Contents

Dedication	v
Preface	vii
Symbols Used but Not Defined in the Text	xiii
Chapter 1. Experiments, Measure, and Integration	1
Part A. Measures	2
Experiments and weight functions, expected value of a weight function, measures, Lebesgue measure, signed measures, complex measures, measurable functions, almost everywhere equality.	
Part B. Integration	8
Simple functions, simple integrals, general integrals, Lebesgue integrals, properties of integrals, expected values as integrals, complex integrals.	
Chapter 2. Hilbert Space Basics	14
Inner product space, norm, orthogonality, Pythagorean theorem, Bessel and Cauchy-Schwarz and triangle inequalities, Cauchy sequences, convergence in norm, completeness, Hilbert space, summability, bases, dimension.	
Chapter 3. The Logic of Nonclassical Physics	21
Part A. Manuals of Experiments and Weights Manuals, outcomes, events, orthogonality, refinements, compatibility, weights on manuals, electron spin, dispersion- free weights, uncertainty.	21
Part B. Logics and State Functions Implication in manuals, logical equivalence, operational logic, implication and orthocomplementation in the logic, lattices,	33

xii Contents

general logics (quantum logics), propositions, compatibility, states on logics, pure states, epistemic and ontological uncertainty.	
Chapter 4. Subspaces in Hilbert Space Linear manifolds, closure, subspaces, spans, orthogonal complements, the subspace logic, finite projection theorem, compatibility of subspaces.	43
Chapter 5. Maps on Hilbert Spaces	49
Part A. Linear Functionals and Function Spaces Linear maps, continuity, boundedness, linear functionals, Riesz representation theorem, dual spaces, adjoints, Hermitian operators.	49
Part B. Projection Operators and the Projection Logic	55
Projection operators, summability of operators, the projection logic, compatibility and commutativity.	33
Chapter 6. State Space and Gleason's Theorem	60
Part A. The Geometry of State Space	60
State space, convexity, faces, extreme points, properties, detectability, pure states, observables, spectrum, expected values, exposed faces.	
Part B. Gleason's Theorem	69
Vector state, mixture, resolution of an operator into projec-	
tion operators, expected values of operators, Gleason's theorem.	
Chapter 7. Spectrality	73
Part A. Finite Dimensional Spaces, the Spectral Resolution	
Theorem	73
Eigenvalues, point spectrum, eigenspaces, diagonalization, the	
spectral resolution theorem.	
Part B. Infinite Dimensional Spaces, the Spectral Theorem	78
Spectral values, spectral measures, the spectral theorem,	
functions of operators, commutativity and functional relation-	
ships between operators, commutativity and compatibility of operators.	
-	
Chapter 8. The Hilbert Space Model for Quantum Mechanics and the EPR Dilemma	0.5
Part A. A Brief History of Quantum Mechanics	85 85
Part B. A Hilbert Space Model for Quantum Mechanics	85 86
Schroedinger's equation, probability measures, stationary	80
states, the harmonic oscillator, the assumptions of quantum	
mechanics, position and momentum operators, compatibility	
Part C. The EPR Experiment and the Challenge of the Realists	94
Electron spin, spin states, singlet state, EPR apparatus, the	
EPR dilemma.	
Index of Definitions	146

146