

HANSER

Sample Pages

Understanding Plastics Recycling

Natalie Rudolph et al.

ISBN (Book): 978-1-56990-846-4

ISBN (E-Book): 978-1-56990-847-1

For further information and order see

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)

Foreword

Plastics are everywhere in our lives these days and accompany us throughout the day: the toothbrush and toothpaste in the morning; the windscreen wiper, seat, or window lifter of the car on the way to work; the keyboard at work; or the wrapping film over our vegetables at the grocery store. As these examples show, plastics have very different purposes and uses. While they often save us weight in technical applications and thus reduce fuel consumption, there are also many everyday objects whose use should be reconsidered again and again with regard to their entire life cycle. If, for example, the function, weight, or durability has been improved, their use is often advantageous due to the positive influence on the entire life cycle. However, if the use has more negative than positive consequences, alternatives should be considered already in the design phase. Despite the countless innovations that have been made possible by plastics and will continue to be realized in the future, the sustainable use of this valuable material is indispensable.

If the use of plastic proves to be the best option, reuse and repair should be considered as the next option. We are a long way from this in industrial use, but innovative solutions are also conceivable here. According to the motto “reduce, reuse, recycle”, the recycling of plastic waste should only be the third option. This does not mean, however, that recycling is unimportant. The recycling of plastic waste is gaining in importance day by day and has now also come into the focus of the general public. This is mainly due to the alarming figures for plastic waste in the oceans. At present, more than 8 million tons of plastics are discharged into the oceans every year—and this number will increase if we do not change the way we handle plastic waste. Awareness of these catastrophic effects has already led to a change in public thinking and the use of plastic bags when shopping is now as absurd as disposing of a toothbrush after a single use.

For this reason, our book shows what unused potential lies in the recycling of plastics—from an ecological, economic, and technological point of view. Our focus is on the recycling of packaging waste. Plastics currently represent a great challenge—especially for the environment—and their recycling offers all the more opportunities. In addition, the non-reuse of plastics is equivalent to the loss of crude oil and is therefore also considered from this point of view.

To illustrate this potential, the book starts with a general overview of waste treatment strategies for plastics in the United States, and discusses the importance of plastic waste and some insights into how consumer behavior could be positively affected (Chapters 1 and 2). Chapter 3 focuses on the technical aspects and different processes of plastics recycling. In separate chapters, the economic (Chapter 4) and ecological properties (Chapter 5) of different waste treatment strategies for plastics are compared and evaluated. The analysis shows the potential of plastics recycling and the necessary boundary conditions for an increase in the recycling rate. Therefore, different scenarios for increasing the profitability of recycling are analyzed in Chapter 6. Last but not least, Chapter 7 presents the global potential for waste treatment and, in particular, plastics recycling using the examples of Europe and China.

We hope that with our book we can show you the importance and opportunities that the recycling of plastics offers and how we can all together play a role in making our world a little bit better—whether as decision-makers in a large company, when doing your weekly shopping in the supermarket, or when disposing of waste. Because, as you will discover in the course of reading this book: even the small things can have a huge effect!

We would like to thank everyone who supported us in writing and extending the second edition of this book. Special thanks to Sebastian Goris for adding his expertise in the area of fiber-reinforced plastics to the third chapter of this book.

The Authors

Aachen/Bangkok/Selb, July 2020

Contents

Foreword	V
Acronyms and Other Abbreviations	XI
1 All About the Waste	1
1.1 Municipal Solid Waste—A Daily Companion	1
1.2 Management Methods for Municipal Solid Waste	3
1.2.1 Landfilling	4
1.2.2 Incineration with Energy Recovery (Waste-to-Energy) ..	5
1.2.3 Recycling	7
2 Plastics—Increasing Value, Decreasing Lifetime	9
3 Plastics Recycling—Conservation of Valuable Resources	15
3.1 Plastics Recycling Methods	16
3.1.1 Mechanical Recycling	16
3.1.2 Chemical Recycling	17
3.2 Recycling Different Types of Plastic Waste	17
3.2.1 Preconsumer Waste	17
3.2.1.1 Manufacturing Scrap	17
3.2.1.2 Dilution Effect	17
3.2.2 Postconsumer Waste	19
3.2.2.1 Packaging Plastic Waste	21
3.2.2.2 Building and Construction Plastic Waste	22
3.2.2.3 Automotive Plastic Waste	23
3.2.2.4 Agricultural Plastic Waste	23
3.2.2.5 Waste from Electrical and Electronic Equipment (WEEE)	24

3.3	Sorting Processes for Plastic Waste	24
3.3.1	Manual Sorting	24
3.3.2	Automated Sorting	25
3.3.2.1	Float-and-Sink Sorting	25
3.3.2.2	Froth-Flotation Sorting	25
3.3.2.3	Near-Infrared Sorting	25
3.3.2.4	Laser-Aided Identification	26
3.3.2.5	X-Ray Fluorescence	26
3.3.2.6	Marker Systems	26
3.4	Plastic Degradation Mechanisms	27
3.4.1	Mechanical Degradation	28
3.4.2	Thermal Degradation	28
3.4.3	Thermal Oxidative Degradation	28
3.4.4	Effect of Degradation on Processing and Service-Life Properties	28
3.4.4.1	Unfilled Plastics	29
3.4.4.2	Fiber-Reinforced Plastics	36
	<i>Dr. Sebastian Goris</i>	
3.5	Contaminants	43
3.6	Conclusion: Technical Feasibility of Plastics Recycling	43
4	Economic Analysis of Plastic Waste Handling	47
4.1	Fundamentals of Economic Analysis	47
4.1.1	Economic Efficiency Calculation	47
4.1.2	Static Economic Efficiency Calculation	48
4.1.3	Profit Comparison Method	48
4.2	Economic Analysis of Landfilling	49
4.3	Economic Analysis of Incineration with Energy Recovery (Waste-to-Energy Facilities)	54
4.4	Economic Analysis of Plastics Recycling	58
4.4.1	Materials Recovery Facility Costs	59
4.4.2	Plastic Reprocessing Costs	63
4.4.3	Revenues from Selling Recycled Plastic	66
4.4.4	Profitability	67
4.4.5	Influence of Oil Price on Profitability of Plastics Recycling	67
4.5	Influence of China's Import Ban on Profitability of Plastics Recycling	70
4.6	Conclusion: Economical Feasibility of Plastics Recycling	71

5	Environmental Analysis of Plastic Waste Handling	77
5.1	Environmental Analysis of Landfilling	77
5.2	Environmental Analysis of Incineration with Energy Recovery (Waste-to-Energy Facilities)	79
5.3	Environmental Analysis of Recycling	80
5.4	Conclusion: Environmental Necessity of Plastics Recycling	82
6	Optimization of Plastics Recycling	85
6.1	Optimization I: Reduction of Sorting Processes	85
6.2	Optimization II: Upcycling of Plastic Waste by Blending PP and LDPE	88
6.2.1	Additional Costs of LDPE-PP Recycling	91
6.2.2	Additional Revenues of LDPE-PP Recycling	93
6.2.3	Total Profit of Optimization II	93
6.3	Optimization III: Increasing the Recycling Rate	94
7	Plastic Waste around the World: Increasing Potential of Recycling	97
7.1	Plastic Waste Handling in Europe	101
7.2	Plastic Waste Handling in China	106
7.3	Plastic Waste in the Future	112
8	Appendix	117
8.1	Economic Analysis of Landfilling	118
8.2	Economic Analysis of WTE	121
8.3	Economic Analysis of Recycling	123
8.4	Optimization I: Reduction of Sorting Processes	128
8.5	Optimization II: Upcycling of Plastic Waste by Blending	130
Index	133

3.1.2 Chemical Recycling

Chemical recycling is used for *cross-linked polymers* or for thermoplastic polymers if no sufficient quality can be achieved using mechanical recycling. Chemical processes are used to convert the polymer chains to *low molecular weight* compounds or, in some cases, the original plastic monomer (feedstock). The monomers can be used for polymerization to generate the original polymer again, whereas the low molecular weight compounds are used as feedstock for the petrochemical industry. Common processes for this recycling method are hydrolysis, hydrocracking, pyrolysis, and depolymerization. Because of the large amounts of energy and chemicals consumed by the currently available processes, chemical recycling is only economically and ecologically reasonable for a very limited number of polymers such as polymethyl methacrylate (PMMA) and polyether ether ketone (PEEK). Chemical recycling of polyethylene terephthalate (PET) has been successfully developed. However, it is hindered by the processing cost. Furthermore, the chemical processing has been proven to be technically possible for polyolefins but is still in the laboratory stage of development. This is a fast growing research area, where significant breakthroughs can be expected in the next decade. [3, 4, 6, 7, 8]

■ 3.2 Recycling Different Types of Plastic Waste

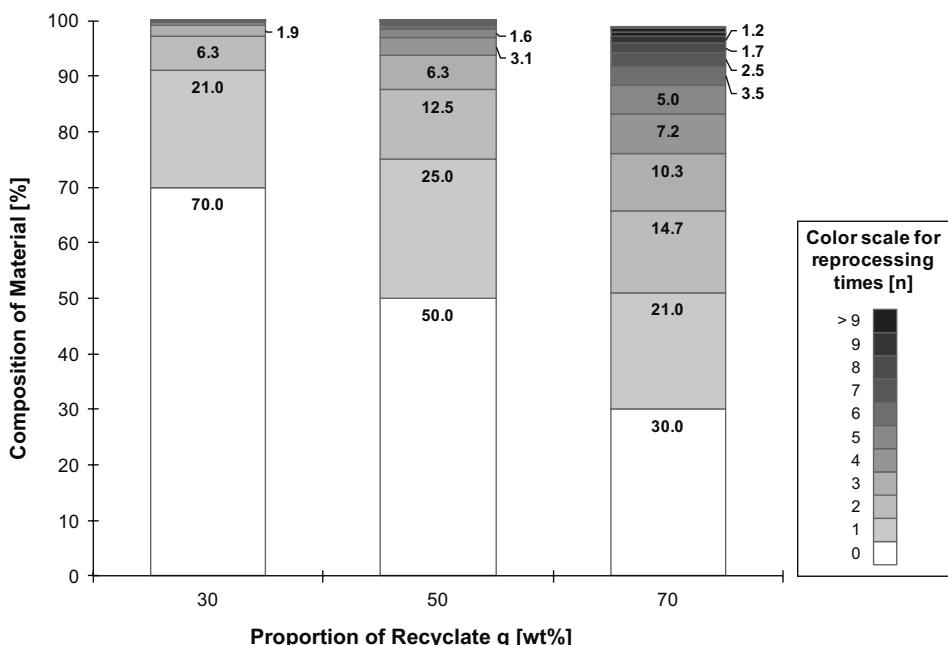
As mentioned before, plastic waste can be divided into *preconsumer waste* (manufacturing scrap) and *postconsumer waste* (recovered waste). These different plastic waste types are recycled differently.

3.2.1 Preconsumer Waste

3.2.1.1 Manufacturing Scrap

Preconsumer waste, such as runners, gates, sprues, and trimming, is normally recycled using primary mechanical recycling. It is ground and remelted in-house.

3.2.1.2 Dilution Effect


Manufacturing scrap is often mixed into virgin material to reduce material cost while at the same time minimizing the effects of degradation on part performance. Depending on the mixing ratio, either the virgin material is diluted with regrind or the regrind is refreshed with virgin material. By using a constant mixing ratio

during continuous processing, the regrind waste itself is diluted by material that has been reprocessed once, twice, three times, etc. The composition of a material with a proportion of recyclate q after n processing cycles can be calculated using Equation 3.1.

$$\sum_{i=1}^n q^{n-i} (1-q) = 1 \quad 3.1$$

For small proportions of recyclate, the regrind material contains only minimal amounts of material that has passed through a large number of processing cycles and therefore is highly degraded.

Figure 3.1 shows the composition of material with different mixing ratios of recycled and virgin material. The first column shows 30% recycled and 70% virgin material. Under these conditions, the regrind material contains less than 0.8% of material that has been reprocessed five times or more. Seventy percent of the material is virgin material, 21% has been processed once, 6.3% twice, and 1.9% three times. As proportions of material smaller than 1% do not have a significant influence on the material properties and can be neglected [9], the properties will be dominated by fractions that have been processed four times or less. Thus, it can be concluded that the properties of a material with small amounts of recyclate will not fall below a certain level. [10]

Figure 3.1 Composition of recycled plastic material after n reprocessing steps for 30%, 50%, and 70% recycled material

However, regrind material with high proportions of recyclate contains significant amounts of highly degraded material, as can be seen in the right column in Figure 3.1, in which 70% of the regrind is recycled and 30% is virgin material. This regrind material contains 5.0% material that has been reprocessed five times, as well as 30% that is virgin material, 21% that has been processed once, 14.7% twice, 10.3% three times, and 7.2% four times. After nine processing cycles, the material still contains 1.2% of the initial material. Although this mix contains significant portions of highly degraded material, after 10 reprocessing cycles the material reaches a steady state in which performance properties are not affected anymore by further processing. Therefore, this mixing ratio is used quite frequently for packaging products, e.g., PET containers.

3.2.2 Postconsumer Waste

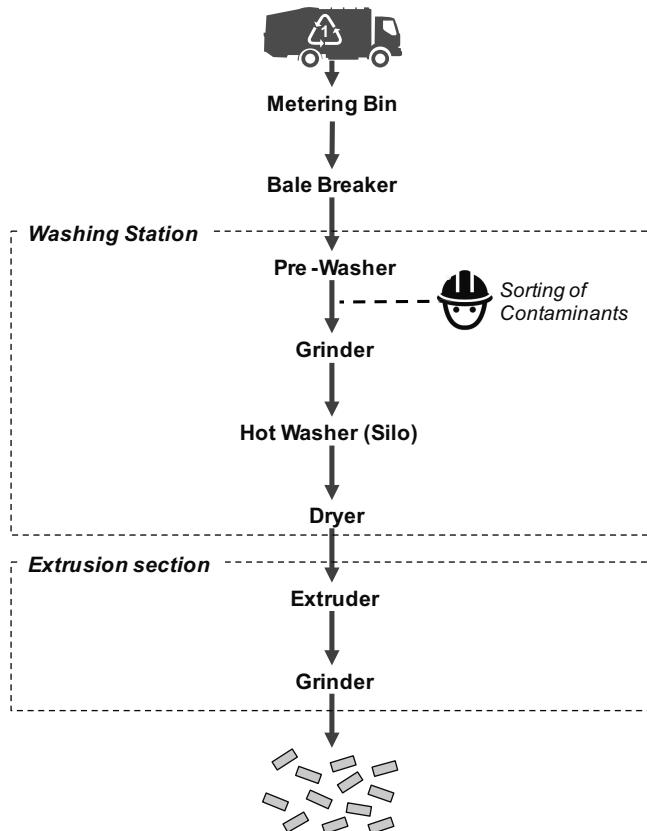

Consumer plastics are largely made from six different polymer resins, which are indicated by a number, or *resin code*, from 1 to 7 molded or embossed onto the surface of the plastic product. The number 7 indicates any polymer other than those numbered 1 to 6. Table 3.1 lists the polymer resins, their resin codes, and the general applications for virgin and recycled plastics made from these resins. The percentages of the different types of postconsumer plastic waste in municipal solid waste (MSW) in the United States in 2017 are given in Table 2.1. [11]

Table 3.1 Plastic Types and Products from Virgin and Recycled Materials

Resin Symbol and Plastic Type	Products Created from Virgin Plastics	Products Created from Recycled Plastics
 Polyethylene terephthalate	Bottles for water, soft drinks, salad dressing, peanut butter, and vegetable oil	Egg cartons, carpet, and fibers and fabric for T-shirts, fleeces, tote bags, shoes, etc.
 High-density polyethylene	Milk and juice cartons, detergent containers, shower gel bottles, and shipping containers	Toys, pails, drums, traffic barrier cones, fencing, and trash cans
 Polyvinyl chloride	Packaging materials, plastic pipes, decking, wire and cable products, blood bags, and medical tubing	Shoe soles, construction material, and boating and docking bumpers

4.4.2 Plastic Reprocessing Costs

After PET is baled in the MRF, the bales are transported to a *plastic reprocessing facility*, where they are further treated, as schematically presented in Figure 4.3.

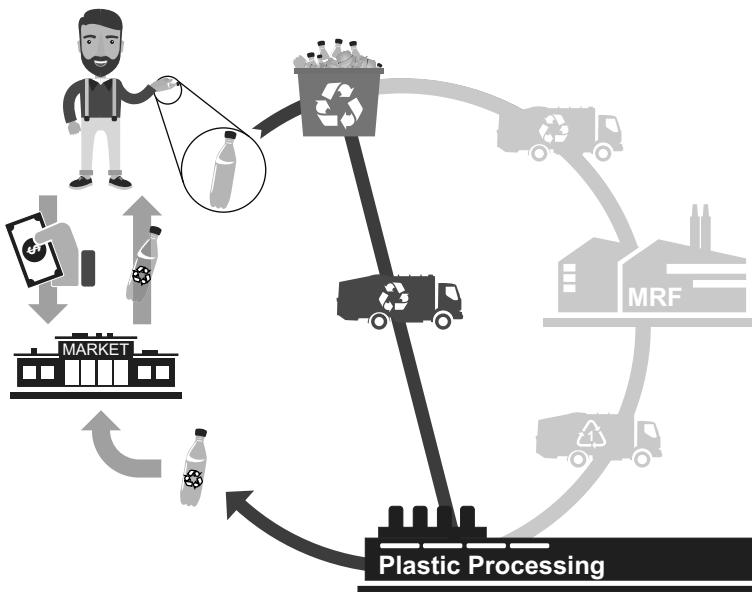
Figure 4.3 Schematic of plastic reprocessing facility

From the tipping floor, PET bales are grabbed by a loader and laid into a metering bin, which constantly meters the plastic waste into a bale breaker. The bale breaker dismembers the PET bales into individual free flowing items (e.g., food containers and bottles). [49, 50]

The individual items are conveyed to a washing station. After a short prewashing to remove labels and dirt from the outside of the items and a manual hand sorting of contaminants, PET items are ground into flakes by a wet granulator. These ground flakes are transported to a silo for hot washing, which removes the last dirt and glue. In a final step at the washing station, these clean flakes are dried. [49, 50]

6

Optimization of Plastics Recycling


Chapter 5 concluded that recycling is the best option for handling plastic waste from an environmental point of view and can significantly contribute to minimizing air, soil, and marine pollution.

But, as presented in Chapters 2, 3, and 4, there are two central issues with recycling: on the one hand, only 9% of plastic waste in the United States is recycled at the moment due to technical limitations (see Chapter 3) and, on the other hand, recycling is currently unprofitable from an economic point of view due to low oil prices (see Chapter 4). Recycling and selling 1 t of recycled plastic results in a loss of more than \$10.

To improve both profitability and recycling rate, two process optimization possibilities are presented in this chapter.

■ 6.1 Optimization I: Reduction of Sorting Processes

The first process optimization proposed is reducing the number of sorting processes. Therefore, the so-called *dual-stream recycling* would need to be implemented. Dual-stream recycling means that the plastic waste is directly separated by consumers in their households, which is similar to systems established in Europe (see Section 7.1). Consequently, the sorting process in the materials recovery facility (MRF) is not required anymore. The optimized process is shown in Figure 6.1. [1]

Figure 6.1 Optimization I: Dual-stream recycling

To calculate the profitability of the optimized process, the original profitability calculation of the plastic recycling process is used as a basis. The costs of polyethylene terephthalate (PET) processing as well as the revenues realized by selling recycled PET remain unchanged. Processing 1 t of plastic waste costs **\$72.37** and the revenues for sale of 1 t of recycled plastic are **\$146.94**. But to handle plastic in the same facility, additional machines and processes need to be installed. The additional costs are split up in two main categories: investment costs (1) and operation and maintenance costs (2). The assumptions for this optimization are shown in Table 6.1 and in more detail in Table 8.21 in the Appendix.

Table 6.1 Optimization I: Assumptions

Lifetime [years]	10
Yearly working hours [h]	6,240
Yearly plastic waste handling [t]	100,000
Total plastic waste capacity (10 years) [t]	1,000,000
Yearly PET capacity [t]	15,000
Total PET waste capacity (10 years) [t]	150,000
Separation efficiency [%]	91

Additional investment costs are split up in building and site, machine, and equipment costs. To handle plastic waste in only one facility, additional land, site work, and buildings as well as a scale house are required. These building and site costs

amount to \$1,775,000. Furthermore, three new machines need to be installed: a metering bin, an optical PET sorting machine, and a baler. The investment costs of all machines add up to \$925,000. For additional conveyors, rolling stock, and waste collection cars, total costs are \$1,250,000. As presented in Table 6.2, total additional investment costs are **\$3,950,000** (see also Table 8.22 in the Appendix). [2, 3, 4]

Table 6.2 Optimization I: Additional Investment Costs

Additional building and site investment costs [\$]	1,775,000
Additional machine investment costs [\$]	925,000
Additional equipment investment costs [\$]	1,250,000
Total additional investment costs [\$]	3,950,000

Additional operating and maintenance costs are salaries of the additional personnel, operating and maintenance costs of the machines and the rolling stock, and especially transportation and collection costs. Yearly operating and maintenance costs are **\$5,713,797**, so overall **\$57,137,976**, as presented in Table 6.3 and in more detail in Table 8.23 in the Appendix. [3, 5, 6, 7, 8]

Table 6.3 Optimization I: Additional Operating and Maintenance (O&M) Costs

Personnel salaries per year [\$]	963,000
Facility costs per year [\$]	250,000
Machine O&M costs per year [\$]	68,417
Rolling stock O&M costs per year [\$]	748,380
Transportation and collection costs [\$]	3,684,000
Yearly O&M costs [\$]	5,713,797
Overall O&M costs (10 years) [\$]	57,137,976

Summarizing both additional investment and operating and maintenance costs, total additional costs are **\$61,087,976**. Since 100,000 t of plastic waste must be handled per year in this new facility area (to gain 15,000 t of PET waste, around 100,000 t of plastic waste has to be sorted), the additional costs of 1 t of plastic waste are **\$61.09**.

Knowing that the revenues of recycling 1 t of plastic waste are **\$146.94** and the costs for further processing the plastic waste are **\$72.37**, the profitability of this optimization is calculated in Table 6.4.

Table 6.4 Total Profit per Ton of Plastics Recycled

Revenues per ton of plastics recycled [\$/t]	146.94
Sorting [\$]	61.09
PET processing [\$]	72.37
Profit per ton of plastics recycled [\$/t]	13.48

Table 8.12 Economic Analysis of Waste-to-Energy Plant: Average Lower Heating Value (LHV) of Municipal Solid Waste

Type of Waste	LHV [MJ/kg]	% in Waste [%]	Total [MJ/kg]
Paper	19.12	25.00	4.78
Glass	0.00	4.20	0.00
Metals	0.00	9.40	0.00
Plastics	36.16	13.20	4.77
Rubber and Leather	31.28	3.40	1.06
Textiles	16.05	6.30	1.01
Wood	11.63	6.70	0.78
Food	6.05	15.20	0.92
Yard Trimmings	6.98	13.10	0.91
Other	21.05	3.50	0.74
Total [MJ/kg]			14.98

Table 8.13 Economic Analysis of Waste-to-Energy (WTE) Plant: Tipping Fee

State	Number of WTE Plants	Average WTE Tipping Fee [\$/t]	Total
Alabama	1	25.00	25.00
Connecticut	7	64.00	448.00
Florida	12	52.92	635.04
Iowa	1	64.00	64.00
Massachusetts	7	69.00	483.00
Minnesota	9	55.00	495.00
New Hampshire	2	69.00	138.00
New Jersey	5	85.00	425.00
New York	10	72.34	723.40
Washington	3	98.00	294.00
Wisconsin	2	51.00	102.00
Total	59		3,832.44
Overall Average Tipping Fee			64.96

■ 8.3 Economic Analysis of Recycling

Table 8.14 Economic Analysis of Plastics Recycling: Overall Assumptions

Percentage of PET in Plastic Waste [%]	14.16
Average Price of Recycled PET Pellets [\$/lb]	0.58
Price of Recycled PET Pellets [\$/kg]	1.26
Electricity Price [\$/kWh]	0.1027
Diesel Price [\$/gallon]	2.198
Diesel Price [\$/l]	0.5807
Water Price [\$/gallon]	0.015
Water Price [\$/l]	0.0040

Index

A

- ABS 22-24
- accidents 53
- agricultural applications 23
- area fill method 4
- automated sorting 25
- automotive applications 23

B

- bale breaker 64
- baler 61
- behavioral change 11
- biodegradable plastics 78
- break-even price 70
- building and construction industry 22

C

- capital budgeting 47
- capital cost 49
- carbon emissions 80
- carbon fibers 37
- chemical recycling 16, 17
- Closed Loop Fund (CLF) 95
- closure costs 52
- colorant 43
- combustion
 - profit from 57
 - revenues from 56
- compatibilizers 36
- construction costs 51
- consumer behavior 11

- contaminants 43
- correlation coefficient 69
- costs 49, 86
- cross-linked polymers 17
- cyber physical systems 114

D

- data management infrastructure 114
- debris roll screen 61
- degradation
 - kinetics 27
 - mechanical 27, 28
 - photo 27
 - process 27
 - thermal 27, 28
 - thermal oxidative 27, 28
- density 21, 25
- depolymerization 17
- deposit and return system 106
- die 43
- digital transformation 114
- dilution 17
- downcycling 36
- dual-stream recycling 85
 - dual system Germany 105
- dynamic methods 48

E

- economic efficiency
 - calculation 47
 - fundamentals 47

economic potential of plastics recycling 113
eddy current separator 61
electrical and electronic equipment waste 24
environmental aspects 77
environmental behavior 11
environmental burdens 99
EU Directive 94/62/EC 103
Europe, recycling system in 101
export of plastic waste 70
extruded polystyrene (XPS) 107
extrusion 65

F

fiber aspect ratio 38–39
fiber length reduction 37, 38, 40, 41
fiber-reinforced plastics 36
– continuous 36
– discontinuous 36
fixed costs 49
float-and-sink process 25
flow behavior 27
froth-flotation process 25

G

glass fibers 37
global effects 97
green dot (Grüner Punkt) 106
greenhouse gas 78, 80
– emissions 81, 100

H

high-density polyethylene (HDPE) 10, 19, 21–23
high-impact polystyrene 30
hydrolysis 17, 43

I

impact strength 88
import ban of China 109

imported plastic waste 108
incineration with energy recovery 3, 5
initial investment cost 49
investment costs 50, 54, 65, 86

L

landfill 3, 4, 49
– cleanup 53
– closure costs 52
– construction costs 49, 50
– investment costs 50
– operating and maintenance costs 51
– profit of 49
– sizes 4
laser-aided systems 26
LDPE–PP recycling process
– revenues of 93
leachate 78
LLDPE 23
loader 64
low-density polyethylene (LDPE) 10, 20, 21, 23, 32

M

maintenance costs 52, 55, 65, 87
manual sorting 24, 61
marine pollution 78
marker systems 26
market for postconsumer plastic waste 106
mass-burn facility. *See* incineration with energy recovery
materials recovery facility (MRF) 59
– investment costs 62
– operating and maintenance costs 62
material tests 89
mechanical recycling 16
– primary 16
– secondary 16
melt flow index (MFI) 30, 89
melt viscosity 27
metering bin 60, 64
microplastics. *See* marine pollution

molecular weight 17
municipal solid waste (MSW) 1

N

near-infrared (NIR) sorting 25
net emission factor 80
newspaper screen 61

O

oil 11, 68
old corrugated cardboard (OCC) screen 61
open burning 99
open dumps. *See* open burning
operating costs 51, 55, 65, 87
Operation Green Fence Initiative 109
optical sorting 61

P

PA66 42
packaging
- applications 21
- materials 9
- waste 21
PBT 23
PC/ABS 24
Pearson product-moment correlation coefficient 69
personnel costs 55, 60, 63, 65, 87, 92
PET recycling process
- extension 88
- revenues from 66
plastic applications 20
plastic processing facility 64
plastics production 67
- Europe 101
- growth 9
plastics recycling
- methods 16
- process 58
plastic waste
- reduction of 79

PMMA 22, 23
policy 12
polishing screen 61
pollutants 80
polyamide (PA) 22–24, 37
polycarbonate (PC) 22–24, 33
polyethylene (PE) 23, 27
polyethylene terephthalate (PET) 19, 21, 24, 26, 29, 43
polylactic acid 32
polymer blends 36
polymer degradation 27
polypropylene (PP) 10, 20, 21, 23, 24, 34, 37, 41

polystyrene (PS) 20, 22, 23
polyurethane (PU) 22–24
polyvinyl chloride (PVC) 19, 22–24, 26
POM 22–24
postclosure costs 52
postconsumer plastic waste 15, 17, 19
- market for 106
PPE 23
PPE/HIPS 24
PP/PET 36
preconsumer plastic waste 15, 17
price correlations between PET and oil 69

process energy emissions 81
process non-energy emissions 81
profitability 47, 67
- absolute 48, 49
- relative 48, 49
- types 48
profit comparison method (PCM) 48
profit of handling plastic waste 71
purchasing power parity (PPP) 54
pyrolysis 6

R

recycling 3
- deterioration of performance 43
- mixed plastics 15
- plastics 15, 58
- potential 112
- rate 15

recycling initiative in China 111
reduction of plastics production 81
reduction of plastic waste 79
reprocessing 15
residual fiber length 40
resin code 19
Resource Conservation and Recovery Act (RCRA) 4
rLDPE-rPP
– blending of 89, 113
– selling price of 93, 94

S

scarce resources, loss of 78
scarcity of land 78
sensors 114
service life 21
Shenzhen East Waste-to-Energy Plant 112
single-use plastics
– disposable 11
– reusable 11
single-use products 10, 101
social norm 11
sorting 24, 61
stabilizers 34
static methods 47
stress cracking 88

T

thermochemical decomposition 6
tipping fee 53
transportation emissions 81
trench method 4

U

unbreakable fiber length 40

V

variable cost 49

W

waste collecting systems in Europe 104
waste composition
– world 98
waste generation
– dependence on income level 97
– global effects 97
waste handling 3
– in China 106
– in Europe 101
waste reduction 81
Waste Reduction Model (WARM) 80
waste-to-energy (WTE). *See* incineration with energy recovery
wet granulator 64

X

X-ray fluorescence 26