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Plastics are everywhere in our lives these days and accompany us throughout the 
day: the toothbrush and toothpaste in the morning; the windscreen wiper, seat, or 
window lifter of the car on the way to work; the keyboard at work; or the wrapping 
film over our vegetables at the grocery store. As these examples show, plastics 
have very different purposes and uses. While they often save us weight in technical 
applications and thus reduce fuel consumption, there are also many everyday 
objects whose use should be reconsidered again and again with regard to their 
entire life cycle. If, for example, the function, weight, or durability has been im-
proved, their use is often advantageous due to the positive influence on the entire 
life cycle. However, if the use has more negative than positive consequences, alter-
natives should be considered already in the design phase. Despite the countless 
innovations that have been made possible by plastics and will continue to be real-
ized in the future, the sustainable use of this valuable material is indispensable.

If the use of plastic proves to be the best option, reuse and repair should be 
considered as the next option. We are a long way from this in industrial use, but 
innovative solutions are also conceivable here. According to the motto “reduce, 
reuse, recycle”, the recycling of plastic waste should only be the third option. This 
does not mean, however, that recycling is unimportant. The recycling of plastic 
waste is gaining in importance day by day and has now also come into the focus of 
the general public. This is mainly due to the alarming figures for plastic waste in 
the oceans. At present, more than 8 million tons of plastics are discharged into the 
oceans every year—and this number will increase if we do not change the way we 
handle plastic waste. Awareness of these catastrophic effects has already led to a 
change in public thinking and the use of plastic bags when shopping is now as 
absurd as disposing of a toothbrush after a single use. 

For this reason, our book shows what unused potential lies in the recycling of 
plastics—from an ecological, economic, and technological point of view. Our focus is 
on the recycling of packaging waste. Plastics currently represent a great chal-
lenge—especially for the environment—and their recycling offers all the more 
opportunities. In addition, the non-reuse of plastics is equivalent to the loss of 
crude oil and is therefore also considered from this point of view. 

Foreword



VI �Foreword

To illustrate this potential, the book starts with a general overview of waste treat-
ment strategies for plastics in the United States, and discusses the importance of 
plastic waste and some insights into how consumer behavior could be positively 
affected (Chapters 1 and 2). Chapter 3 focuses on the technical aspects and differ-
ent processes of plastics recycling. In separate chapters, the economic (Chapter 4) 
and ecological properties (Chapter 5) of different waste treatment strategies for 
plastics are compared and evaluated. The analysis shows the potential of plastics 
recycling and the necessary boundary conditions for an increase in the recycling 
rate. Therefore, different scenarios for increasing the profitability of recycling are 
analyzed in Chapter 6. Last but not least, Chapter 7 presents the global potential 
for waste treatment and, in particular, plastics recycling using the examples of 
Europe and China. 

We hope that with our book we can show you the importance and opportunities 
that the recycling of plastics offers and how we can all together play a role in mak-
ing our world a little bit better—whether as decision-makers in a large company, 
when doing your weekly shopping in the supermarket, or when disposing of waste. 
Because, as you will discover in the course of reading this book: even the small 
things can have a huge effect! 

We would like to thank everyone who supported us in writing and extending the 
second edition of this book. Special thanks to Sebastian Goris for adding his exper-
tise in the area of fiber-reinforced plastics to the third chapter of this book.

The Authors
Aachen/Bangkok/Selb, July 2020
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3.1.2 Chemical Recycling

Chemical recycling is used for cross-linked polymers or for thermoplastic polymers if 
no sufficient quality can be achieved using mechanical recycling. Chemical pro-
cesses are used to convert the polymer chains to low molecular weight compounds 
or, in some cases, the original plastic monomer (feedstock). The monomers can 
be used for polymerization to generate the original polymer again, whereas the 
low  molecular weight compounds are used as feedstock for the petrochemical 
industry. Common processes for this recycling method are hydrolysis, hydrocrack-
ing, pyrolysis, and depolymerization. Because of the large amounts of energy and 
chemicals consumed by the currently available processes, chemical recycling is 
only economically and ecologically reasonable for a very limited number of poly-
mers such as polymethyl methacrylate (PMMA) and polyether ether ketone (PEEK). 
Chemical recycling of polyethylene terephthalate (PET) has been successfully de-
veloped. However, it is hindered by the processing cost. Furthermore, the chemical 
processing has been proven to be technically possible for polyolefins but is still in 
the laboratory stage of development. This is a fast growing research area, where 
significant breakthroughs can be expected in the next decade. [3, 4, 6, 7, 8]

�� 3.2 �Recycling Different Types of 
Plastic Waste

As mentioned before, plastic waste can be divided into preconsumer waste (manu-
facturing scrap) and postconsumer waste (recovered waste). These different plastic 
waste types are recycled differently.

3.2.1 Preconsumer Waste

3.2.1.1 Manufacturing Scrap
Preconsumer waste, such as runners, gates, sprues, and trimming, is normally re-
cycled using primary mechanical recycling. It is ground and remelted in-house.

3.2.1.2 Dilution Effect
Manufacturing scrap is often mixed into virgin material to reduce material cost 
while at the same time minimizing the effects of degradation on part performance. 
Depending on the mixing ratio, either the virgin material is diluted with regrind or 
the regrind is refreshed with virgin material. By using a constant mixing ratio 
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during continuous processing, the regrind waste itself is diluted by material that 
has been reprocessed once, twice, three times, etc. The composition of a material 
with a proportion of recyclate q after n processing cycles can be calculated using 
Equation 3.1.

q qn

i

n
−

=

− =Σ i

1

1 1( ) � 3.1

For small proportions of recyclate, the regrind material contains only minimal 
amounts of material that has passed through a large number of processing cycles 
and therefore is highly degraded. 

Figure 3.1 shows the composition of material with different mixing ratios of 
recycled and virgin material. The first column shows 30% recycled and 70% virgin 
material. Under these conditions, the regrind material contains less than 0.8% of 
material that has been reprocessed five times or more. Seventy percent of the ma-
terial is virgin material, 21% has been processed once, 6.3% twice, and 1.9% three 
times. As proportions of material smaller than 1% do not have a significant influ-
ence on the material properties and can be neglected [9], the properties will be 
dominated by fractions that have been processed four times or less. Thus, it can be 
concluded that the properties of a material with small amounts of recyclate will not 
fall below a certain level. [10]
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Figure 3.1 Composition of recycled plastic material after n reprocessing steps for 30%, 50%, 
and 70% recycled material
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However, regrind material with high proportions of recyclate contains significant 
amounts of highly degraded material, as can be seen in the right column in Fig-
ure 3.1, in which 70% of the regrind is recycled and 30% is virgin material. This 
regrind material contains 5.0% material that has been reprocessed five times, as 
well as 30% that is virgin material, 21% that has been processed once, 14.7% twice, 
10.3% three times, and 7.2% four times. After nine processing cycles, the material 
still contains 1.2% of the initial material. Although this mix contains significant 
portions of highly degraded material, after 10 reprocessing cycles the material 
reaches a steady state in which performance properties are not affected anymore 
by further processing. Therefore, this mixing ratio is used quite frequently for 
packaging products, e. g., PET containers. 

3.2.2 Postconsumer Waste

Consumer plastics are largely made from six different polymer resins, which are 
indicated by a number, or resin code, from 1 to 7 molded or embossed onto the sur-
face of the plastic product. The number 7 indicates any polymer other than those 
numbered 1 to 6. Table 3.1 lists the polymer resins, their resin codes, and the 
general applications for virgin and recycled plastics made from these resins. The 
percentages of the different types of postconsumer plastic waste in municipal solid 
waste (MSW) in the United States in 2017 are given in Table 2.1. [11]

Table 3.1 Plastic Types and Products from Virgin and Recycled Materials

Resin Symbol and 
Plastic Type

Products Created from  
Virgin Plastics

Products Created from 
Recycled Plastics

Polyethylene terephthalate

Bottles for water, soft drinks, salad 
dressing, peanut butter, and 
vegetable oil

Egg cartons, carpet, and fibers 
and fabric for T-shirts, fleeces, 
tote bags, shoes, etc.

High-density polyethylene

Milk and juice cartons, detergent 
containers, shower gel bottles, 
and shipping containers

Toys, pails, drums, traffic barrier 
cones, fencing, and trash cans

Polyvinyl chloride

Packaging materials, plastic pipes, 
decking, wire and cable products, 
blood bags, and medical tubing

Shoe soles, construction material, 
and boating and docking bumpers
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4.4.2 Plastic Reprocessing Costs

After PET is baled in the MRF, the bales are transported to a plastic reprocessing 
facility, where they are further treated, as schematically presented in Figure 4.3.

Metering Bin

Bale Breaker

Pre -Washer

Grinder

Dryer

Hot Washer (Silo)

Grinder

Extruder

Sorting of 
Contaminants

1

Washing Station

Extrusion section

Figure 4.3 Schematic of plastic reprocessing facility

From the tipping floor, PET bales are grabbed by a loader and laid into a metering 
bin, which constantly meters the plastic waste into a bale breaker. The bale breaker 
dismembers the PET bales into individual free flowing items (e. g., food containers 
and bottles). [49, 50]

The individual items are conveyed to a washing station. After a short prewashing to 
remove labels and dirt from the outside of the items and a manual hand sorting of 
contaminants, PET items are ground into flakes by a wet granulator. These ground 
flakes are transported to a silo for hot washing, which removes the last dirt and 
glue. In a final step at the washing station, these clean flakes are dried. [49, 50]
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Chapter 5 concluded that recycling is the best option for handling plastic waste 
from an environmental point of view and can significantly contribute to minimiz-
ing air, soil, and marine pollution. 

But, as presented in Chapters 2, 3, and 4, there are two central issues with recy-
cling: on the one hand, only 9% of plastic waste in the United States is recycled at 
the moment due to technical limitations (see Chapter 3) and, on the other hand, 
recycling is currently unprofitable from an economic point of view due to low oil 
prices (see Chapter 4). Recycling and selling 1 t of recycled plastic results in a loss 
of more than $10. 

To improve both profitability and recycling rate, two process optimization possibil-
ities are presented in this chapter.

�� 6.1 �Optimization I: Reduction of Sorting 
Processes

The first process optimization proposed is reducing the number of sorting pro-
cesses. Therefore, the so-called dual-stream recycling would need to be imple-
mented. Dual-stream recycling means that the plastic waste is directly separated 
by consumers in their households, which is similar to systems established in Eu-
rope (see Section 7.1). Consequently, the sorting process in the materials recovery 
facility (MRF) is not required anymore. The optimized process is shown in Fig-
ure 6.1. [1]

Optimization of Plastics 
Recycling 
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MRF

Plastic Processing

MARKET

$

1

Figure 6.1 Optimization I: Dual-stream recycling

To calculate the profitability of the optimized process, the original profitability 
calculation of the plastic recycling process is used as a basis. The costs of poly
ethylene terephthalate (PET) processing as well as the revenues realized by selling 
recycled PET remain unchanged. Processing 1 t of plastic waste costs $72.37 and 
the revenues for sale of 1 t of recycled plastic are $146.94. But to handle plastic in 
the same facility, additional machines and processes need to be installed. The addi-
tional costs are split up in two main categories: investment costs (1) and operation 
and maintenance costs (2). The assumptions for this optimization are shown in 
Table 6.1 and in more detail in Table 8.21 in the Appendix.

Table 6.1 Optimization I: Assumptions

Lifetime [years]        10
Yearly working hours [h]       6,240
Yearly plastic waste handling [t]    100,000
Total plastic waste capacity (10 years) [t]   1,000,000
Yearly PET capacity [t]     15,000
Total PET waste capacity (10 years) [t]    150,000
Separation efficiency [%]        91

Additional investment costs are split up in building and site, machine, and equip-
ment costs. To handle plastic waste in only one facility, additional land, site work, 
and buildings as well as a scale house are required. These building and site costs 
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amount to $1,775,000. Furthermore, three new machines need to be installed: a 
metering bin, an optical PET sorting machine, and a baler. The investment costs of 
all machines add up to $925,000. For additional conveyors, rolling stock, and waste 
collection cars, total costs are $1,250,000. As presented in Table 6.2, total additional 
investment costs are $3,950,000 (see also Table 8.22 in the Appendix). [2, 3, 4]

Table 6.2 Optimization I: Additional Investment Costs

Additional building and site investment costs [$] 1,775,000
Additional machine investment costs [$]   925,000
Additional equipment investment costs [$] 1,250,000
Total additional investment costs [$] 3,950,000

Additional operating and maintenance costs are salaries of the additional person-
nel, operating and maintenance costs of the machines and the rolling stock, and 
especially transportation and collection costs. Yearly operating and maintenance 
costs are $5,713,797, so overall $57,137,976, as presented in Table 6.3 and in more 
detail in Table 8.23 in the Appendix. [3, 5, 6, 7, 8]

Table 6.3 Optimization I: Additional Operating and Maintenance (O&M) Costs

Personnel salaries per year [$]    963,000
Facility costs per year [$]    250,000
Machine O&M costs per year [$]     68,417
Rolling stock O&M costs per year [$]    748,380
Transportation and collection costs [$]  3,684,000
Yearly O&M costs [$]   5,713,797
Overall O&M costs (10 years) [$]  57,137,976

Summarizing both additional investment and operating and maintenance costs, 
total additional costs are $61,087,976. Since 100,000 t of plastic waste must be 
handled per year in this new facility area (to gain 15,000 t of PET waste, around 
100,000 t of plastic waste has to be sorted), the additional costs of 1 t of plastic 
waste are $61.09.

Knowing that the revenues of recycling 1 t of plastic waste are $146.94 and the 
costs for further processing the plastic waste are $72.37, the profitability of this 
optimization is calculated in Table 6.4.

Table 6.4 Total Profit per Ton of Plastics Recycled

Revenues per ton of plastics recycled [$/t] 146.94
Sorting [$]  61.09
PET processing [$]  72.37
Profit per ton of plastics recycled [$/t]  13.48
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Table 8.12 Economic Analysis of Waste-to-Energy Plant: Average Lower Heating Value (LHV) of 
Municipal Solid Waste

Type of Waste
LHV 

[MJ/kg]
% in Waste

[%]
Total

[MJ/kg]
Paper 19.12 25.00 4.78
Glass 0.00 4.20 0.00
Metals 0.00 9.40 0.00
Plastics 36.16 13.20 4.77
Rubber and Leather 31.28 3.40 1.06
Textiles 16.05 6.30 1.01
Wood 11.63 6.70 0.78
Food 6.05 15.20 0.92
Yard Trimmings 6.98 13.10 0.91
Other 21.05 3.50 0.74

14.98Total [MJ/kg]

Table 8.13 Economic Analysis of Waste-to-Energy (WTE) Plant: Tipping Fee

State Number of 
WTE Plants

Average WTE 
Tipping Fee

[$/t]
Total

Alabama 1 25.00 25.00
Connecticut 7 64.00 448.00
Florida 12 52.92 635.04
Iowa 1 64.00 64.00
Massachusetts 7 69.00 483.00
Minnesota 9 55.00 495.00
New Hampshire 2 69.00 138.00
New Jersey 5 85.00 425.00
New York 10 72.34 723.40
Washington 3 98.00 294.00
Wisconsin 2 51.00 102.00
Total 59 3,832.44
Overall Average Tipping Fee 64.96

�� 8.3 Economic Analysis of Recycling

Table 8.14 Economic Analysis of Plastics Recycling: Overall Assumptions

Water Price [$/l] 0.0040

Percentage of PET in Plastic Waste [%] 14.16

0.1027Electricity Price [$/kWh]
Diesel Price [$/gallon] 2.198
Diesel Price [$/l] 0.5807

Price of Recycled PET Pellets [$/kg] 1.26
Average Price of Recycled PET Pellets [$/lb] 0.58

Water Price [$/gallon] 0.015
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