CONTENTS

2

INTRODUCTION

Definition

Algebraic homomorphisms

1.

2.

CHAPTER ZERO: Algebraic Hecke Characters

3.	Infinity types and algebraic Hecke characters	3
4.	The Hodge decomposition	5
5.	Adèles	6
6.	L-functions	7
7.	Serre's group	9
8.	Jacobi sum Hecke characters	
8.0.1	History	13
8.1	The basic Jacobi sum character of an	
	imaginary quadratic number field	14
8.2	Anderson's formalism	16
8.3	Example 8.1 revisited	19
8.4	The Stickelberger ideal	20
	CHAPTER ONE: Motives for algebraic Hecke characters	
1.	Abelian varieties with complex multiplication	23
2.	Motives for absolute Hodge cycles	
2.1	Absolute Hodge cycles	29
2.2	Motives	34
2.3	Tannakian philosophy	39
2.4	Special motives	42
2.4.1	Artin motives	43
2.4.2	Abelian varieties	44
3.	Motives of rank 1	45
4.	A standard motive for a Hecke character	48
5.	Unicity of $M(\chi)$	51
6.	Representations of the Taniyama group	
6.0	Rational Hodge structures	53
6.1	CM Hodge structures	56
6.2	Taniyama extensions	61
6 2	The group scheme for (CM .H)	6.3

XIV

6.4	The Taniyama group	65
6.5	The main theorem, consequences	66
6.6	Motives of rank 1 arising from abelian varieties	71
7.	Anderson's motives for Jacobi sum Hecke characters	
7.1	The basic example	71
7.2	Anderson's first theorem	73
7.3	Anderson's ulterior motives	74
7.4	Anderson's second theorem	77
7.5	Elliptic curves	79
	CHAPTER TWO: The periods of algebraic Hecke	
	characters	
1.	The periods of a motive	81
1.1	Definition of p(M)	82
1.2	Components of p(M)	83
1.3	Field of coefficients	83
1.4	Field of definition	84
1.5	Examples	87
1.6	Definition of $c^{+}(M)$	88
1.7	c and p	91
1.8	Application to Hecke characters	96
2.	Periods and L-values	100
3.	Twisting	102
4.	The periods of Jacobi sum Hecke characters	
4.0	The gamma function	110
4.1	The basic example	110
4.2	Periods of Anderson's motives	112
4.3	Lichtenbaum's [-hypothesis]	113
4.4	Γ-relations	114
	CHAPTER THREE: Elliptic integrals and the	
	gamma function	
1.	A formula of Lerch	117
2.	An historical aside	123
3.	Twists and multiples	125

CHAPTER FOUR: Abelian integrals with complex multiplication

1.	Shimura's monomial relations	
1.1	Shimura's basic relations	128
1.2	Shimura's refinement	130
2.	Abelian integrals and the gamma function	134
	CHAPTER FIVE: Motives of CM modular forms	
1.	Motives for modular forms	138
2.	CM modular forms	141
	REFERENCES	148
	ALPHABETICAL LIST OF SYMBOLS AND CONCEPTS	152