Table of Contents

1	Introduction	1
2	The Parametric Piecewise Representation	3
	2.1 The Parametric Representation	3
	2.2 The Piecewise Representation	4
3	The Application of Tension to a Curve	5
	3.1 Spline Under Tension	5
	3.1.1 Explanation	5
	3.1.2 Determining the Set of Values of the Second Derivative	
	Vector	5
	3.2 <i>v</i> -Spline	6
	3.2.1 Explanation	6
	3.2.2 Determining the Set of Values of the First Derivative	
	Vector	7
	3.3 Tension Methods with Local Control	8
4	Elementary Differential Geometry Concepts	11
	4.1 Unit Tangent Vector	11
	4.2 The Principal Normal	12
	4.3 The Osculating Plane and Osculating Circle	13
	4.4 The Binormal	14
	4.5 Curvature and Curvature Vector	14
	4.5.1 Arc Length Parametrization	15
	4.5.2 Arbitrary Parametrization – Geometric Form	16
	4.5.3 Arbitrary Parametrization – Cross-product Form	18
	4.5.4 Conditions for Zero Curvature Vector	19
5	Fundamental Geometric Measures	21
	5.1 Continuity	21
	5.2 The Unit Tangent Vector and Curvature Vector	21

VIII Table of Contents

6	Geometric Continuity and Shape Parameters	27
	6.1 Unit Tangent Vector	27
	6.2 Curvature Vector	27
7	Derivation of the Beta-spline Curve Representation	29
-	7.1 Control Polygon and Control Graph	29
	7.2 Local Control	31
	7.3 Explanation	32
	7.4 Derivation of the Beta-spline Basis Functions	33
	7.5 Convex Hull Property	40
	7.5 Contention Property 111111111111111111111111111111111111	
8	Curve Evaluation and Perturbation with Uniform Shape Parameters	43
	8.1 Evaluation Method I	43
	8.2 Evaluation Method II	44
	8.3 Comparison of Evaluation Methods I and II	46
	8.4 Perturbation Due to the Movement of a Control Vertex	47
		<i>-</i> 1
y	Generalizing to Continuous Shape Parameters for Curves	51
10	Curve Evaluation and Perturbation with Continuous Shape	
	Parameters	53
	10.1 Evaluation Method I	53
	10.2 Evaluation Method II	55
	10.3 Perturbation Due to the Movement of a Control Vertex	56
	10.4 Perturbation Due to the Modification of Shape Parameters	58
	·	
11	Classification and Analysis of Beta-spline Curve End Conditions	59
	11.1 Introduction	59
	11.2 Classification	59
	11.3 Analysis of Multiple Vertices End Conditions	60
	11.3.1 Double Vertices	60
	11.3.2 Triple Vertices	62
	11.4 Analysis of Phantom Vertices End Conditions	63
	11.4.1 Description	63
	11.4.2 Position Specification	64
	11.4.3 End Vertex Interpolation	65
	11.4.4 Parametric First Derivative Vector Specification	66
	11.4.5 Parametric Second Derivative Vector Specification	67
	11.4.6 Zero Parametric Second Derivative Vector	67
	11.5 Conclusion	68
12	Explanation of the Surface Representation	69
14	Explanation of the Surface Representation	0,7
13	Surface Evaluation and Perturbation with Uniform Shape Parameters	71
	13.1 Evaluation Method I	71
	13.2 Evaluation Method II	74
	13.3 Perturbation Due to the Movement of a Control Vertex	76

Tal	ble of Contents	IX
14	Generalizing to Continuous Shape Parameters for Surfaces	81
15	Surface Evaluation and Perturbation with Continuous Shape	
	Parameters	85
	15.1 Evaluation Method I	85
	15.2 Perturbation Due to the Movement of a Control Vertex	87
	15.3 Perturbation Due to the Modification of Shape Parameters	88
16	Classification and Analysis of Beta-spline Surface Boundary	
	Conditions	89
	16.1 Classification	89
	16.2 Analysis of Multiple Vertices Boundary Conditions	89
	16.2.1 Double Vertices	89
	16.2.2 Triple Vertices	92
	16.3 Analysis of Phantom Vertices Boundary Conditions	95
	16.4 Conclusion	97
17	Geometrical Interpretation of the Shape Parameters	99
	17.1 Introduction	99
	17.2 β1: Bias	99
	17.3 β2: Tension	101
	17.4 β2: Continuous Shape Parameters	107
18	Controlling Surfaces Using the Shape Parameters	109
19	Synthetic Images of Beta-spline Objects	119
20	Conclusion and Future Research Directions	125
Аp	pendix: REDUCE Programs	127
	A.1 REDUCE Program to Determine the Coefficient Functions	127
	A.2 REDUCE Output of Coefficient Functions	129
	A.3 REDUCE Program to Verify the Geometric Continuity	
	Constraints	129
	A.4 REDUCE Output Verifying Geometric Continuity Constraints	131
Re	ferences	133
Bil	bliography on Curves and Surfaces	135
Su	bject Index	155