

Contents

Introduction	ix
General Notations and Numbering	xii
CHAPTER I	
Classical Theory of Vibration for Systems with Infinitely Many Degrees of Freedom	1
1. Introduction	1
2. Elements of Vibration Theory for Systems with n Degrees of Freedom	2
3. Infinite-Dimensional Separable Hilbert Spaces	5
4. A Class of Compact Self-Adjoint Operators	9
5. Introduction of the Spaces V and H Associated with the Elastic and Kinetic Energies	15
6. The Standard Vibration Problem for a System with Discrete Spectrum	21
7. Variational Properties of Eigenvalues. Rayleigh Principle. Minimax Principle and Comparison Theorem	24
CHAPTER II	
Some Classical Vibration Problems	27
1. Introduction	27
2. Distributions and Sobolev Spaces	28
3. Vibrating Membrane	37
4. Examples and Remarks about Strings and Membranes. A Form of the Saint-Venant Principle	42
5. Linear Shallow-Water Oscillations. Neumann Boundary Condition	45
6. Complement. A Problem without Boundary Conditions	50
7. Vibration of a Three-Dimensional Elastic Body. Application of the Comparison Theorem and Particular Cases	53
8. Small Oscillations of a Compressible Fluid in a Vessel with or without Free Surface	61
9. Exercises	68
CHAPTER III	
Elements of Operator Theory	70
1. Generalities on Banach Spaces and Operators	70

2. Unbounded Linear Operators. Closed Operators	74
3. Resolvents and Spectra	80
4. Singularities of the Resolvent. Fredholm Alternative	82
5. Spectra of Compact and Anticompact Operators	88
6. Symmetric and Self-Adjoint Operators	91
7. Spectral Families	95
8. Semigroups	101
9. Some General Remarks on the Regularity Theory for Elliptic Equations and the System of Elasticity	109
10. Trace Theorems for Solutions of Elliptic Equations. The Elements of the Lions–Magenes Theory	117
11. Comments and Exercises	122
 CHAPTER IV	
Examples of Nonstandard Vibrations and Coupling	127
1. The Thermoelasticity System	127
2. Vibration of a Viscoelastic Solid	133
3. Essential Spectrum. First Example of a Vibrating System without Compactness	139
4. An Example of Compact–Noncompact Coupled Vibrating System	143
5. Bloch Waves and Related Topics	148
6. Systems Containing a Part without Kinetic Energy	154
7. Plates—Coupling of Flexion and Traction Modes	158
8. A Problem where the Part without Kinetic Energy Is Unbounded	161
9. Comments and Problems	166
 CHAPTER V	
Spectral Perturbation	170
1. Generalities. The Implicit Function Theorem, the Weierstrass Preparation Theorem, and Holomorphic Functions with Values in a Banach Space	170
2. Eigenvalues of Matrices Depending Holomorphically on a Parameter	174
3. Power Series Expansions for Eigenvalues and Eigenvectors	178
4. Spectral Perturbations for Anticompact Operators Associated with a Holomorphic Sesquilinear Family	184
5. Complements and Generalizations	186
6. First Example: Smooth Perturbation of the Boundary	192
7. Some Implicit Holomorphic Eigenvalue Problems	194
8. Perturbation of an Eigenvalue of Multiplicity Two of a Self-Adjoint Operator Depending on Two Parameters z_1, z_2	199
9. Eigenvalue Problem for Families Depending Nonanalytically on a Parameter	202
10. Some Implicit Nonholomorphic Eigenvalue Problems	207
11. Perturbation of Spectral Families. Rellich’s Theorem	210
12. Remarks on Time-Dependent Solutions of Standard Vibration Problems	213
13. Numerical Computation of Spectral Families	215
14. Complements and Problems	218

CHAPTER VI	
Formal Perturbation Methods	221
1. Introduction	221
2. The Order Symbols o and O . Gauge Functions	222
3. Singular Perturbation. Asymptotic Expansion of the Explicit Solution for a Model Boundary Value Problem	225
4. Asymptotic Study of the Solution to the Model Problem from the Equation and the Boundary Conditions	228
5. Comments and Heuristic Ideas for Other Problems	232
6. Matching Rule of Kaplun and Lagerstrom	232
7. An Interpretation of the Matching	234
8. Matching by Intermediate Variables	236
9. Extension Theorem of Kaplun	238
10. Introduction to Two-Scale Problems. Linear Oscillator with Small Damping	239
11. Second Example. Van der Pol Oscillator	242
12. Van der Pol's Transformation and Average Method	244
13. Integral Continuity. Error Estimate for the Average and Two-Scale Methods	245
14. Moment Expansion of a Function with Shrinking Support	250
15. Exercises	252
CHAPTER VII	
Perturbation of Vibrating Systems	254
1. A Model Stiff Problem. Expansions for Eigenvalues and Eigenvectors	254
2. Justification of the Preceding Expansions	261
3. Elastic Body Coupled with a Gas of Small Density (Bounded Domains)	265
4. Vibration of an Almost Incompressible Elastic Body	269
5. Spectral Families in Large Domains. Application to High Frequency Homogenization	274
6. A New Class of Stiff Problems. Low and High Frequencies	277
7. Plate with Small Rigidity	285
8. Vibrations of a Slightly Viscous Gas	292
9. Thermoelastic Body with Small Thermal Conductivity	298
10. General Considerations on Vibrations of Systems with Concentrated Masses	304
11. Concentrated Masses. Local Vibrations in the Case $N = 3, m > 2$	308
12. Concentrated Masses. Global Vibrations for Space Dimension $N = 2$ or 3	312
13. Concentrated Masses. Global Vibrations for Space Dimension $N = 1$ and $m = 1$	315
14. Comments and Problems	320
CHAPTER VIII	
The Helmholtz Equation in Unbounded Domains	322
1. Generalities on the Helmholtz Equation in a Neighborhood of Infinity. Radiation Condition	322
2. Some Properties of the Wave Equation in the Space-Time	335

3. Existence, Uniqueness, and Scattering Frequencies for the Dirichlet Problem in an Outer Domain with Smooth Boundary	344
4. Dirichlet, Neumann, and Transmission Problems in an Outer Domain with not Necessarily Smooth Boundary. Examples and Complements	350
5. Spectrum and Spectral Family of the Laplacian in an Outer Domain. Limiting Absorption	358
6. Local Decay of Solutions as $t \rightarrow \infty$	362
7. Limiting Amplitude	365
8. The Rudiments of the Lax and Phillips Theory of Scattering	370
9. Comments and Exercises	373
 CHAPTER IX	
Scattering Problems Depending on a Parameter. Elastic Structure–Fluid Interaction in Unbounded Domains	376
1. Introduction	376
2. Elastic Body Surrounded by a Compressible Fluid	378
3. Asymptotics for a Fluid of Small Density. Resonance of Two Bodies Across Air	384
4. Asymptotics for a Fluid with Small Compressibility. Low and High Frequencies	389
5. The Helmholtz Resonator. Asymptotic Expansion for the Solution	394
6. Complements and Problems	401
 References	403
 Index	417