NOTATION	6
1. DEFINITIONS AND PROPOSITIONS	8
2. M - M A T R I C E S	16
2.1. Introduction to M-matrices	16
2.2. Examples of M-matrices	21
2.2.1. Rank-one perturbations of the unit matrix	21
2.2.2. Rank-two perturbations of the unit matrix	22
2.2.3. Triangular M-matrices	23
2.2.4. Tridiagonal M-matrices	24
2.2.5. Nonsingular M-matrices which leave invariant the	
relations between the components of vectors	25
2.3. M-matrix conditions	27
3. M - MATRIX PROPERTIES	30
3.1. General properties	30
3.2. Additive M-matrix perturbations	36
3.3. Factorization of M-matrices	39
3.4. Maximum principles	42
3.4.1. Boundary maximum principle	42
3.4.2. Region maximum principle	46
3.4.3. Maximum principle for inverse column entries	53
4. M - MATRICES AND DISCRETIZATION	
метноря	57
4.1. Problems	57
4.2. Irreducibility of discretized problems	60

	4.3. Finite difference methods	63
	4.3.1. Three-point difference approximations to one-dimen-	
	sional elliptic boundary value problems	63
	4.3.2. Difference approximations to two-dimensional ellipti	c
	boundary value problems	80
	4.3.3. Difference approximations to parabolic problems	90
	4.4. Finite element methods	98
	4.4.1. Finite element approximations to one-dimensional	
	elliptic boundary value problems	100
	4.4.2. Finite element approximations to two-dimensional	
	boundary value problems	105
	4.5. Method of lines	110
- 5	. M - M A T R I C E S A N D E I G E N V A L U E	
	PROBLEMS	119
	5.1. A cursory view of the Sturm-Liouville eigenvalue	440
	problem	119
	5.2. One-dimensional Sturm-Liouville eigenvalue problems	400
	and their finite difference approximation	120
	5.3. A finite difference approximation of a higher-dimen-	
	sional Sturm-Liouville eigenvalue problem	126
6	. INVERSE M-MATRICES AND GREEN'S	
	FUNCTIONS	128
	6.1. Two simple examples	128
	6.2. Some general analogies between Green's functions and	
	inverse M-matrices	132
		=
R	EFERENCES	1 34