TABLE OF CONTENTS

page

СНА	PTER IV - Basic theory of weakly semialgebraic spaces	1
§1	- Definition and construction of weakly semialgebraic	
	spaces	1
§2	- Morphisms	15
§3	- Subspaces and products	23
§4	- Spaces of countable type	36
§5	- Proper maps and partially proper maps	42
§ 6	- Polytopic spaces; the one-point completion	49
§7	- A theorem on inductive limits of spaces	54
§8	- Strong quotients; gluing of spaces	60
§ 9	- The weak polytope P(M)	71
§10	- The spaces PA(M) and P _f (M)	86
§11	- The quotient by a partially proper equivalence	
	relation	99
СНА	PTER V - Patch complexes, and homotopies again	106
§1	- Patch decompositions	106
§ 2	- Some deformation retractions, and related homotopy	
	equivalences	114
§3	- Partially finite open coverings	125
§4	- Approximation of spaces by weak polytopes	133
§ 5	- The two main theorems on homotopy sets	147
§6	- Compressions and n-equivalences	152
§7	- CW-complexes	165

	page	
CHAPTER VI - Homology and cohomology	182	
§1 - The basic categories; suspensions and cofibe	ers 183	
§2 - Reduced cohomology of weak polytopes	194	
§3 - Cellular homology	209	
§4 - Homology of pairs of weak polytopes	214	
§5 - Homology of pairs of spaces	224	
§6 - Excision and limits	233	
§7 - Representation theorems, pseudo-mapping space §8 - Ω -spectra	ces 244 252	
CHAPTER VII - Simplicial spaces	260	
§1 - The basic definitions	260	
§2 - Realization of some simplicial spaces	268	
§3 - Subspaces	280	
§4 - Fibre products	292	
§5 - Quotients	303	
§6 - Semialgebraic realizations of simplicial set	s 311	
§7 - The space Sin M and singular homology	320	
§8 - Simplicial homotopy, and singular homology a	ngain 331	
§9 - A group of automorphisms of [0,1]	341	
APPENDIX C (to Chapter IV): When is $f(M)$ a basis o open sets of M_{top} ?	f 352	
•	355	
References		
Symbols		
Glossary		
Contents of Chapters I - III		