

Edwin H. Spanier

Algebraic Topology

Springer

CONTENTS

INTRODUCTION

1

- 1** *Set theory* 1
- 2** *General topology* 4
- 3** *Group theory* 6
- 4** *Modules* 7
- 5** *Euclidean spaces* 9

1 HOMOTOPY AND THE FUNDAMENTAL GROUP

12

- 1** *Categories* 14
- 2** *Functors* 18
- 3** *Homotopy* 22
- 4** *Retraction and deformation* 27
- 5** *H spaces* 33
- 6** *Suspension* 39
- 7** *The fundamental groupoid* 45
- 8** *The fundamental group* 50
- Exercises* 56

2 COVERING SPACES AND FIBRATIONS

60

- 1** *Covering projections* 62
- 2** *The homotopy lifting property* 65
- 3** *Relations with the fundamental group* 70
- 4** *The lifting problem* 74
- 5** *The classification of covering projections* 79
- 6** *Covering transformations* 85
- 7** *Fiber bundles* 89
- 8** *Fibrations* 96
- Exercises* 103

3 POLYHEDRA

106

- 1** *Simplicial complexes* 108
- 2** *Linearity in simplicial complexes* 114
- 3** *Subdivision* 121
- 4** *Simplicial approximation* 126
- 5** *Contiguity classes* 129
- 6** *The edge-path groupoid* 134
- 7** *Graphs* 139
- 8** *Examples and applications* 143
- Exercises* 149

4 HOMOLOGY

154

- 1** *Chain complexes* 156
- 2** *Chain homotopy* 162
- 3** *The homology of simplicial complexes* 167
- 4** *Singular homology* 173
- 5** *Exactness* 179
- 6** *Mayer-Vietoris sequences* 186
- 7** *Some applications of homology* 193
- 8** *Axiomatic characterization of homology* 199
- Exercises* 205

5 PRODUCTS**210**

- 1 Homology with coefficients** 212
- 2 The universal-coefficient theorem for homology** 219
- 3 The Künneth formula** 227
- 4 Cohomology** 236
- 5 The universal-coefficient theorem for cohomology** 241
- 6 Cup and cap products** 248
- 7 Homology of fiber bundles** 255
- 8 The cohomology algebra** 263
- 9 The Steenrod squaring operations** 269
- Exercises** 276

6 GENERAL COHOMOLOGY THEORY AND DUALITY**284**

- 1 The slant product** 286
- 2 Duality in topological manifolds** 292
- 3 The fundamental class of a manifold** 299
- 4 The Alexander cohomology theory** 306
- 5 The homotopy axiom for the Alexander theory** 311
- 6 Tautness and continuity** 315
- 7 Presheaves** 323
- 8 Fine presheaves** 329
- 9 Applications of the cohomology of presheaves** 338
- 10 Characteristic classes** 346
- Exercises** 356

7 HOMOTOPY THEORY**362**

- 1 Exact sequences of sets of homotopy classes** 364
- 2 Higher homotopy groups** 371
- 3 Change of base points** 379
- 4 The Hurewicz homomorphism** 387
- 5 The Hurewicz isomorphism theorem** 393
- 6 CW complexes** 400
- 7 Homotopy functors** 406
- 8 Weak homotopy type** 412
- Exercises** 418

8 OBSTRUCTION THEORY	422
1 Eilenberg-MacLane spaces	424
2 Principal fibrations	432
3 Moore-Postnikov factorizations	437
4 Obstruction theory	445
5 The suspension map	452
<i>Exercises</i>	460
9 SPECTRAL SEQUENCES AND HOMOTOPY GROUPS OF SPHERES	464
1 Spectral sequences	466
2 The spectral sequence of a fibration	473
3 Applications of the homology spectral sequence	481
4 Multiplicative properties of spectral sequences	490
5 Applications of the cohomology spectral sequence	498
6 Serre classes of abelian groups	504
7 Homotopy groups of spheres	512
<i>Exercises</i>	518
INDEX	521