Contents

Preface xiii

1	Synthesis of Hairy Nanoparticles 1
	Zongyu Wang, Jiajun Yan, Michael R. Bockstaller,
	and Krzysztof Matyjaszewski
1.1	Introduction to Grafting Chemistry 1
1.2	Surface Functionalization of Nanoparticles 2
1.2.1	Surface Modification by Chemical Treatment 2
1.2.2	Surface Modification by Plasma Treatment 8
1.2.3	Synthesis of Functionalized Nanoparticles Through Initiator-Containing
	Precursors 8
1.3	Synthesis of Hairy Nanoparticles 9
1.3.1	Surface-Initiated Polymerization/The "Grafting-from" Approach 9
1.3.1.1	SI-Free Radical Polymerization 10
1.3.1.2	SI-ATRP 10
1.3.1.3	SI-RAFT 17
1.3.1.4	Other Polymerization Techniques 19
1.3.2	The "Grafting-onto" Approach 21
1.3.2.1	Conventional "Grafting-onto" Approach 21
1.3.2.2	Ligand Exchange 23
1.3.3	Template Synthesis 24
1.3.3.1	Block Copolymer and Its Derivative Templates 24
1.3.3.2	Star/Bottlebrush Polymer Templates 25
1.4	The Role of "Architecture" in Hairy Nanoparticles 25
1.4.1	Conformation of Hairy Nanoparticles 26
1.4.2	Bimodal Hairy Nanoparticles 31
1.5	Conclusion 32
	Acknowledgment 34
	References 34

Vi				
	٠	4	,	ì
	٦	,		

2	Hairy Nanoparticles via Self-assembled Linear Block	
	Copolymers 49	
	Zhen Zhang, Yi Shi, and Yongming Chen	
2.1	Introduction 49	
2.2	Hairy NPs via Bulk Microphase Separation of Block Copolymers	50
2.2.1	Bulk Microphase Separation of Diblock Copolymers 50	
2.2.1.1	Theoretical Research 51	
2.2.1.2	Experimental Study 52	
2.2.1.3	Effect Factors 53	
2.2.2	Bulk Microphase Separation of Triblock Copolymers 54	
2.2.3	Preparation of Hairy NPs with Different Shapes 55	
2.2.3.1	Diblock Copolymers with PTEPM or PGMA Components 56	
2.2.3.2	Diblock Copolymers Containing PS 56	
2.2.3.3	Triblock Copolymer System with PS Components 59	
2.3	Hairy NPs via the Self-assembly of Block Copolymer in Solution	61
2.3.1	Morphology of Block Copolymers Assembly 62	
2.3.1.1	Spherical Micelles 62	
2.3.1.2	Rod-Like Micelles 63	
2.3.1.3	Bilayer Structure 63	
2.3.1.4	New Morphologies 64	
2.3.2	Preparation of Hairy Copolymer NPs 65	
2.3.3	Major Factors Influencing the Morphology of Hairy NPs 65	
2.3.3.1	Block Copolymer Composition 65	
2.3.3.2	Block Copolymer Concentration 66	
2.3.3.3	The Nature of the Solvent 66	
2.3.3.4	Additives 67	
2.3.3.5	Other Factors 68	
2.4	Summary 69	
	References 69	
3	Hairy Nanoparticles via Unimolecular Block Copolymer	
	Nanoreactors 73	
	Wenjie Zhang and Xinchang Pang	
3.1	Background 73	
3.2	Synthesis and Properties of Block Copolymer Unimolecular	
	Micelles 75	
3.2.1	Properties of Unimolecular Block Copolymer Micelles 75	
3.2.2	Synthesis and Features of Star-Liked Block Copolymers 77	
3.2.2.1	Synthesis of Star-Liked Block Copolymers via Core-First Method	77
3.2.2.2	Synthesis of Star-Liked Block Copolymers via Arm-First Method	83
3.2.3	Synthesis of Bottle Brush-Liked Block Copolymer 84	
3.3	Synthesis of Monodispersed Nanoparticles via Block Copolymer	
	Unimolecular Micelles Nanoreactors 88	
3.3.1	Star-Like Block Copolymers as Unimolecular Nanoreactors 88	

3.3.1.1	Plain Nanoparticles 88
3.3.1.2	Core@Shell Nanoparticles 94
3.3.1.3	Hollow Nanoparticles 97
3.3.1.4	Nanoring 99
3.3.1.5	Colloidal Nanoparticles Assemblies 102
3.3.2	Cylindrical Polymer Brushes as Unimolecular Nanoreactors 104
3.4	Application of Polymer-Capped Nanoparticles 111
3.4.1	Solar Energy Conversion 112
3.4.2	Light-Emitting Diodes 113
3.4.3	Lithium-Ion Batteries 114
3.4.4	Catalysis 115
3.5	Conclusions and Perspectives 117
3.5.1	Conclusion 117
3.5.2	Perspectives 117
	References 119
4	Environmentally Responsive Hairy Inorganic Particles 123 Caleb A. Bohannon, Ning Wang, and Bin Zhao
4.1	Introduction 123
4.2	Environmentally Responsive Well-defined Binary Mixed Homopolymer
	Brush-grafted Silica Particles 126
4.2.1	Introduction to Mixed Polymer Brushes 126
4.2.2	Mixed Polymer Brushes Grafted on Particles 129
4.2.3	Synthesis of Well-defined Binary Mixed Homopolymer Brushes on Silica
	Particles 130
4.2.4	Responsive Properties of Binary Mixed Homopolymer Brush-grafted
	Silica Particles 134
4.3	Thermoresponsive Polymer Brush-grafted Silica Particles 141
4.3.1	Synthesis and Thermally Induced LCST Transition of Thermoresponsive Polymer Brushes Grafted on Silica Particles 141
4.3.2	Thermally Induced Phase Transfer of Thermoresponsive Hairy Particles
	Between Two Immiscible Liquid Phases 144
4.3.2.1	Thermally Induced Phase Transfer of Thermoresponsive Hairy Particles
	Between Water and Immiscible Organic Solvents 144
4.3.2.2	Thermally induced Phase Transfer of Thermoresponsive Hairy Particles
	Between Water and a Hydrophobic Ionic Liquid 146
4.3.3	Thermoreversible Gelation of Thermoresponsive Diblock Copolymer
	Brush-grafted Silica Nanoparticles in Water 150
4.3.4	Thermoresponsive Polymer Brush-grafted Nanoparticles for Enhancing
	Gelation of Thermoresponsive Linear ABC Triblock Copolymers in
	Water 156
4.4	Summary and Outlook 160
	Acknowledgements 161
	References 161

5	Self-Assembly of Hairy Nanoparticles with Polymeric
	Grafts 167
	Xiaoxue Shen, Huibin He, and Zhihong Nie
5.1	Introduction 167
5.2	Self-Assembly of PGNPs into Colloidal Molecules 168
5.2.1	Precisely Defined Assembly of Patchy NPs 168
5.2.1.1	Isotropic NPs 169
5.2.1.2	Anisotropic NPs 171
5.2.2	Polymer-Guided Assembly of NPs 172
5.3	Self-Assembly of PGNPs Into One-Dimensional (1-D) Structures 175
5.3.1	Self-Assembly of PGNPs in Solution Guided by Various Molecular
	Interactions 176
5.3.1.1	Self-Assembly Driven by Neutralization Reaction 176
5.3.1.2	Self-Assembly Driven by Hydrophobic Interaction 178
5.3.1.3	Self-Assembly Driven by Dipolar Interaction 180
5.3.2	Templated Self-Assembly of PGNPs into 1-D Structures 182
5.3.2.1	Hard Template-Assisted Assembly of PGNPs 182
5.3.2.2	Self-Assembly of PGNPs Assisted by Soft Templates 184
5.3.3	The Self-Assembly of 1-D Structures in Polymer Films 187
5.4	Self-Assembly of PGNPs into 2-D Structures 190
5.4.1	Templated Self-Assembly of PGNPs into 2-D Structures 190
5.4.1.1	Self-Assembly Using BCPs as Templates 190
5.4.1.2	Hard Template-Assisted Self-Assembly 193
5.4.2	Interfacial Assembly 193
5.4.3	2-D Assemblies Within Thin Film 197
5.4.3.1	PGNPs/Homopolymer System 197
5.4.3.2	Self-Assembly of Single-Component Neat PGNPs 199
5.4.3.3	Self-Assembly of Binary PGNPs Blends 201
5.5	Self-Assembly of PGNPs into 3-D Structures 202
5.5.1	Self-Assembly of PGNPs into Clusters 202
5.5.2	Self-Assembly of PGNPs into Vesicles 206
5.5.2.1	Self-Assembly of Hydrophilic Homopolymer-Grafted NPs 206
5.5.2.2	Self-Assembly of Mixed Homopolymer-Grafted NPs (M-PGNPs) 206
5.5.2.3	Self-Assembly of BCP-Grafted NPs (B-PGNPs) 209
5.5.2.4	Co-Assembly of Binary B-PGNPs or B-PGNPs/BCPs 210
5.5.3	Self-Assembly of PGNPs into 3-D Superlattices and Crystals 212
5.5.3.1	Superlattices and Crystals Assembled in Solution 212
5.5.3.2	Binary Superlattice Assembled at Interfaces 214
5.6	Representative Applications of Assembled PGNPs 215
5.6.1	Biological Applications: Imaging, Therapy, and Drug Delivery 215
5.6.1.1	Assemblies of Plasmonic PGNPs 216
5.6.1.2	Assemblies of Magnetic PGNPs 216
5.6.1.3	Assemblies of Plasmonic-Magnetic PGNPs 217
5.6.2	Dielectric Materials 218
5.7	Summary and Outlook 219
	References 220

6	Interfacial Property of Hairy Nanoparticles 227 Yilan Ye and Zhenzhong Yang
6.1	Introduction 227
6.2	Hairy NPs as Interfacial Building Blocks 228
6.2.1	Conformation of Grafted Polymers in Good Solvents 228
6.2.2	Patchy and Janus Geometry in Selective Solvents 230
6.2.3	Interfacial Activity as Colloids 233
6.3	Hairy NPs Assembly at Various Interfaces 235
6.3.1	Dispersion in Polymer Nanocomposites 235
6.3.2	Anisotropic Assembly 237
6.3.3	Liquid-Liquid Interfaces 240
6.3.4	Air–Solid Surfaces 243
6.3.5	Air-Liquid Surfaces 244
6.4	Interfacial Entropy 246
6.5	Interfacial Jamming 248
6.5.1	Electrostatic Assembly 248
6.5.2	Host-Guest Molecular Recognition 251
6.6	Single-Chain NPs at Interfaces 251
6.6.1	Efficient Synthesis 251
6.6.1.1	Electrostatic-Mediated Intramolecular Crosslinking Toward Large-Scale
	Synthesis of SCNPs 252
6.6.1.2	Grafting Single-Chain at NPs 255
6.6.2	Interfacial Applications 256
	References 258
7	Hairy Hollow Nanoparticles 261
	Huiqi Zhang
7.1	Introduction 261
7.2	Overview of the Progress in the Design and Synthesis of Hairy Hollow
	NPs 262
7.2.1	Synthetic Strategies for Hairy Hollow Polymer NPs 262
7.2.1.1	Sacrificial Template Method 263
7.2.1.2	Self-Assembly (of Block Copolymers) Method 282
7.2.1.3	Single-Molecule Templating (of Core-Shell Bottlebrush Polymers)
	Method 288
7.2.2	Synthetic Strategies for Hairy Hollow Inorganic NPs 293
7.2.2.1	Direct Grafting of Polymer Brushes onto Hollow Inorganic NPs 293
7.2.2.2	Sacrificial Template Strategy Combined with Sol-Gel Chemistry and
	Polymer Brush-Grafting Methods 296
7.2.3	Synthetic Strategies for Hairy Hollow Organic/Inorganic Hybrid
	NPs 302
7.2.3.1	Direct Deposition of Polymer Layers onto Hollow Inorganic NPs by
	SI-Polymerizations 302
7.2.3.2	Self-Assembly Method 302
7233	Single-Molecule Templating Method 304

۱	Contents	
	7.2.3.4	Sacrificial Template Method Combined with Polymer Brush Nanoreactors 305
	7.3	Conclusions and Perspectives 306 Acknowledgment 308 References 308
	8	Self-Assembly of Binary Mixed Homopolymer Brush-Grafted
		Silica Nanoparticles 313 Bin Zhao, Ping Tang, Phoebe L. Stewart, Rong-Ming Ho, Christopher Y. Li, and Lei Zhu
	8.1	Introduction 313
	8.2	Computer Simulations of the Self-Assembled Morphology of MBNPs 315
	8.3	Self-Assembled Morphologies of Well-Defined Binary Mixed Homopolymer Brushes Grafted on Silica NPs 318
	8.3.1	Synthesis of Well-Defined Binary Mixed Homopolymer Brush-Grafted Silica NPs 318
	8.3.2	Lateral Microphase Separation of Nearly Symmetric PtBA/PS MBNPs 319
	8.3.3	Effect of Chain Length Disparity on the Self-Assembled Morphology of PtBA/PS MBNPs 320
	8.3.4	Effect of Overall Grafting Density on Morphology of PtBA/PS MBNPs 324
	8.3.5	Effect of Molecular Weight on Morphology of Symmetric MBNPs 327
	8.3.6	Effect of Core Particle Size on Morphology of PtBA/PS MBNPs 332
	8.3.7	3D Morphologies of PtBA/PS MBNPs by Cryo-TEM and Electron Tomography 335
	8.4	Self-Assembled Morphology in Solvents and Homopolymer Matrices 339
	8.4.1	Self-Assembly of MBNPs in Good and Selective Solvents 339
	8.4.2	Self-Assembly of MBNPs in Homopolymer Matrices with Different
		Molecular Weights 341
	8.5	Conclusions and Future Work 346
		Acknowledgment 346
		References 347
	9	Hairy Plasmonic Nanoparticles 351
		Christian Rossner, Tobias A.F. König, and Andreas Fery
	9.1	Introduction 351
	9.2	Plasmonic Properties of Isolated NPs and Energy Transfer to Adjacent
		Hairy Environment 354

Plasmonic Principles of Hairy NPs 354

Hairy NPs for Photothermal Heating 358

Energy Transfer to Adjacent Hairy Environment 358

Hairy NPs Conjugated with Photoactive Entities 360

9.2.1

9.2.2 9.2.2.1

9.2.2.2

9.2.2.3 9.3	Hairy NPs Conjugated with Acceptors 361 Plasmonic Coupling Scenarios of Hairy Plasmonic NPs 362 Supercolloidal Structures in Solution 362
9.3.1	Supercolloidal Structures in Solution 362 Hairy NPs Linked to Surface and Self-assembly 366
9.3.2	· · · · · · · · · · · · · · · · · · ·
9.4	Summary and Outlook Discussions 368 Acknowledgments 370
	References 370
	References 370
10	Hairy Metal Nanoparticles for Catalysis: Polymer
	Ligand-Mediated Catalysis 375
	Zichao Wei and Jie He
10.1	Nanocatalysis Mediated by Surface Ligands 375
10.1.1	Surface Ligands as an Important Component for Nanocatalysis 375
10.1.2	Polymers as Better Ligands for NPs 377
10.2	Catalysis Mediated by PGNPs with Thiol-Terminated Polymers 380
10.3	Catalysis Mediated by PGNPs with NHC-Terminated Polymers 387
10.4	Other PGNP Nanocatalysts 393
10.5	Conclusion and Outlook 396
	References 397
11	Hairy Inorganic Nanoparticles for Oil Lubrication 401
	Michael T. Kelly and Bin Zhao
11.1	Introduction 401
11.1.1	Oil Lubrication 401
11.1.2	Nanoparticles as Oil Lubricant Additives for Friction and Wear
	Reduction 402
11.1.3	Polymer Brush-Grafted Nanoparticles: Definition and Synthesis 404
11.2	Oil-Soluble Poly(lauryl methacrylate) Brush-Grafted Metal Oxide NPs as
	Lubricant Additives 406
11.2.1	Synthesis, Dispersibility, and Stability in PAO of Poly(lauryl
	methacrylate) Brush-Grafted Silica and Titania NPs 406
11.2.2	Lubrication Properties of Poly(lauryl methacrylate) Brush-Grafted Silica
	and Titania NPs in PAO 410
11.3	Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and
	Lubrication Property of Poly(alkyl methacrylate) Brush-Grafted Silica
	Nanoparticles 413
11.3.1	Synthesis of Poly(alkyl methacrylate) Brush-Grafted, 23-nm Silica
	NPs 413
11.3.2	Dispersibility and Stability of 23-nm Silica NPs Grafted with Poly(alkyl
11 2 2	methacrylate) Brushes with Various Pendant Groups in PAO-4 414
11.3.3	Effect of Alkyl Side Chains of Poly(alkyl methacrylate) Brushes on
	Lubrication Performance of 23-nm Hairy Silica NPs as Additives for
11 4	PAO-4 416
11.4	Improved Lubrication Performance by Combining Oil-Soluble Hairy
	Silica Nanoparticles and an Ionic Liquid as Additives for PAO-4 420

xii	Conten	ts
-----	--------	----

11.4.1	Preparation of PAO-4 Lubricants with Various Amounts of PLMA Hairy
	Silica NPs and [P8888][DEHP] and Stability of Hairy Silica NPs in the
	Presence of [P8888][DEHP] 421

- 11.4.2 Lubrication Performances of PAO-4 Lubricants with the Addition of HNP, IL, and HNP+IL at Various Mass Ratios 422
- 11.4.3 SEM-EDS and XPS Analysis of Wear Scars Formed on Iron Flats from Tribological Tests 424
- 11.5 Upper Critical Solution Temperature (UCST)-Type Thermoresponsive Poly(alkyl methacrylate)s in PAO-4 426
- 11.5.1 Synthesis of Poly(alkyl methacrylate)s with Various Alkyl Pendant
 Groups by RAFT Polymerization and Their Thermoresponsive Properties
 in PAO-4 428
- 11.5.2 UCST-Type Thermoresponsive ABA Triblock Copolymers as Gelators for PAO-4 429
- 11.6 Summary 432
 Acknowledgments 433
 References 433

Index 437