Contents

	1.1	Notions of LISP and Expert Systems
	1.2	First Sessions
	1.3	Matrices
	1.4	Solving Equations
	1.5	Limits and Expansions
	1.6	Integration
	1.7	Some Useful Commands and Options. Pattern Matching 21
	1.8	Conditionals, Iterations and Compound Statements
	1.9	Few Hints
	1.10	Example: Steady-State Linear Vibrations
	1.11	Example: Transient Vibrations
	1.12	Example: Free Nonlinear Vibrations
	1.13	Example: Forced Nonlinear Vibrations
	1.13	Example, Poteed Nothineal Violations
П	Varia	tional Approach and Equations of Motion
	2.1	
	2.2	System of Particles. Generalized Coordinates
	2.3	
	2.4	Hamilton's Principle for Discrete Systems
	2.5	Constrained Motions
	2.6	Virtual Work
	2.7	D'Alembert's Principle. Nonconservative Systems
	2.8	Transition to Continuous Systems
	2.9	Hamilton's Principle for Continuous Systems, Part I 57
	2.10	Hamilton's Principle for Continuous Systems, Part II 59
	2.11	Minimum of Potential Energy.
		Imposed and Natural Boundary Conditions 61
	2.12	Computer-generated Governing Equations
	2.13	Single Degree of Freedom
	2.14	Two Degrees of Freedom. Double Nonlinear Pendulum 67
	2.15	Dynamic Shock Absorber
	2.16	Continuous Systems
	2.17	Automatic Generation, Part I
	/	

1

\sim	_	_	te	 4.

X

	2.18	Automatic Generation, Part II				73
	2.19	Second Variation and Nature of Extremum				75
	2.20	Legendre's Condition				77
	2.21	Transversality Conditions				79
	2.22	Generalizations and Transformations of Variational Problems				80
	2.23	Minimum Pressure Drag	•	•	•	83
	2.23	Constrained Minimum Pressure Drag	•	•	•	86
	2.24	Constrained Minimum Flessure Diag	•	•	•	80
Ш	Direc	t Methods				89
	3.1	The Philosophy				89
	3.2	The Method of Least Squares. Trial Functions	•	•	•	91
	3.3	Beam on Elastic Foundation, Part I	•	•	•	93
	3.4	Beam on Elastic Foundation, Part II				95 95
	3.5	The Pubmer Colorkin Method	٠	•	•	
		The Bubnov-Galerkin Method	•	•	•	96
	3.6	Beam on Elastic Foundation, Part III	•	•	٠	97
	3.7	The Rayleigh-Ritz Method			•	99
	3.8	Master Program				101
	3.9	Applications				103
	3.10	Improved Master Program	•			104
	3.11	Considerations of Accuracy				106
	3.12	Plate on Elastic Foundation				108
	3.13	Further Investigations of Plates				111
	3.14	Other Direct Methods				114
	3.15	Shock Absorber, Preliminary Considerations				117
	3.16	Shock Absorber, Program and Results				120
	3.17	Flow Through a Duct				123
	3.18	Temperature Field in a Plate, Part I				126
	3.19	Temperature Field in a Plate, Part II				127
	3.20	Free Vibrations by the Rayleigh-Ritz Method				130
	3.21	Free Vibrations of a Non-uniform Beam				132
	3.22	Master Programm				133
	3.23	Free Vibrations by gthe Bubnov-Galerkin Method	. ,			136
	3.24	Nonlinear Vibrations by the Bubnov-Galerkin Method				139
	3.25	Mathematical Considerations. Scalar Products of Functions .				142
	3.26	Operators and Functionals				143
	3.27	Symmetric and Positive Definite Operators				145
	3.28	Minimum Theorem and Minimizing Sequence				146
	3.29	Orthogonal and Linearly Independent Functions				148
	0.2)	Ottologonal and Emiliary mary market a second				
IV	Intro	duction to the Finite Element Method				150
	41	Finite Elements. The Element Stiffness Matrix				150
	4.2	Energy Analysis of a Finite Element				155
	4.3	Truss Element				159
	4.3 4.4	Physical Meaning of the Element Matrices				163
	4.4	Global Reference Systems				167
	4.5	Generalizations. Governing Equations of a Structure	•	•	•	171
						175
	4.7	Assembling	•	٠	•	181
	4.8	-				182
	4.9	Truss				182
	4.10	Further Analysis of a Truss	•	٠	•	10/

		Cont			ent		XI	
4.11	Composite Beam							191
4.12	Particular Cases							193
4.13	Automatic Generation of the Assembly Stiffness Matr	ix						195
4.14	Optimization							199
4.15	Reduced Stiffness Matrix							201
4.16	Free Vibrations of Beams							204
4.17	Plate Element, Part I							208
4.18	Plate Element, Part II							211
4.19	Particular Cases. Batch Mode							214
4.20	Compatibility and Convergence							218
4.21	Natural Coordinate Systems							219
4.22	The Concept of Isoparametric Elements							225
4.23	Some Plane Elements							228
4.24	Concluding Remarks							235
\ppendi	x							236
	S							238
								243
	ces							250
		•	•	•	•	•	•	252