOKEN }}
publish dir: ./public

Beachten Sie, dass der gh-pages-Branch nur die fertige Webseite enthdlt und nicht
den Quellcode aus dem Master-Branch. Die Ordnerstruktur zwischen master und
gh-pages ist vollig unterschiedlich, was fiir unsere bisherige Verwendung von Bran-
ches sehr ungewodhnlich ist. Um dieses Verhalten zu erreichen, sieht die GitHub-
Weboberflache die Option vor, den gh-pages-Branch 6ffentlich zugdnglich zu machen
(siehe Abbildung 10.6).

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

+ Your site is published at https://beoe.github.io/my-blog/

Source
Your GitHub Pages site is currently being built from the gh-pages branch. Learn more.

gh-pages branch ~
Select source

+ gh-pages branch
Use the gh-pages branch for GitHub Pages. 1 @ domain other than bece.github. io. Learn more.

master branch
Use the master branch for GitHub Pages.

fefault domain (beoe.github.io)

thers from snooping on or tampering with traffic to your site.
When HI IPS Is enforced, your site will only be served over HTTPS. Learn more.

Abbildung10.6 Die Einstellung flir GitHub Pages am Branch gh-pages in GitHub

Sobald wir diese Einstellung aktivieren (SETTINGS * OPTIONS « GITHUB PAGES) und
unsere GitHub Action fehlerfrei lduft, ist der Blog bei GitHub online.

Wir haben das Layout der Startseite (eigentlich der Komponente, die Listen in Hugo
erzeugt) noch etwas angepasst, damit die Bilder nicht so viel Platz einnehmen.
Den Quellcode fiir das gesamte Beispiel finden Sie natiirlich auf unserem GitHub-
Account:

https.//github.com/git-buch/my-blog

345

Auf einen Blick

Auf einen Blick

1 Gitin zehn MINUEEN et 13
2 Learning bY DOING ..o sesesssesasesssesssesssessasssasesnnes 21
3 GIt-GrundI@EEN ...t 75
4 Datenanalyse im Git-REPOSITOrYcovnenenecnecretiecrscineneseeseeisesienes 153
5 GIEHUD et 177
6 GITLAD et 209
7 Azure DevOps, Bitbucket, Gitea und Gitolite ... 235
8 WOIKFIOWS ettt 257
9 ArbeItSTECNNIKEN oo 281
10 GitiN eI PraXis oottt sssessse et ssseessesssesssssnnes 315
11 Git-Probleme und ihre LOSUNGocuueeeeunericricieneeieesiesiseeiseeiseceiseceenne 347
12 KOMMANAOTETEIENZ ..ottt 369

Inhalt

Vorwort

1 Gitinzehn Minuten

11 WasistGit?

12 Software von GitHub herunterladen

1.3 Programmieren lernen mit Backup und Undo
2 Learningby Doing

21 git-Kommando installieren

2.2 GitHub-Account und -Repositorys einrichten
23 Mit dem Kommando »git« arbeiten

2.4 Authentifizierung

2.5 Gitspielerisch lernen (Githug)

2.6 Entwicklungsumgebungen und Editoren

2.7 Aneinem fremden GitHub-Projekt mitarbeiten
2.8 Synchronisation und Backups

3 Git-Grundlagen

31 Nomenklatur

3.2 Die Git-Datenbank

33 Commits

3.4 Commit-Undo

3.5 Branches

3.6 Merge

3.7 Stashing

3.8 Remote Repositorys

3.9 Merge-Konflikte |6sen

3.10 Rebasing

311 Tags

3.12 Referenzen auf Commits

3.13 Git-Interna

Inhalt

13

13
16
18

21

21
28
32
45
55
56
70
72

75

75
80
84
92
100
105
113
115
126
133
139
144
149

Inhalt

41
42
43
4.4

51
5.2
5.3
5.4
55
5.6

6.1
6.2
6.3

6.4
6.5

6.6

7.1

7.2
7.3

7.4

8.1
8.2
83
8.4
8.5

Datenanalyse im Git-Repository

Commits durchsuchen (git log)

Dateien durchsuchen

Fehler suchen (git bisect)

Statistik und Visualisierung

GitHub

Pull-Requests

Actions

Paketmanager (GitHub Packages)

Automatische Sicherheits-Scans

Weitere GitHub-Funktionen

GitHub CLI

GitLab

On Premises versus Cloud

Installation

Das erste Projekt

Pipelines

Merge-Requests

Web-IDE

Azure DevOps, Bitbucket, Gitea und Gitolite

Azure DevOps

Bitbucket

Gitea

Gitolite

Workflows

Anweisungen fiir das Team

Solo-Entwicklung

Feature-Branches fur Teams

Merge/Pull-Requests

Long-Running Branches — Gitflow

153

153
164
169
171

177

178
183

191
194
198
204

209

210
211
218

220
231

233

235

235

240
242

252

257

257
258
260
267
271

8.6
8.7

9.1
9.2

9.3
9.4
9.5

10

101
10.2

10.3
10.4
10.5

11

111
11.2
113
114
115

12

121
12.2
123

Index

Trunk-based Development

Welcher Workflow ist der Richtige?

Arbeitstechniken

Hooks

Pragnante Commit-Messages

Submodule und Subtrees

Mehr Komfort in Bash und Zsh

Zwei-Faktor-Authentifizierung

Git in der Praxis

Etckeeper

Dotfiles mit Git verwalten

Zugriff auf Subversion mit git-svn
Von SVN zu Git migrieren

Ein Blog mit Git und Hugo

Git-Probleme und ihre Losung

Git-Fehlermeldungen (Ursache und Losung)

Merge fiir eine einzelne Datei

Dateien permanent aus Git 16schen

Ein Projekt aufteilen

Commits in einen anderen Branch verschieben

Kommandoreferenz

git-Kommando
Revisionssyntax

git-Konfiguration

Inhalt

276
279

281

281
287
294
304
307

315

316
319

326
330

335

347

347
354
355
363
364

369

369
401

402

409

