

HANSER

Sample Pages

Processing of Polymer Nanocomposites

Samuel Kenig

ISBN (Book): 978-1-56990-635-4

ISBN (E-Book): 978-1-56990-636-1

For further information and order see

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)

Preface

With the emergence of commercial nanomaterials like nanoclays, carbon nanotubes, nanosilica, graphite nanoplatelets, cellulose nanocrystals, halloysite nanotubes, layered double hydroxides, tungsten disulfide fullerenes and nanotubes, ceramic nanofillers, and the like, new potential routes have been opened to tailor polymers in the nanoscale range. Due to the large surface area of the nanosize particles, only small amounts are needed to cause significant changes in the mechanical, physical, thermal, and electrical properties of polymer nanocomposites. When the surface area of the nanoparticles is modified, an additional dimension for the formulation of polymers arises, for a variety of applications.

The processing of nanocomposite polymers is the most important stage bridging the technology between the composition of the nanocomposites and their final properties and derived applications, due to the structuring during processing of the polymer at the nanoscale.

This book covers the fundamental aspects involved in the processing of thermoplastics and thermoset nanocomposites, namely:

- Dispersion and distribution of nanoparticles using sonication, roll mixing, shear mixing, elongational mixing, solvent mixing, melt mixing, and *in situ* polymerization
- Functionalization of nanoparticles for compatibilization with various polymer systems
- Processing of polymer nanocomposites, including rheology as well as nanoparticles' orientation development during extrusion and injection molding
- The effect of dispersion, functionalization, and processing technologies on orientation, morphology, and derived nanocomposite mechanical, thermal, electrical, and physical properties

Prof. Samuel Kenig
December 2018

Contents

List of Contributors	VII
Preface	IX
1 The Effect of Processing Conditions on the Dispersion and Microstructure of Organoclay/Polypropylene Nanocomposites in Twin-Screw Extrusion	1
<i>Bruno Vergnes</i>	
1.1 Introduction	1
1.2 Experimental Techniques	2
1.2.1 Materials	2
1.2.2 Processing	3
1.2.3 Characterization	4
1.3 Influence of the Processing Conditions (Internal Mixer)	6
1.3.1 Influence of the Rotor Speed	6
1.3.2 Influence of the Mixing Time and the Temperature	7
1.3.3 Conclusions	9
1.4 Application to Twin-Screw Extrusion	10
1.4.1 Influence of the Processing Conditions on the Final Microstructure	10
1.4.1.1 Influence of the Screw Speed	10
1.4.1.2 Influence of the Feed Rate	11
1.4.1.3 Influence of the Barrel Temperature	12
1.4.1.4 Conclusions	14
1.4.2 Changes in the Microstructure along the Screws	15
1.4.3 Influence of the Screw Profile	18
1.4.4 How to Improve Dispersion and Exfoliation	20
1.5 Toward Process Optimization through Modeling and Prediction of Microstructures	23
1.6 Conclusions	26

2 Ultrasound-assisted Processing of Nanocomposites	29
<i>Avraam I. Isayev, Setareh Niknezhad, Jaesun Choi, and Jing Zhong</i>	
2.1 Introduction	29
2.2 General Description of High-power Ultrasound	31
2.3 Overview of High-power Ultrasonic Irradiation of Media	33
2.3.1 Ultrasonic Cavitation in Liquid	33
2.3.2 Overview of Ultrasonically-aided Processing of Polymer Nanocomposites	34
2.3.3 Proposed Mechanism of Ultrasonic Irradiation of Polymer Nanocomposites	40
2.4 Development of Ultrasonically-aided Processing Technology	41
2.5 Effect of Ultrasound on Polymer Nanocomposites	56
2.5.1 Nanocomposites Filled with Inorganic Filler Particles	56
2.5.2 Nanocomposites Filled with Carbonaceous Fillers	68
2.5.3 Mechanism of Ultrasonic Treatment in Polymer Nanocomposites	84
2.6 Concluding Remarks	85
3 Monitoring Dispersion and Re-agglomeration Phenomena During the Manufacture of Polymer Nanocomposites	97
<i>José A. Covas and Maria C. Paiva</i>	
3.1 Introduction	97
3.2 Organoclays	99
3.2.1 Dispersion of Layered Clays	100
3.2.2 Monitoring the Development of Dispersion	101
3.3 Carbon Nanotubes	105
3.3.1 Dispersion of Carbon Nanotubes	107
3.3.2 Monitoring the Development of Dispersion	108
3.4 Graphene Derivatives	112
3.4.1 Dispersion Mechanism	113
3.4.2 Monitoring the Development of Dispersion	115
3.5 Conclusions	117

4 The Effect of Dispersion and Particle–Matrix Interactions on the Fatigue Behavior of Novel Epoxy/Halloysite Nanocomposites	121
<i>Martin H. Kothmann, Agustin Rios de Anda, Andreas Köppel, Rico Zeiler, Georg Tauer, Zhong Zhang, and Volker Altstädt</i>	
4.1 Introduction	121
4.2 Materials and Processes	124
4.2.1 Materials	124
4.2.2 HNTs’ Surface Modification	125
4.2.3 Preparation of Epoxy/HNT Nanocomposites	125
4.3 Characterization Methods	126
4.3.1 Thermal and Static Mechanical Analyses	126
4.3.2 Fatigue Crack Propagation Investigation	128
4.3.2.1 Analytical Approach	129
4.3.2.2 Experimental Procedure	130
4.4 Results and Discussion	131
4.4.1 Multiscale Material Characterization	131
4.4.1.1 Particle Morphology and Particle Size Distribution	131
4.4.1.2 Characterization of the HNTs’ Modification	132
4.4.1.3 Dispersion of the HNTs	135
4.4.1.4 Influence of Surface Modification on Interface Chemistry	135
4.4.1.5 Glass Transition Temperature	136
4.4.2 Mechanical Properties	137
4.4.2.1 Influence of Dispersion and Interface on the Tensile Properties	137
4.4.2.2 Influence of Dispersion and Interface on the Fracture Toughness and Toughening Mechanisms	140
4.4.3 Fatigue Crack Propagation Behavior	143
4.4.3.1 Influence of HNT Content	144
4.4.3.2 Influence of HNT Surface Modification	146
4.4.3.3 Energy Dissipating Mechanisms	147
4.5 Conclusions	152
5 Effect of Melt Processing on Multi-Walled Carbon Nanotube Length	157
<i>Brian Grady</i>	
5.1 Introduction	157
5.2 Measurement of Nanotube Length	160

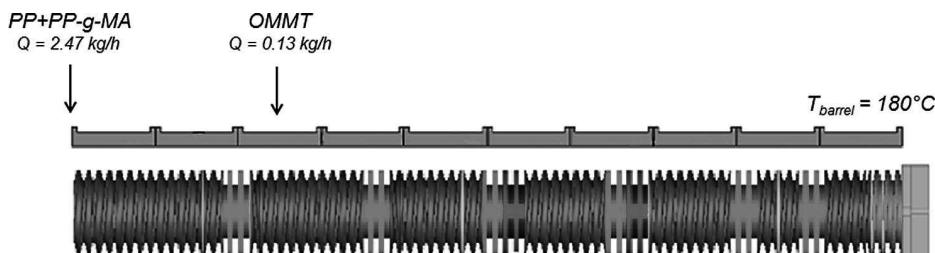
5.3	Effect of Melt Processing on Nanotube Length	163
5.3.1	Mechanical Variables	163
5.3.2	Nanotube or Fluid Variables	165
5.3.3	Effect of Additives, Including Blending	166
5.4	Conclusions	168
6	Microinjection Molding of Filler-Loaded Polymer Nanocomposites	171
	<i>Shengtai Zhou, Andrew N. Hrymak, and Musa R. Kamal</i>	
6.1	Introduction	171
6.2	Processing of Polymer Nanocomposites	172
6.3	Microinjection Molding of Polymer Nanocomposites	173
6.3.1	General Characteristics of the Microinjection Molding Process and Products	173
6.3.2	Special Considerations in Microinjection Molding of Polymers and Polymer Nanocomposites	176
6.3.3	Typical Process-Structure Relationships of Microinjection Moldings of Polymers and Polymer Nanocomposites	178
6.4	Thermal Properties	180
6.4.1	Melting and Crystallization Behavior	180
6.4.2	Thermal Stability	183
6.5	Mechanical Properties	184
6.5.1	Tensile Properties	185
6.5.2	Nanoindentation	186
6.5.3	Dimensional Stability	187
6.6	Electrical Properties	189
6.6.1	The Effect of Filler Type	189
6.6.2	The Effect of the Polymer Matrix	193
6.6.3	The Effect of Surface Modification of Electrically Conductive Fillers	194
6.6.4	The Effect of Molding Conditions	194
6.7	Conclusion and Outlook	195
7	Polymer Nanocomposites and Multilayer Nanocomposite Films by Coextrusion	201
	<i>Rui Jian, Joey Mead, Carol Barry, and Claire Lepont</i>	
7.1	Introduction	201
7.1.1	Electrical Conductivity of Polymer/Carbon Nanotube Nanocomposites	202

7.1.2	Electromagnetic Interference of Polymer/Carbon Nanotube Nanocomposites	204
7.1.3	Layer Multiplying Coextrusion Process	206
7.2	Experimental	207
7.2.1	Materials	207
7.2.2	Coextrusion of Multilayer Samples	208
7.2.3	Characterization	210
7.3	Results and Discussion	213
7.3.1	PS/CNT Compounds with Varied CNT Loadings	213
7.3.1.1	Electrical Resistivity of Diluted PS/CNT Compounds ..	213
7.3.1.2	Rheology of PS/CNT Compounds	215
7.3.1.3	Multilayer Extruded Samples	217
7.3.1.4	Compounds with CNT Loading Above the Percolation Region (5 wt%)	218
7.3.1.5	Compounds with CNT Loading Near the Percolating Region (3 wt%)	220
7.3.2	Foamed Sheet	221
7.3.2.1	Effect of Layer Multiplying on Sheet Morphology ..	221
7.3.2.2	Multilayer PS/CNT-Filled PS Foam Sheet	223
7.3.2.3	Effect of CNT Content on Morphology	225
7.3.2.4	Effect of Foaming Agent Content on Morphology	226
7.3.3	EMI Shielding Properties	227
7.4	Conclusions	230
8	The Effect of Foaming on the Properties of Carbon Nanotubes/Polymer Composites	235
	<i>Amir Ameli, Chul B. Park, and Petra Pötschke</i>	
8.1	Introduction	235
8.2	Conductive Filler/Polymer Nanocomposites (CPNs)	237
8.3	Foaming of CPNs	238
8.3.1	Gas-Melt Mixture	239
8.3.2	Cell-Filler Interactions	239
8.4	Microstructure of CPN Foams	241
8.4.1	Batch-Foamed CPNs	241
8.4.2	Foam-Injection-Molded CPNs	243
8.5	Electrical Conductivity of CPN Foams	246
8.5.1	Batch-Foamed CPNs	246
8.5.2	Foam-Injection-Molded CPNs	247
8.6	Dielectric Properties of CPN Foams	249
8.7	Summary	252

9 The Effect of Solid-state Shear Processing on the Network Formation of Clay-based Polymer Nanocomposites	255
<i>Masami Okamoto</i>	
9.1 Introduction	255
9.2 Percolated Network Formation in PLSNCs	257
9.2.1 Nanostructure	257
9.2.2 Flexibility of a Single MMT Layer	262
9.2.3 Volume-spanning Mesoscale Network	263
9.3 Network Structure and Rheological Properties in PLSNCs	264
9.3.1 Flocculation Control and Modulus Enhancement	264
9.3.2 Linear Viscoelastic Properties	266
9.3.3 Relaxation Rate and Crystallization	271
9.3.4 Nonlinear Shear Response	274
9.3.5 Analogy to Soft Colloids	276
9.3.6 Reversibility of the Network Formation Process	276
9.3.7 Alignment of Silicate Layers in a Network	280
9.4 Interlayer Opening and Intercalated Nanocomposite Structure	284
9.5 Novel Compounding Methods for Delamination of OMLFs	288
9.6 Solid-state Shear Compounding	289
9.7 Future Prospects	292
10 Orientation Development During Processing of Nanocomposite Polymers	297
<i>Samuel Kenig</i>	
10.1 Introduction	297
10.2 Earlier Studies Related to Flow-Induced Orientation of Elongated Particles	299
10.3 Orientation Modelling	300
10.4 Methodology	302
10.5 Experimental	302
10.5.1 Materials Processes and Mechanical Characterization	302
10.5.2 Shear Orientation by Parallel Plate Rheometer	302
10.5.3 Elongational Orientation by Melt Drawing	304
10.6 Results and Discussion	305
10.6.1 Shear Viscosity	305
10.6.2 Shear Orientation	306
10.6.3 Elongational Orientation	307
10.6.4 Morphology	308
10.7 Conclusions	310

11 Anomalous Viscoelastic Behaviors of Polymer Nanocomposites During Shear and Extensional Deformations	313
<i>Esmaeil Narimissa, Rahul K. Gupta, and Sati N. Bhattacharya</i>	
11.1 Introduction	313
11.2 Anomalous First Normal Stress Difference Behavior of PLA/NGP Nanocomposites	314
11.2.1 Introduction	314
11.2.2 Normal Force Measurements	315
11.3 Anomalous Uniaxial Extensional Deformation of PLA/NGP Nanocomposites	321
11.3.1 Introduction	321
11.3.2 Extensional Viscosity Measurement	323
11.3.3 Application of Constitutive Equations for Rheological Modeling	332
11.4 Temperature Causing Anomalous Shear Rheological Behavior	335
12 Polymer Nanocomposites Based on Layered Double Hydroxides (LDHs)	343
<i>Sajid Naseem, Andreas Leuteritz, and Udo Wagenknecht</i>	
12.1 Introduction to LDHs	343
12.2 Structural Aspects of LDHs	344
12.2.1 Brucite Layers	344
12.2.2 Cation Substitution of LDHs	345
12.2.3 Interlayers of LDHs	345
12.3 Synthesis of LDHs	346
12.3.1 Co-precipitation Methods	347
12.3.2 Anion Exchange Method (Indirect Method)	348
12.3.3 Calcination/Reconstruction Method (Memory Effect)	348
12.3.4 Other Methods	349
12.3.5 Summary of LDH Synthesis Methods	349
12.3.6 Thermal and Chemical Stabilities of Different LDHs	350
12.4 Applications of LDHs	350
12.5 Preparation of LDH/Polymer Nanocomposites	352
12.5.1 In-Situ Synthesis Method for Polymer Nanocomposites	352
12.5.1.1 In-Situ LDH Synthesis	352
12.5.1.2 In-Situ Polymerization	353
12.5.2 Solution Intercalation	354
12.5.3 Melt Compounding	356

12.5.4 Effect of Dispersion and Exfoliation of LDHs on LDH/Polymer Nanocomposites	358
12.5.5 Sonicated Assisted Masterbatch (SAM) Melt Mixing	361
12.6 Summary	362
13 Polymer–Cellulose Nanocrystal (CNC) Nanocomposites	371
<i>Davood Bagheriasl and Pierre J. Carreau</i>	
13.1 Introduction	371
13.2 CNC-reinforced Polymer Composites	373
13.3 Polymer–CNC Nanocomposite Processing Methods	374
13.3.1 Hydro-soluble or Hydro-dispersible Polymers	374
13.3.2 Non-hydro-soluble Polymers	375
13.3.3 In-situ Polymerization	375
13.3.4 Compatibilization	376
13.3.5 Chemical Modification	376
13.3.6 Solvent Casting	377
13.4 Effect of CNCs on the Properties of Polymers	377
13.4.1 Effect of CNCs on the Rheological Behavior of the Polymers ..	377
13.4.2 Small-amplitude Oscillatory Shear (SAOS)	378
13.4.3 Steady Shear	380
13.4.4 Transient Behavior	381
13.4.5 Structure Build-up	382
13.4.6 Effect of CNCs on the Mechanical and Thermal Properties of Polymers	383
13.4.6.1 Thermal Properties	383
13.4.6.2 Tensile Properties	384
13.4.6.3 Dynamic Thermo-mechanical Properties	385
13.5 Applications for Polymer–CNC Nanocomposites	387
13.6 Summary and Overview	388
14 Cellulose Nanocrystals: Particles and Polymer Nanocomposites	395
<i>Wissam Abdallah and Musa R. Kamal</i>	
14.1 Introduction	395
14.2 Cellulose and Cellulosic Particles	397
14.2.1 Cellulose	397
14.2.2 Cellulosic Nanoparticles	398
14.2.3 Cellulose Nanocrystals (CNC)	398
14.2.3.1 Extraction Processes of CNC	399


14.2.3.2 Properties of CNC	400
14.2.3.2.1 Mechanical Properties of CNC	400
14.2.3.2.2 Thermal Properties of CNC	401
14.2.3.2.3 Liquid Crystallinity Properties of CNC ...	401
14.2.3.2.4 Rheological Properties of CNC	401
14.2.3.2.5 Optical Properties of CNC	402
14.2.3.2.6 Morphological Characteristics of CNC ...	402
14.2.3.2.7 Effects of Drying on the Properties of CNC	403
14.3 Polymer Nanocomposites	407
14.3.1 Polymer-CNC Nanocomposites	408
14.3.1.1 General Considerations in the Synthesis of Polymer-CNC Nanocomposites	408
14.3.1.1.1 Processing Methods	408
14.3.1.1.2 Dispersion, Uniformity, and Interfacial Interactions	410
14.3.1.2 Recent Products, Processes, and Properties	413
14.3.1.2.1 Typical Polymer/CNC Nanocomposites ...	413
14.3.1.2.2 Improvement of Nanocomposite Mechanical Properties	414
14.3.1.2.3 Thermal Properties of CNC-filled Polymer Nanocomposites	415
14.3.1.2.4 Rheological Properties of CNC-filled Polymer Nanocomposites	417
14.3.1.2.5 Crystallization Behavior of CNC-filled Polymer Nanocomposites	421
14.3.1.2.6 Barrier Properties of CNC-filled Polymer Nanocomposites	424
14.3.1.2.7 Templating with CNC	426
14.3.1.2.8 Challenges in the Use of Polymer-CNC Nanocomposites	427
14.3.1.2.9 Water Sorption	427
14.3.1.2.10 Nanocomposite Preparation	428
14.3.1.2.11 Safety	429
15 Processing and Properties of Carbon Nanotubes/Glass/ Epoxy Nanocomposites	435
<i>Ryan J. Smith, Youssef K. Hamidi, and M. Cengiz Altan</i>	
15.1 Introduction	436
15.2 Materials and Methods	441
15.2.1 Materials	441

15.2.2 Batch Preparation and Prepreg Fabrication	442
15.2.3 Sample Preparation	442
15.2.4 Mechanical Testing	443
15.2.5 Microstructural Characterization	444
15.3 Results and Discussion	444
15.3.1 Effect of Nanotube Content on Composite Microstructure	444
15.3.2 Effect of Nanotube Content on Composite Mechanical Properties	446
15.3.3 Effect of Nanotube Type on Composite Microstructure	450
15.3.4 Effect of Nanotube Type on Composite Mechanical Properties	455
15.4 Conclusions and Future Work	457
16 Processing Influence on Thermal Conductivity of Polymer Nanocomposites	463
<i>Andrzej Rybak</i>	
16.1 Introduction	463
16.2 Thermal Conductivity Basics	464
16.2.1 Thermal Conductivity of Neat Polymers	464
16.2.2 Effect of Polymer Crystallinity	466
16.2.3 High Thermal Conductivity Fillers	467
16.3 Factors Affecting Thermal Conductivity	468
16.3.1 Processing Influence on Nanofiller Dispersion and Thermal Conductivity of Nanocomposites	469
16.3.2 Particle Size and Shape Effect	470
16.3.3 Effect of Nanofiller and Matrix Thermal Conductivity	472
16.3.4 Nanofiller–Matrix Interface Modification	473
16.3.5 Nanofiller Alignment	474
16.4 Thermal Conductivity of Nanocomposites	475
16.4.1 Nanocomposites with Carbon-based Fillers	475
16.4.2 Nanocomposites with Ceramic Nanofillers	476
16.4.3 Nanocomposites with Metallic Nanoparticles	477
16.5 Modeling of Thermal Conductivity	478
16.5.1 Theoretical Models	478
16.5.2 Correlation of Experimental Results with Models	482
Index	489

■ 1.4 Application to Twin-Screw Extrusion

1.4.1 Influence of the Processing Conditions on the Final Microstructure

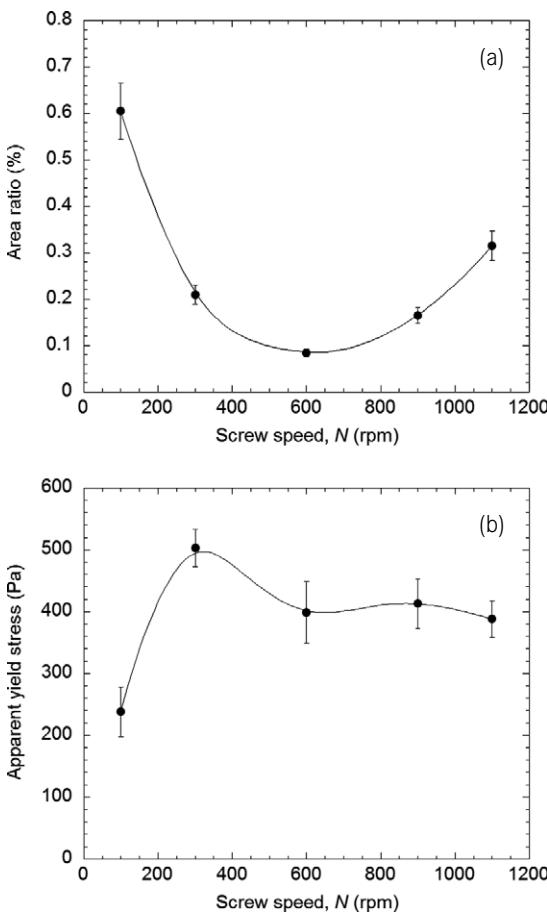
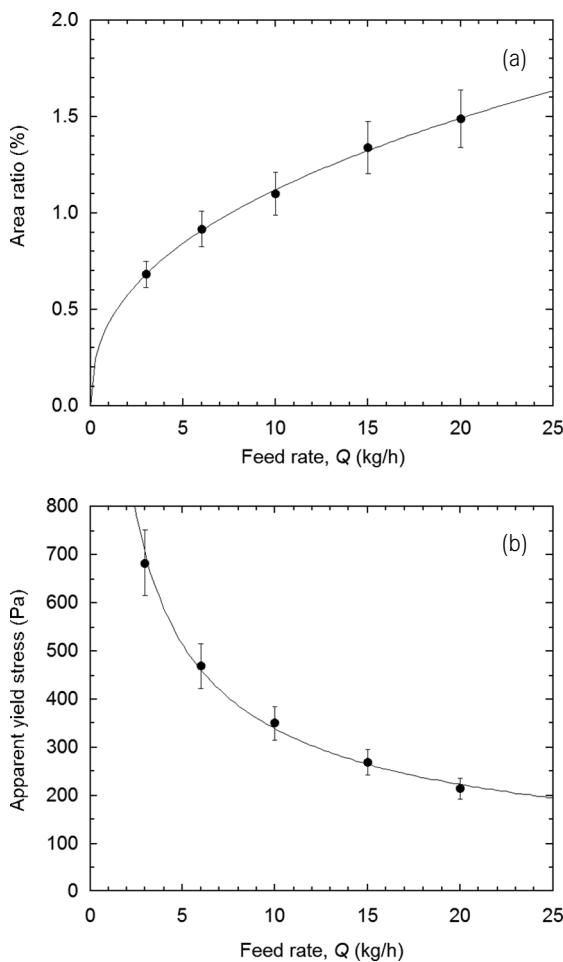

To test the influence of the processing conditions on the OMMT dispersion, a laboratory-scale extruder was chosen, the screw profile of which is shown in Figure 1.7. The screws have a diameter of 24 mm and a length of 960 mm ($L/D = 40$). The barrel is made up of 10 elements. The pre-blend of PP and PP-g-MA pellets is introduced into barrel 1, while the OMMT is fed into barrel 3, after the melting zone. Except for the first, all the barrel elements are set at 180 °C. After the melting zone, the screw profile consists of screw conveying elements, and five blocks of kneading discs, with various staggering angles. The formulation is kept constant and equal to 85 : 10 : 5 (PP-PP-g-MA-OMMT, in wt%).

Figure 1.7 Screw profile used in the experiments

1.4.1.1 Influence of the Screw Speed

In a first step, the screw speed was varied between 100 and 1100 rpm, at a constant total feed rate of 2.6 kg/h. The results are presented in Figure 1.8. The dispersion of the OMMT agglomerates improved when the screw speed increased, at least up to 600 rpm. Above this value, the dispersion was less efficient and larger agglomerates were present. Similarly, the yield stress (and thus exfoliation) increased up to around 400 rpm, and then stabilized at a lower level. Indeed, at high screw speed, a considerable overheating was observed: the final temperature increased from 192 to 238 °C between 100 and 1100 rpm. At 600 rpm, the temperature was high enough (222 °C) to induce thermal degradation of the organic modifier [22]. This was confirmed by a decrease in the interlamellar distance, from 3.8 to 3.6 nm, shown by XRD. Furthermore, the rheological characterizations showed that, above 300 rpm, a significant mechanical degradation of the matrix developed, resulting in a decrease in the weight average molecular weight, from 123 kg/mol for the virgin PP to 103 kg/mol at 1100 rpm [24]. Therefore, if an increase in screw speed helps to improve OMMT dispersion [25–29], it appears that excessively high speeds are not recommended for the preparation of nanocomposites.


Figure 1.8

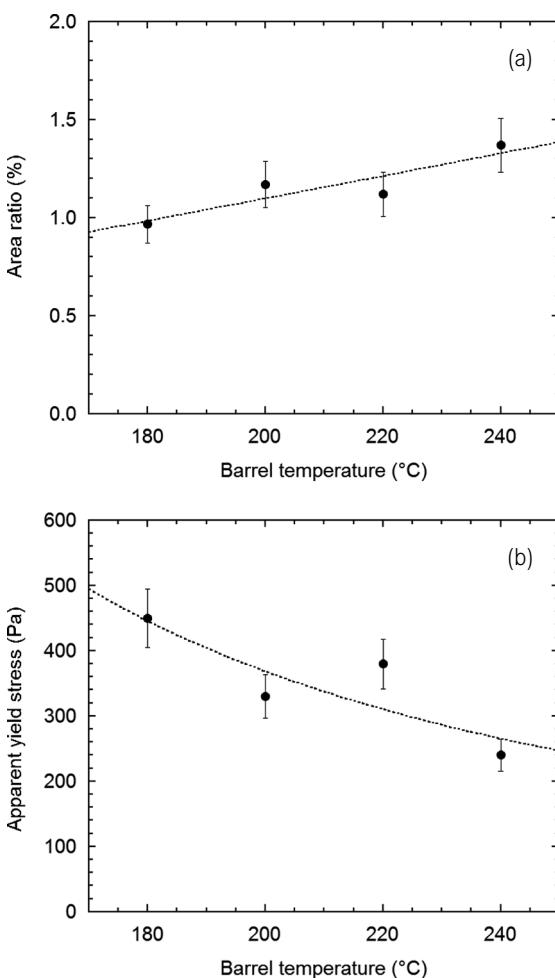
Changes in area ratio (a) and apparent yield stress (b) with the screw speed (2.6 kg/h, 180 °C) (reprinted from [24])

1.4.1.2 Influence of the Feed Rate

The experiments were carried out on the same lab-scale extruder, but with a slightly different screw profile. For these experiments, a masterbatch dilution method was chosen: in the first step, a 40 : 40 : 20 masterbatch (PP-PP-g-MA-OMMT, in wt%) was prepared. It was then diluted with PP in a second step, to obtain a final 85 : 10 : 5 nanocomposite. In this case, the pre-blend of masterbatch and PP pellets was introduced into the main hopper, that is, into barrel 1. The barrel temperature was set at 180 °C and the screw speed at 500 rpm in order to allow a wide range of variation of the feed rate. This high value of the screw speed was possible here because the selected screw profile was less severe than in the previous section. It is clearly shown in Figure 1.9 that an increase in feed rate induced an increase in area ratio and a decrease in apparent yield stress [30, 31]. In other words, the quality of the dispersion, both at the micro- and the nanoscale, decreased with the feed rate. In fact, an increase in the feed rate essentially affects the residence time, with a sharp decrease of the mean residence time and a narrowing of the distribution [10]. This link between residence time and exfoliation was also cited by Dennis et al. [32].

Consequently, the effect of the feed rate in the twin-screw extrusion is similar to that of the mixing time in the internal mixer (see Figure 1.5).

Figure 1.9
Changes in area ratio (a) and apparent yield stress (b) with the feed rate (500 rpm, 180 °C) (reprinted from [30])


The XRD measurements showed an intercalated structure, with an increase in the interlayer distance with feed rate, except at the lowest feed rate (3 kg/h) where this distance was less than that of the pristine OMMT [6]. Since the final temperature was about 210 °C, irrespective of the feed rate, we can imagine that the long residence time at 3 kg/h (about 2 min) was responsible for a thermal degradation of the organic modifier.

1.4.1.3 Influence of the Barrel Temperature

Masterbatch dilution was also carried out, at 300 rpm and 3 kg/h, for a barrel temperature varying between 180 and 240 °C. The results are presented in Fig-

ure 1.10. The effect is similar to that of the feed rate, but less significant: an increase in barrel temperature increased the area ratio and decreased the yield stress. At high temperatures, the aggregates were larger, probably because the viscosity and thus the shear stresses were lower.

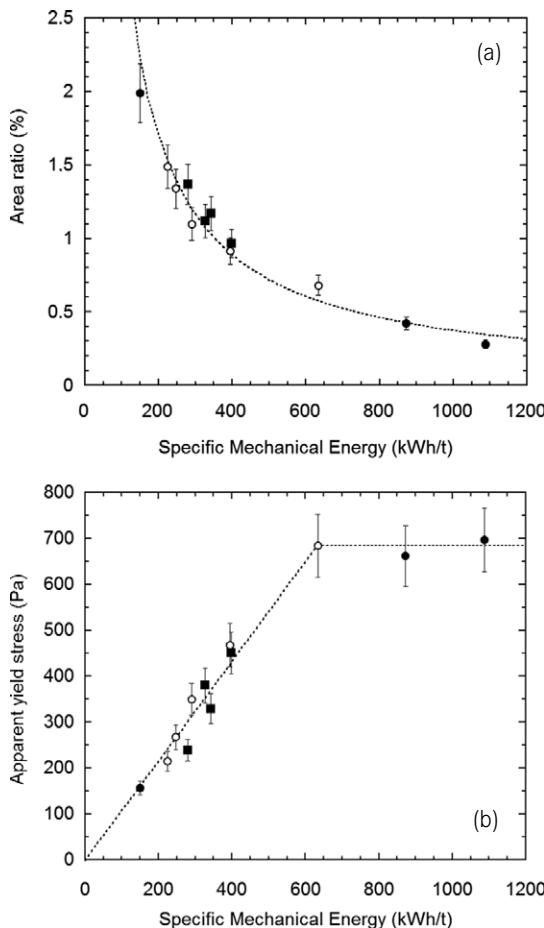

The XRD measurements indicated an intercalated structure (interlayer distance between 3.4 and 3.5 nm), except at 240 °C where it was lower (3.3 nm) than the pristine OMMT. In this last condition, the final temperature of the nanocomposite was about 260 °C, resulting in the destruction of the intercalant. The decrease of the apparent yield stress is, as for the area ratio, explained by the decrease of the stresses. To summarize, a high barrel temperature is detrimental to the quality of the dispersion of the OMMT, as already reported in the literature [5, 27, 33].

Figure 1.10
Changes in area ratio (a) and apparent yield stress (b) with the barrel temperature (300 rpm, 3 kg/h)
(adapted from [6])

1.4.1.4 Conclusions

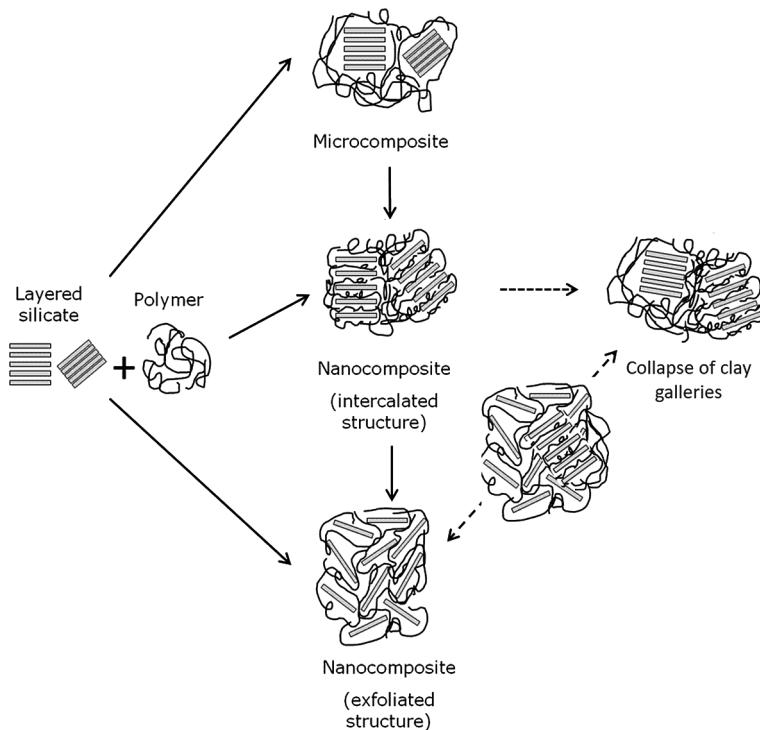

As for the internal mixer, the results presenting the influences of the processing parameters (screw speed, feed rate, and barrel temperature) can be summarized when they are plotted versus the SME measured on the extruder (Figure 1.11). While the area ratio decreases steadily, the yield stress increases linearly up to 600 kWh/t and then stabilizes at a value of about 700 Pa.

Figure 1.11

Changes in area ratio (a) and apparent yield stress (b) with the specific mechanical energy (SME). (●): effect of screw speed, (○): effect of feed rate, (■): effect of barrel temperature (reprinted from [30])

Even if they were obtained on two different systems (direct OMMT dispersion and masterbatch dilution), the results of the internal mixer and the twin-screw extruder are interesting to compare. In Figure 1.12(a), we observe that the agglomerate dispersion is much worse on the twin-screw extruder. This is explained by the preparation of the masterbatch, where the high quantity of the OMMT (20 wt%) has led to the formation of large and solid agglomerates that are difficult to disperse thereafter. On the other hand, changes in yield stress with SME are in good agree-

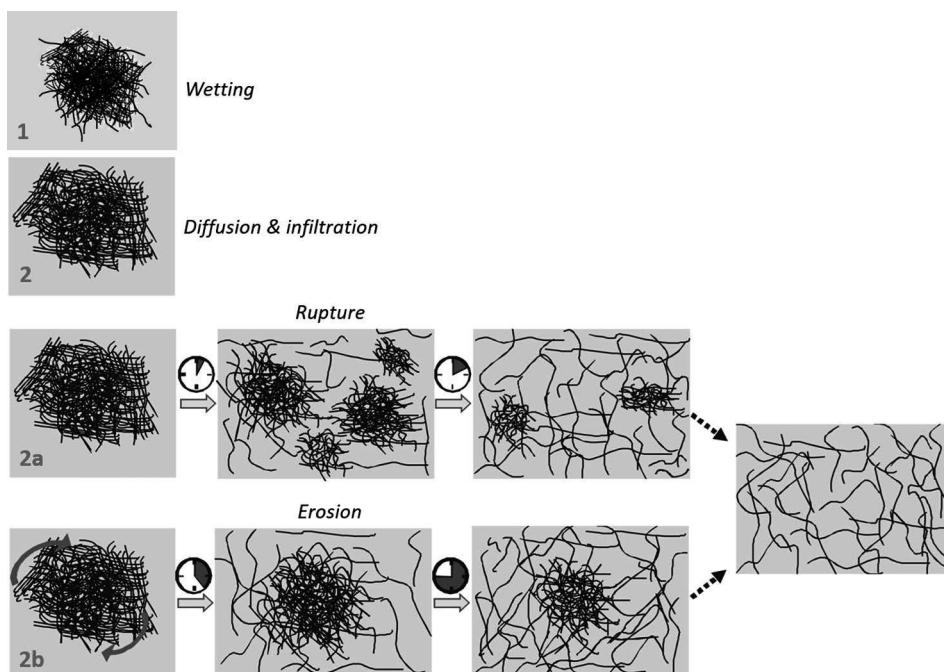
Figure 3.3 Dispersion mechanism of layered organoclays into polymer matrices taking into account the possible collapse of the clay galleries due to the thermal degradation of the clay surfactant and polymer

■ 3.3 Carbon Nanotubes

Carbon nanotubes (CNTs) are formed by a hexagonal lattice of sp^2 hybridized carbon atoms wrapped into a cylindrical shape. CNTs can be formed as single-walled (SWCNTs) or multi-walled (MWCNTs), the former consisting of an individual graphene layer rolled up into a cylindrical shell with a diameter of 1–2 nm, whereas the latter contains several cylindrical shells coaxially arranged and stacked, separated by a distance of 0.34 nm. CNTs have outstanding mechanical and thermal properties, with typical values for a Young's modulus of 1 TPa, tensile strength >50 GPa, thermal conductivity >3000 $W\ m^{-1}\ K^{-1}$, and electrical conductivity in the range 10^6 – 10^7 $S\ m^{-1}$. This set of excellent properties makes them attractive for applications in conductive polymer composites and adhesives, energy storage, thermal conductors, structural composite materials, microelectronics, etc. [33, 34]. However, in practice, it has been demonstrated that attaining full performance is not easy, not only because commercial CNTs contain impurities (e.g., metal cata-

lyst particles and amorphous carbon), they also lack dimensional uniformity, form stable agglomerates, and are difficult to disperse in polymer matrices. This created a trough of disillusionment in the 2000s, and their commercial sustainability was questioned. In recent years, a better understanding of the chemical-physical characteristics and dispersion mechanisms, together with advances in manufacturing technologies and in surface functionalization, has promoted a new upsurge in the practical interest in CNTs.

The dispersion of carbon nanoparticles in polymeric matrices is difficult because:


- in the pristine state, $\pi-\pi$ stacking and van der Waals interactions between individual tubes may lead to significant attraction and formation of stable agglomerates;
- MWCNTs grow as highly entangled agglomerates of several microns or even millimeters;
- the surface chemical inertia of CNTs due to the lack of chemical functionalities prevents the creation of strong interfaces with polymer molecules.

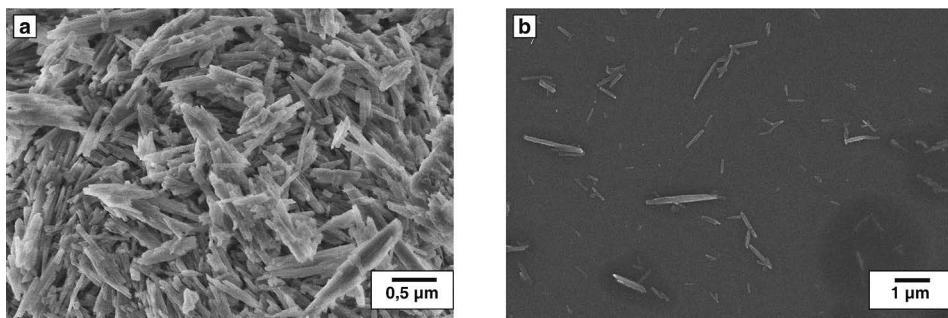
Interestingly, it is now generally accepted that perfectly dispersed CNTs are required for maximum mechanical reinforcement; however, the existence of a few agglomerates is not always detrimental and may be necessary to build up an effective conductive network. Consequently, the survival of initial agglomerates or the development of secondary agglomerates during mixing with a polymer may be advantageous for electrical conductivity. Therefore, understanding the dispersion mechanisms of CNTs is of major importance for the practical production of nanocomposites with a tailored CNT dispersion extent to achieve optimal performance.

Dispersion of CNTs may be facilitated by surface modification of the particles and/or compatibilization with the polymer matrix (albeit this strategy may affect the transport properties). Chemical modification can be accomplished by non-covalent and covalent approaches [35, 36]. Through electrostatic, van der Waals, or $\pi-\pi$ stacking interactions, the former enables the attachment and stabilization of different functional groups at the surface of the CNTs without disturbing their carbon structure and electronic network. However, this method is unsuitable for melt mixing – which is the focus of this chapter – as the functionalization compounds are usually unstable at the typical polymer processing temperatures. Covalent functionalization involves bonding chemical groups to the carbon atoms of the CNTs' surface, changing their hybridization state and decreasing their conjugation through the formation of covalent bonds. This method may induce surface damage and affect the electrical conductivity; however, if the covalent functionalization approach is conveniently selected, the resulting functionalized CNTs are appropriate for melt mixing.

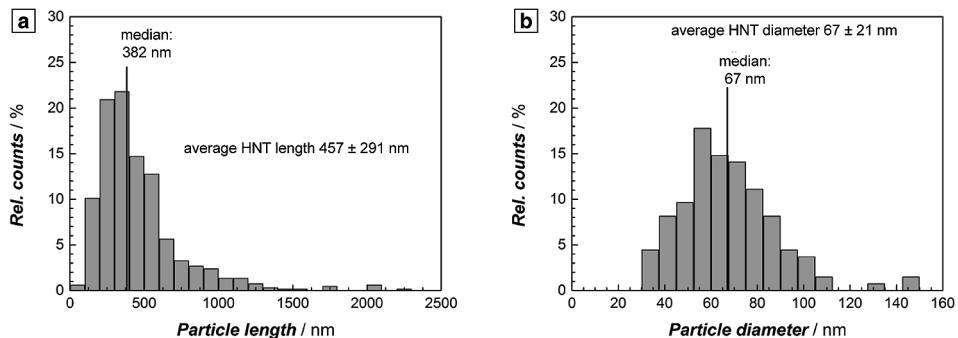
3.3.1 Dispersion of Carbon Nanotubes

The dispersion of CNTs in thermoplastic polymers during melt mixing has been the focus of numerous studies, using various types of mixing equipment and processing conditions. These studies converged to a number of general observations that enabled the build-up of phenomenological dispersion models such as that illustrated in Figure 3.4. Dispersion of the CNT agglomerates requires their wetting and infiltration by the polymer melt, reducing the agglomerate cohesion strength. The ease of infiltration of the polymer melt depends mainly on the agglomerate density and size [37], on the polymer interfacial tension [38], and viscosity. Pötschke and co-workers [39–42] found a correlation between dispersibility of CNTs and bulk density of the initial CNT agglomerates. Similarly, Salzano de Luna et al. [43] observed that CNT particles consisting of small and loosely packed clusters formed by interwoven bundles of combed yarns of nanotubes were easier to disperse than the reference denser commercial counterparts. Interfacial tension is not relevant when the hydrophobic CNTs are to be dispersed in polar polymers (e.g., polyamide, polycarbonate, polyimide). In the case of non-polar polymers (e.g., polyolefins), it is necessary to incorporate surface functionalities to the CNTs as mentioned above.

Figure 3.4 Dispersion mechanisms of CNT agglomerates in a polymer melt (adapted from [45, 48])


After creating the ideal sharp crack tip, the threshold value of the fatigue crack propagation ΔK_{th} is determined. For this purpose, ΔK is reduced with a constant $\Delta K_{\text{gradient}}$ of $-0.03 \text{ MPa}\cdot\text{m}^{1/2}/\text{mm}$ until the da/dN value reaches 10^{-7} mm/cycle . Below ΔK_{th} , no crack propagation occurs. In order to restart crack propagation, ΔK is increased rapidly by a given $\Delta(\Delta K)$ of $0.03 \text{ MPa}\cdot\text{m}^{1/2}$. Finally, the fatigue crack propagation behavior is determined as a function of ΔK . In order to achieve it, ΔK is increased with a constant $\Delta K_{\text{gradient}}$ of $0.03 \text{ MPa}\cdot\text{m}^{1/2}/\text{mm}$ and the fatigue crack propagation rate da/dN is thus determined. These measurements were performed using a maximum a/w' ratio of 0.8.

■ 4.4 Results and Discussion


4.4.1 Multiscale Material Characterization

4.4.1.1 Particle Morphology and Particle Size Distribution

The HNTs used herein are characterized by a homogenous nanotube morphology and are almost free of non-tubular impurities (Figure 4.5a). However, the as-received HNTs are strongly agglomerated and have to be dispersed prior to chemical modification. Figure 4.5b depicts an SEM image of HNTs after an ultrasonic treatment in aqueous solution. The agglomerates were broken and isolated HNTs were observed. In order to quantify the particle sizes, SEM pictures of dried droplets of a highly diluted HNT suspension were evaluated regarding the lengths and diameters of the HNTs (Figure 4.6). The particle lengths of the more than 400 characterized HNTs range from 70 nm to 2200 nm with a median of 382 nm. The average length is $457 \text{ nm} \pm 291 \text{ nm}$. The diameter of the nanotubes ranges from 30 nm to 146 nm. The median is 67 nm and the average diameter is $67 \text{ nm} \pm 21 \text{ nm}$. Consequently, the average aspect ratio of the nanoparticles is approximately 7. The HNTs' length distribution as well as the mean HNTs' length remained unaffected by the HNTs' dispersion carried out in the three-roll mill.

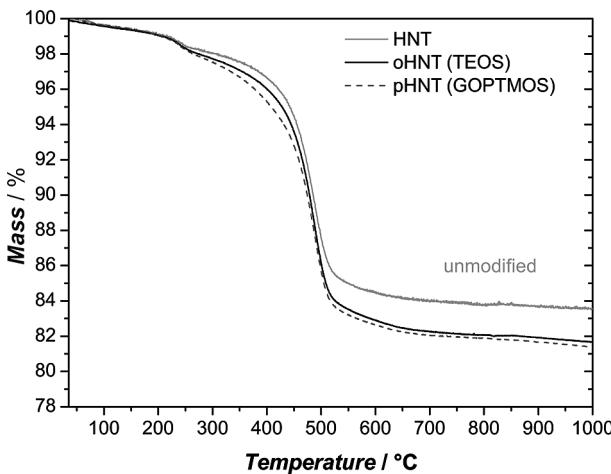
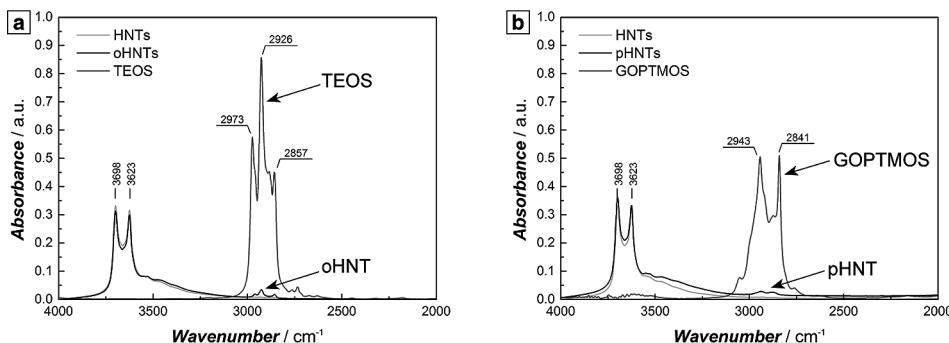

Figure 4.5 SEM images of HNTs (a) as-received and (b) isolated particles after the ultrasonication process in water (200 W)

Figure 4.6 Particle length (a) and diameter distribution (b) of the HNTs after the ultrasonic treatment


4.4.1.2 Characterization of the HNTs' Modification

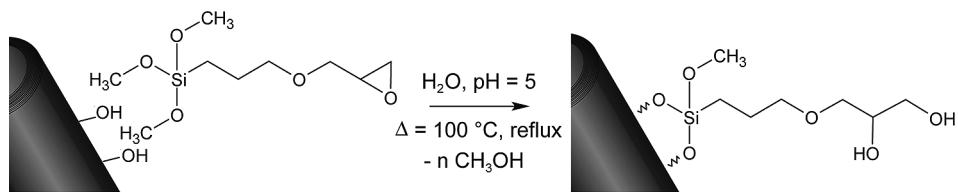
The results of the TGA analysis of unmodified, and TEOS (oHNTs)- and GOPTMOS (pHNTs)-modified HNTs are shown in Figure 4.7. The total mass loss of unmodified HNTs is 16.5 wt%. The first regime of the unmodified particles from 100 to 250 °C exposes a slight mass loss due to organic impurities absorbed on the HNTs' surface. The decomposition of the surface hydroxyl groups is detected in the range from 250 to 550 °C. The modified HNTs show a similar behavior, whereas an additional weight loss is observed at above 250 °C attributed to the decomposition of the grafted silanes to the HNTs' surface. A grafting weight of 1.9 wt% is calculated for oHNTs and 2.1 wt% for pHNTs.

Figure 4.7

TGA measurements of unmodified and modified HNTs

Furthermore, FTIR measurements confirm the presence of the silanes on the HNTs' surface (Figure 4.8). Compared to the spectrum of unmodified HNTs, the TEOS-modified HNTs (oHNTs) (Figure 4.8a) clearly show additional peaks at around 2800 to 3000 cm^{-1} , which are characteristic of C-H vibrations and also present in the spectrum of the pristine silane. Similar results are obtained for GOPTMOS-modified HNTs (pHNTs) (Figure 4.8b); however, in the pHNT spectrum, the peaks associated with the C-H bands hardly appear.

Figure 4.8 FTIR analysis of (a) oHNTs and (b) pHNTs in comparison to as-received HNTs


The silane grafting is also evidenced by XPS measurements as shown in Table 4.2. The carbon content of 4.3 wt% of the unmodified HNTs is due to organic impurities, which are also detected by TGA measurements. The oHNTs and pHNTs show an increased carbon content of 18.1 wt% and 10.8 wt%, respectively, indicating successful surface modification. XPS measurements show a decrease in the atomic contents of the silicon, aluminum, and oxygen components of the HNTs' surface

[7]. By comparing the two types of modified HNTs, the increase in carbon content and decrease in oxygen content are less pronounced for pHNT as compared to oHNT. Since GOPTMOS consists of a lower number of carbon atoms and a higher number of oxygen atoms, these differences are thus reasonable.

Table 4.2 Surface Composition of HNTs in wt%, Determined by XPS Analyses

Atom	HNT (as-received)	oHNT (TEOS)	pHNT (GOPTMOS)
C	4.3	18.1	10.8
Si	17.8	15.5	17.2
Al	15.1	12.7	13.6
O	62.7	53.7	58.4

The assumed chemical structure of the pHNT surface modification is depicted in Figure 4.9. Since the modification is carried out in an aqueous solution, the epoxy functionality is hydrolyzed during the grafting reaction [39].

Figure 4.9 Hydrolysis of the epoxy functionality during the silane grafting reaction in aqueous media, according to Horr et al. [39]

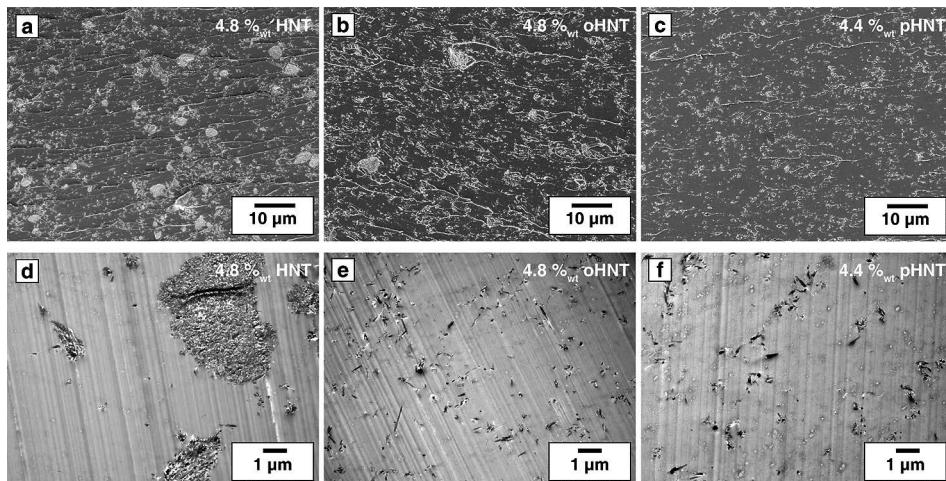

Finally, the real filler content of the nanocomposites was determined by TGA measurements, considering the determined weight loss of the HNTs of 16.5 wt% as seen in Table 4.3.

Table 4.3 Real HNTs' Weight Fractions and Glass Transition Temperature of the Nano-composites

Intended content (wt%)	Unmodified HNTs		oHNTs (TEOS)		pHNTs (GOPTMOS)	
	Content (wt%)	T _g (°C)	Content (wt%)	T _g (°C)	Content (wt%)	T _g (°C)
0	-	150 ± 1	-	150 ± 1	-	150 ± 1
1.25	1.2 ± 0.1	147 ± 1	1.4 ± 0.1	150 ± 1	1.3 ± 0.1	147 ± 1
2.5	2.4 ± 0.1	149 ± 1	2.9 ± 0.3	150 ± 1	2.3 ± 0.1	146 ± 1
5.0	4.8 ± 0.1	146 ± 1	4.8 ± 0.1	151 ± 1	4.4 ± 0.2	138 ± 1

4.4.1.3 Dispersion of the HNTs

The morphologies of the nanocomposites are examined by scanning and transmission electron microscopy techniques. SEM images of the fracture surfaces of the nanocomposites with the highest HNT contents (4.8 wt% HNTs, 4.8 wt% oHNTs, and 4.4 wt% pHNTs) provide a good overview of existing agglomerates (Figure 4.10a-c). The morphology of the nanocomposites filled with unmodified HNTs (image (a)) is characterized by a lot of agglomerates in the range of 5–10 μm . However, the surface treatment of the HNTs leads to less agglomeration as revealed by images (b) and (c). For both modifications, TEOS and GOPTMOS, the number and the size of clusters are significantly reduced. TEM images (Figure 4.10d-f) support these observations by revealing big agglomerates in the case of unmodified HNTs and mainly individually separated HNTs for oHNTs and pHNTs. Regardless of the type of surface treatment, the HNTs' dispersion is improved although the presence of some small agglomerates could not be avoided.

Figure 4.10 SEM (a-c) and TEM (d-f) micrographs of the nanocomposites containing 4.8 wt% unmodified HNTs (a and d), 4.8 wt% oHNTs (b and e), and 4.4 wt% pHNTs (c and f)

4.4.1.4 Influence of Surface Modification on Interface Chemistry

It is important to mention that the interface chemistry is highly influenced by the composition and molecular structure of the resin system. The anhydride cured epoxy network is characterized by a large number of polar groups, most importantly, the hydrophilic carbonyl groups corresponding to the methylhexahydrophthalic anhydride monomers. On the contrary, the bisphenol A backbone of the DGEBA monomers is highly hydrophobic. As a consequence, the interactions between the HNTs and the matrix are strongly affected by their compatibility, determined by the type of surface modifier.

decreased with increasing number of layers in the sheet. When Rahman et al. [58] studied the viscosity contrast effect on the foam morphology and layer integrity, they found that using a high viscosity resin for the film layer and a low viscosity resin for the foam layer produced better layer integrity. The film layer with the high viscosity acted as a confining layer, which helped reduce the cell size of the foamed layer as the nominal layer thickness decreased. Guo et al. [55, 56] investigated the extension rheology of different polyolefins and their blends to improve their foaming ability using multilayer coextrusion. These studies mostly focused on neat polymer foams without conductive filler networks.

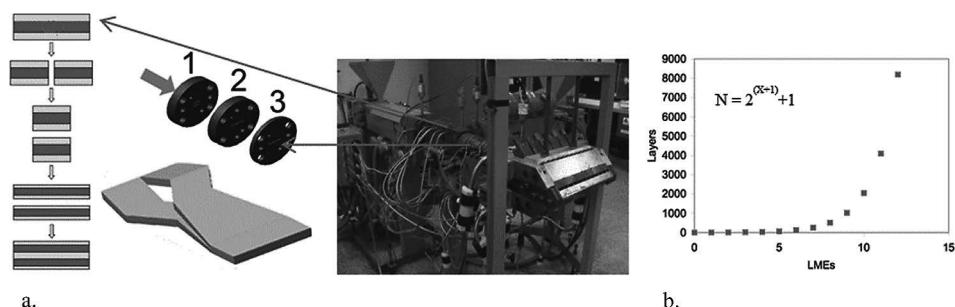
In the work reported here, a multilayer coextrusion process was used to fabricate a polystyrene/CNT (PS/CNT) sheet to study the effect of multilayer coextrusion on the morphology evolution and conductivity of coextruded PS/CNT composites when the layer thickness varies from the macroscale to the sub-microscale. The effect of matrix viscosity on the morphology and resistivity was also studied. It was found that viscosity plays a role in the behavior and that low viscosity materials were more sensitive to layer multiplying, particularly at sub-micron layer thicknesses. Additionally, the multilayer and foaming approaches were combined as an approach for improving EMI shielding. The multilayer coextrusion processes was used to extrude a sheet with alternating layers of a CNT-filled polymer foam and neat solid polymer. The main objective of this work was to investigate the effect of the number of layers, CNT content, and foaming agent content on the morphology of these materials. The EMI shielding properties were measured and correlated to the material morphology.

■ 7.2 Experimental

7.2.1 Materials

The CNTs were obtained as a commercially available 20 wt% polystyrene (PS)/CNT masterbatch (MB2020-00, Hyperion Catalysis). The CNTs were vapor-grown multi-wall carbon nanotubes with a reported diameter, length, and density of 10–15 nm, 1–10 μm , and 1750 kg/m^3 , respectively.

The CNT masterbatch was diluted with two commercially available polystyrenes: Ineos Nova 3601 (MI = 13.5 g/10 min, density = 1040 kg/m^3 , estimated molecular weight = 168,000 Da [59]) and Americas Styrenics LLC's Styron 665 (MI = 1.5 g/10 min, density = 1040 kg/m^3 , molecular weight = 305,000 Da [60]). Since the molecular weight (MW) of Styron 665 was 1.8 times greater than the molecular weight of Nova 3601, these polystyrenes were designated as high MW PS and low MW PS, respectively.


The polystyrene (PS) compounds for the foamed layer were prepared by diluting the PS/CNT masterbatch with a commercially available polystyrene (Americas Styrenics LLC, grade: Styron 685D). This polystyrene was also used for the neat film layer. A commercial endothermic chemical foaming agent (Bergen International, grade: Foamazol™ 95) was used to foam the PS/CNT layer. For this foaming agent, the suggested processing temperature for a maximum gas yield was 175 to 200 °C.

CNT-filled PS was fabricated by diluting the 20 wt% PS/CNT masterbatch to 3 and 5 wt% PS/CNT compounds using a co-rotating twin screw extruder (Leistritz, ZSE18HP-400). For the foamed trials, the PS-CNT masterbatch was diluted into compounds with 1.5, 3.0, and 6.0 wt% CNTs. The masterbatch and neat PS pellets were fed separately into the twin screw extruder by two volumetric feeders to provide the correct CNT loadings. All compounds were prepared using a temperature profile of 150 to 200 °C (rear to die), a constant screw speed of 300 rpm, and an output of about 3.6 kg/h. The extrudate was cooled and pelletized for coextrusion.

7.2.2 Coextrusion of Multilayer Samples

The coextrusion line had two 25-mm Wayne single screw extruders ($L/D = 30:1$), two Zenith PEP gear pumps, a customized feedblock, and layer multiplying elements (LMEs). The customized feedblock was designed to form a three-layer “sandwich” profile (shown in Figure 7.1). Melt from the feedblock was fed into the LMEs, where the melt streams were split (1), stacked (2), and merged (3). The number of individual layers in the extrudate, N , was directly proportional to the number of LMEs, n , added to the coextrusion line:

$$N = 2^{(n+1)} + 1 \quad (7.1)$$

Figure 7.1 (a) Layer multiplying coextrusion set-up and schematic plot of a horizontal layer multiplication process and (b) the relationship between number of layers and number of layer multiplying elements

For the PS/CNT systems, the twin screw compounded material was fed into both extruders of the coextrusion line and the two melt streams were pumped into the feedblock using gear pumps for tight control of the output. The PS/CNT sheet with nominal individual layers ranging from 3 to 8193 was fabricated using 0 to 12 LMEs. Table 7.1 lists the processing temperatures of LMEs and feedblock, number of LMEs, and CNT concentration for each coextrusion trial. The output was held constant at about 2.4 kg/h and the feed ratio for the two extruders was 50:50. In order to analyze the effects of LMEs on the compounds, no sheet die was used in the process. All samples were directly extruded from the LMEs onto the roll stack. To achieve the optimal surface finish and efficient cooling, extruded melts were mounted and cooled on the chilling rolls with a rotation speed of 0.6 m/min.

Table 7.1 Processing Trials at Different Temperatures Utilizing 0 to 12 LMEs

Number of LMEs	Number of Layers	$T_{LME} = 210\text{ }^{\circ}\text{C}$		$T_{LME} = 230\text{ }^{\circ}\text{C}$	
		CNT Concentration (wt%)		CNT Concentration (wt%)	
		High MW PS	Low MW PS	High MW PS	Low MW PS
0	3	3	3	5	5
3	17	-	3	-	-
7	257	-	3	5	5
12	8193	3	3	5	5

For the foamed samples, the pellets of diluted PS/CNT material were first dry blended with the foaming agent and then extruded as the middle layer of the sandwich structure that formed in the feedblock. The top and bottom layers (layers with a light color) of the sandwich structure were neat PS melt, which was extruded from another extruder. After passing through the feedblock, the three-layer melt stream was pumped through three different sets of LMEs (0, 2, and 3), which corresponded to 3, 9, and 17 layers of melt. The feed ratio for the two extruders was 50:50 and the output was held constant at about $2.31 \times 10^{-3}\text{ m}^3/\text{h}$. For the extruders, feedblock, and LMEs, the temperature was held constant at $190\text{ }^{\circ}\text{C}$; a lower temperature of $160\text{ }^{\circ}\text{C}$ was used for the sheet die to create the high pressure drop needed for the foaming process. To achieve the optimal surface finish and a constant sample thickness (1.5 mm), extruded foam/film multilayer sheets were pulled at a rate of 0.6 m/min on the chill rolls. The cooling temperature was $60\text{ }^{\circ}\text{C}$. Specific CNT and foaming agent usage for each trial are listed in Table 7.2. Since CNTs were only present in the foamed layer, the CNT content was calculated with respect to the total polymer material based on the 50:50 feed ratio in the coextrusion process.

Table 7.2 Processing Trials for the Foamed Multilayer Sheet

Number of Layers	Nominal Individual Layer Thickness (μm)	[CNT]*		[Foaming Agent]** (wt%)
		(wt%)	(vol%)	
3	750	0	0	1, 2, and 3
		0.75	0.45	2
		1.51	0.90	2
		3.03	1.83	1, 2, and 3
9	187.5	3.03	1.83	2
17	93.75	0.75	0.45	2
		1.51	0.90	2
		3.03	1.83	1, 2, and 3

* CNT content was calculated based on the total volume of the polymer in the extrudate.

** Foaming agent concentration was based on the weight of the foam layer.

7.2.3 Characterization

Thermal gravimetric analysis (TGA) was carried out (TA Instruments Q50). To determine the CNT content in the compounded material, approximately 20 mg of diluted PS/CNT compound was placed in the platinum testing pan and heated from room temperature to 300 °C at a heating rate of 20 °C/min. The CNT content was calculated based on the weight loss after burning off the polymer in a N₂ atmosphere; neat PS was used as the baseline. The decomposition kinetics of the foaming agent was also performed using TGA [61]. A foaming agent pellet was first heated at a rate of 50 °C/min from about 20 °C to the processing temperature (190 °C) and then the isothermal test was conducted at 190 °C to measure the weight loss of foaming agent vs. time. The gas release during the process was estimated based on the weight reduction for the residence time of the coextrusion (6 minutes).

A capillary rheometer (Dynisco, LCR 7000) was used to characterize the flow behavior of both the 3 wt% and 5 wt% PS/CNT compounds prepared by twin screw extrusion. In accordance with ASTM D3835, the apparent viscosity of the compounds was measured at shear rates of 5, 10, 20, 40, 100, and 200 s⁻¹ and the two processing temperatures (210 and 230 °C). The data obtained from these measurements were corrected by the Weissenberg–Rabinowitsch correction to plot the corrected viscosity as a function of corrected shear rate.

Transmission electron microscopy (TEM) was used to characterize the dispersion, distribution, and orientation of the CNTs in the extrudate with different numbers of layers. The PS/CNT pellets were cut into ultrathin sections using a cryo-ultra-microtome (Leica, model: EM UC6) with a sharp glass knife and dropped on the

increasing probability of CNTs to come into contact with each other [9, 10]. Thus, it was a matter of a trade-off between the aggregation rate and the disaggregation rate. Disentangled MWCNTs were easily oriented in the flow direction while the MWCNTs within the agglomerations did not undergo alignment. Thus, shear rate broke the agglomerations and released more dispersed CNTs that aligned. Hence, higher shear rates were linked to higher orientation. These results agree with what is presented in Equation (10.1). A study on orientation as a result of shear and elongational deformation found that part of an intertwined CNT bundle could be “oriented” as a whole with each individual CNT within the agglomerate randomly oriented after elongational flow, while the others separated into individual CNTs. Pegel et al [8] and Handge et al [9] showed that the alignment state of CNTs in polycarbonate following elongational flow tends to experience relaxation. The results show that after 60 minutes, the orientation of the particles was random. Lele et al. [12] used X-ray diffraction to evaluate the flow-induced orientation of layered silicates in polypropylene compatibilized with maleic anhydride polypropylene. They demonstrated that clay tactoids were readily oriented in shear. He et al. [13] incorporated CNTs into natural rubber latex and followed their orientation during shear by Raman and TEM (transmission electron microscopy). They found that shear induced the CNTs’ alignment. Dykes et al. [14] showed by X-ray scattering measurements that nanoclays dispersed in polymers align relative to the flow direction and this depends on shear rate and applied strain amplitude, with almost no relaxation after flow cessation.

Recently, the principles of flow-induced orientation of elongated and rigid moieties were applied to nanoparticles by Kenig [15] in view of experimental results from the literature [7–13] that indicated that NCs or CNTs are oriented due to shear or elongation flows.

■ 10.3 Orientation Modelling

Jeffery [16] was the first to describe the orientation development of dilute elongated particles in a Newtonian fluid. Jeffery’s equation for simple shear is as follows:

$$\Phi'_1 = \frac{\dot{\gamma}}{2} (1 + B \cos \Phi_1) \quad (10.1)$$

where Φ'_1 is the rate of angle change, Φ_1 is the orientation angle, and $\dot{\gamma}$ the shear rate.

Integration of Equation (10.1) with time, t , results in Equation (10.2):

$$\tan \Phi_1 = \left(1 + B\right) / \left(1 - B^2\right)^{1/2} \tan \left\{ \left(1 - B^2\right)^{1/2} \times 2 \dot{\gamma} t \right\} \quad (10.2)$$

where $B = (Rp^2 - 1) / (Rp^2 + 1)$, Rp is the aspect ratio of the elongated particle, and t the time of flow.

As Equation (10.2) suggests, the orientation angle (tangent) is related to the aspect ratio Rp and the product of shear rate and time – the total shear.

In the case of elongational flow, Jeffery's equation for diluted concentrations and Newtonian fluid could be written as:

$$\Phi'_1 = B / 2 (\varepsilon' \sin \Phi_1) \quad (10.3)$$

where ε' is the elongation rate.

Integration of Equation (10.3) with respect to time leads to Equation (10.4):

$$\tan \Phi = C DR^{-\lambda} \quad (10.4)$$

where DR is the draw ratio equal to the product $\varepsilon' \times t$ and the ratio D_1^2/D_2^2 , where D_1 is the initial extrudate diameter and D_2 is the final drawn polymer diameter. λ is the “orientability parameter” depending on the Rp and adopted from Erickson's definition of anisotropic fluids [17].

As concluded from Equation (10.4), the orientation of an elongated particle in a simple elongational flow is related to the total elongation and the tendency of the particle to elongate in a specific fluid (the orientability parameter).

Finally, it was assumed that in high orientations (small $\tan \Phi$), the modulus of elasticity is inversely proportional to $\tan \Phi$. Hence,

$$\tan \Phi = K/E \quad (10.5)$$

where K is the proportion constant.

Advanced models for the prediction of elongated particles (short fibers) orientation were suggested by Tucker and Folgar [18], especially to treat concentrated fiber compounds, taking into account fiber–fiber interactions. As nanocomposite melts are diluted in nature, the particles' interaction is minimized and the main concern is the nanoparticle–polymer interactions, which will be investigated in the present work.

The modified Jeffery's Equation (10.2), (10.4), and (10.5) will be the basis for the study on the orientation development of nanoparticles in elongation and shear flows.

■ 10.4 Methodology

Assuming that the two basic flow mechanisms – elongation and shear – control the orientation development during the processing of thermoplastics, the following methodology was followed:

The elongation mechanism was investigated using a simple unidirectional melt drawing system. In this part of the study, the effect of draw-down ratio (total elongation strain) on the modulus of CNTs and INTs containing polycarbonate (to avoid crystallinity induced by the nanoparticles) was investigated.

The shear mechanism was studied in using a parallel plate rheometer where the total shear depends on the number of revolutions and rotation speed.

In both flows, the total elongation and shear strains were calculated and the resulting orientation was determined using the elastic modulus (Equation (10.5)).

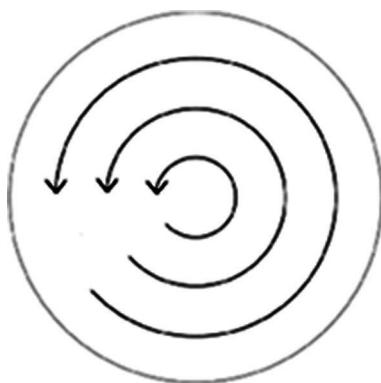
■ 10.5 Experimental

10.5.1 Materials Processes and Mechanical Characterization

Multiwalled carbon nanotubes (MWCNTs) (Nanocyl 7000 Belgium) with an elastic modulus of close to 1000 GPa, a strength of 10–65 GPa, a diameter of 10 nm, and a length of up to mms were used.

Multiwalled inorganic nanotubes (WS₂ INTs) (NanoMaterials Israel) with an elastic modulus of 170 GPa, a strength of up to 16 GPa, a diameter of 80 nm, and a length of 1–20 µm were used.

Polycarbonate (Makrolon 2207) was compounded with a 15% CNTs masterbatch (Nanocyl PC1501) to obtain 1 wt% and 0.5 wt% CNTs/PC nanocomposites.

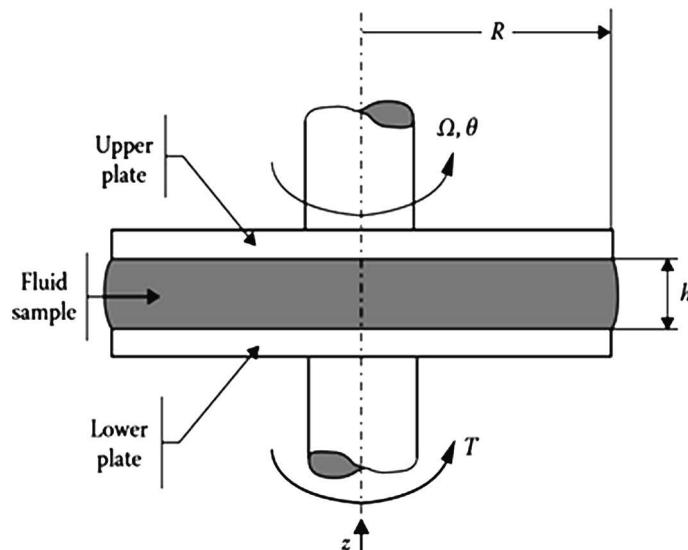

Polycarbonate was compounded with inorganic nanotubes (INTs). The compounds were prepared with a twin screw extruder (Prism).

The storage modulus was determined by a dynamic mechanical analyzer (DMA) at room temperature.

10.5.2 Shear Orientation by Parallel Plate Rheometer

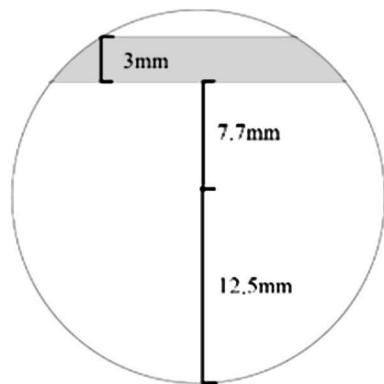
Circular specimens were prepared by compression molding of compounded PC/NTs.

A parallel plate rheometer was used to apply pure shear stresses using controlled one-direction rotation and varying rotation speeds as shown in Figure 10.1.


Figure 10.1

Schematics of flow in a parallel plate rheometer

The shear rate of the parallel plate rheometer is given by


$$\dot{\gamma}(r) = \frac{r\Omega}{h} \quad (10.6)$$

where $\dot{\gamma}(r)$ is the shear rate as a function of radius r , r is the radial distance from the center of the circular plate, Ω is the rotation speed, and h the thickness of the sheared material (Figure 10.2).

Figure 10.2 Schematics of the parallel plate rheometer

To study the effects of shear on orientation, different total shears were applied on the molten nanocomposite melts. Following shear, the specimens were cooled to room temperature. DMA (dynamic mechanical analysis) tensile specimens were prepared from the circular specimens, as shown in Figure 10.3. The diameter of the circular disc was 25 mm. The specimens cut for the DMA measurements were 3 mm wide and 2 mm thick.

Figure 10.3

Location of specimens cut from the circular disc for DMA measurements

The shear rates, shear time, and total shear applied are given in Table 10.1.

Table 10.1 Different Shear Rates, Times, and Total Shear Applied on the Nanocomposite Melts

Run	Angular velocity [rad/s]	Shear time [s]	Total shear
1	0.027174	240	30
2	0.054348	240	60
3	0.081522	240	90
4	0.108696	240	120
5	0.13587	240	150
6	0.217391	90	90

10.5.3 Elongational Orientation by Melt Drawing

The elongational flow was obtained by winding a polymer melt extrudate at different winding speeds, as shown in Figure 10.4.

13.3.6 Solvent Casting

In addition to those long, tedious, and costly preparation methods [31–36, 45], simple and efficient preparation methods, such as solvent casting, have been developed [19, 20]. This is similar to that introduced for hydro-soluble polymers (Figure 13.2) with the exception of the use of a non-aqueous medium. It has been reported that CNCs are dispersible in *N,N*-dimethylformamide (DMF) [19–21], dimethyl sulfoxide (DMSO) [33], formic acid [46], dimethylacetamide (DMAc) [47], pyridine [48], and a few more solvents. Therefore, the use of one of these solvents is a practical way for preparing polymer–CNC nanocomposites comprising a soluble polymer in the mentioned solvent, such as PLA [19, 20] and polyamide [46]. This method can also be used to produce masterbatches to be mixed with commercial grade polymers via conventional melt-mixing processes to prepare final polymer–CNC nanocomposites [18, 21, 48]. Likewise, masterbatches of hydro-soluble polymer–CNCs can be obtained by solvent casting as mentioned earlier and then melt- or solution-mixing with non-hydro-soluble polymers to prepare the final nanocomposites [16, 35]. The non-hydro-soluble polymer, often used as a compatibilizer, could bring complexities to the final nanocomposites' properties and it may not be desirable in terms of renewability, biocompatibility, and biodegradability [35]; or in some cases, it may countervail the reinforcing effect of the CNCs on the mechanical performances of the final nanocomposites [16, 47]. In addition, the miscibility of the compatibilizer with the polymer matrix is another concern.

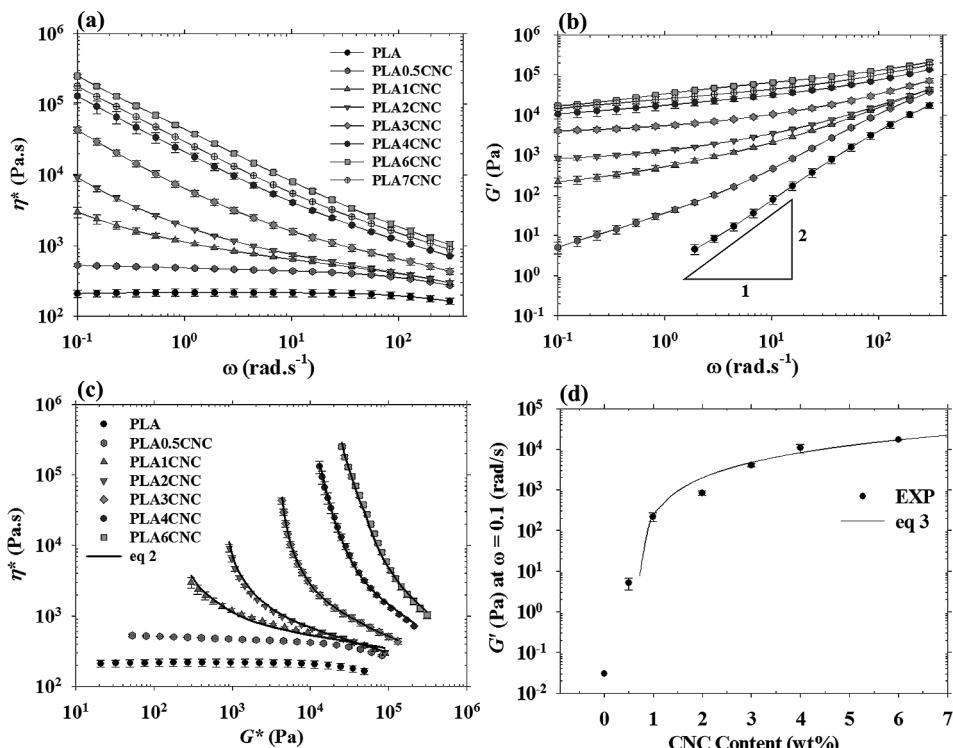
■ 13.4 Effect of CNCs on the Properties of Polymers

13.4.1 Effect of CNCs on the Rheological Behavior of the Polymers

During the last few decades, rheology has been employed as a powerful tool to understand the interactions between the components of polymer nanocomposites. The formation of an interconnected network of particles plays an important role on the rheological behavior of nanocomposites that can reveal the efficiency of the preparation method leading to a micro or nano dispersion. Therefore, the effects of CNCs on the rheological behavior of molten polymer nanocomposites can be ascribed to the quality of the dispersion and distribution of CNCs within the studied matrices. Some of the useful rheological measurements that are sensitive to interactions between the nanoparticles are presented in the next sections.

13.4.2 Small-amplitude Oscillatory Shear (SAOS)

Transition from a liquid-like behavior for neat polymer matrices to a solid-like behavior for nanocomposites and large increases of the dynamic rheological properties, such as complex viscosity, storage and loss moduli for nanocomposites relative to those of matrices, especially at low frequencies, are among the main effects caused by CNCs when they are nano-dispersed and well-distributed. Figure 13.4 clearly demonstrates these changes for solvent-cast PLA–CNC nanocomposites with different CNC loadings relative to the neat polymer matrix. The complex viscosity of the neat polymer matrix exhibits a long plateau, with a slight shear-thinning behavior at high frequencies (Figure 13.4a) and its storage modulus is typical of molten polymers with a terminal zone of slope equal to 2 on the log–log plot (Figure 13.4b). However, by incorporating CNCs, significant increases in the complex viscosity and storage modulus are observed, mainly at low frequencies, demonstrating clearly the strong effect of CNCs on the rheological properties of the polymer matrix. It is also worth mentioning that as the CNC concentration increases in the system, the possibility of agglomerate formation significantly increases and lower rheological properties may be expected as illustrated in Figure 13.4a and b for PLA containing 7 wt% CNCs compared to PLA with 6 wt% CNCs. The behavior of polymer nanocomposites in the low-frequency region is governed by the interactions between the nanoparticles and the formation of an interconnected network of nanoparticles [20]. At the percolation threshold, the nanocomposites exhibit a transition from liquid- to solid-like behavior with a complex viscosity tending to infinity as the frequency goes to zero and plateau values for the elastic modulus. An estimation of the rheological percolation threshold can be obtained from SAOS data by plotting the complex viscosity as a function of the complex modulus as shown in Figure 13.4c for PLA and PLA–CNC. For the neat polymer matrix and composites with CNC contents below the rheological percolation threshold, no viscosity upturn is observed at low frequencies, while at larger CNC loadings, the unbounded viscosity is indicative of a percolating network and an apparent yield stress [18, 20, 49–52]. Therefore, the rheological percolation threshold would fall in the range of CNC loadings with no complex viscosity upturn and the first point for which upturn is observed. Moreover, the modified Herschel–Bulkley model can fit the SAOS data for samples with CNC contents above the percolation threshold concentration well:


$$\eta^* \equiv \frac{G^*}{\omega} = \frac{\sigma_0}{\gamma^0 \omega} + k(\gamma^0 \omega)^{n-1} \quad (13.2)$$

where G^* is the complex modulus, σ_0 is the apparent yield stress, γ^0 is the strain amplitude, k is a constant, and n is the flow index [18]. Thus, the apparent yield stress can be determined from the modified Herschel–Bulkley model and used as a

measure of the CNC network strength. The higher the value of the apparent yield stress, the stronger the network. The rheological percolation threshold can be determined using storage modulus data at low frequencies as reported in Figure 13.4d for solvent-cast PLA-CNC nanocomposites with different CNC loadings [20]. Then, the following empirical power-law equation can be used to fit the data and obtain the rheological percolation threshold [53]:

$$G' = \beta_{cG} \left(\frac{m - m_{cG}}{m_{cG}} \right)^n \quad \text{for } m > m_{cG} \quad (13.3)$$

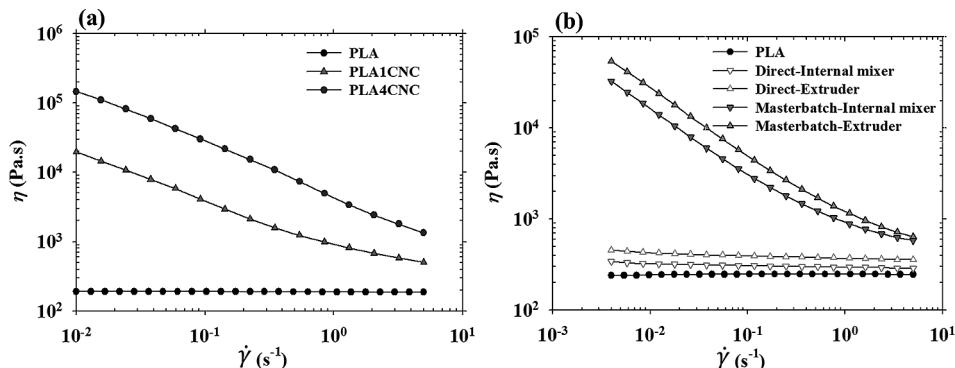

where β_{cG} and n are power-law constants, m is the CNC concentration (wt%), and m_{cG} is the rheological percolation threshold (wt%) [20, 53]. A value of 0.68 wt% was reported for the rheological percolation threshold of solvent-cast PLA-CNC nanocomposites [20].

Figure 13.4 SAOS data for PLA and PLA-CNC nanocomposites prepared via a solvent-casting method for various CNC loadings. (a) Complex viscosity, η^* , and (b) storage modulus, G' , versus frequency, ω , (c) η^* versus complex modulus, G^* , and (d) G' as a function of CNC loading. The lines in c and d are the fits of the modified Herschel-Bulkley model, Equation (13.2) and Equation (13.3), respectively (adapted from [20]).

13.4.3 Steady Shear

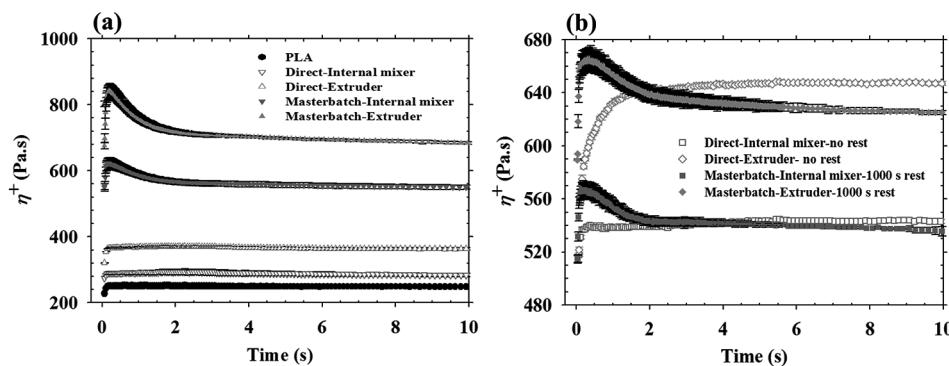

Similar to the behavior shown in SAOS experiments, shear thinning without any plateau region and unbounded viscosity at low shear rates for polymer-CNC nanocomposites are expected in steady-shear tests, while the neat polymer matrices usually exhibit a plateau region at low shear rates. Figure 13.5a illustrates the effect of CNC content on the viscosity of PLA and PLA-CNC nanocomposites with different CNC loadings. A long plateau region for the matrix is observed, as expected, while by the addition of CNCs, the plateau region disappears and a shear-thinning behavior is observed. At higher CNC contents, as the distance between the particles decreases, the interactions between CNCs become stronger and the possibility of network formation increases; as a result, increased viscosity values with a more pronounced shear-thinning behavior are observed for larger CNC loadings. For these samples, the shear viscosity significantly decreases with increasing shear rate (Figure 13.5a) indicating that the CNC network is broken down under shear [20]. Figure 13.5b compares the PLA-CNC systems with the same CNC concentrations, but for different preparation methods. A better dispersion and distribution contribute to a stronger CNC network and higher viscosity values are observed when the nanocomposite is prepared with a masterbatch method and melt-extruded utilizing a twin-screw extruder. However, the neat PLA and PLA-CNC composites prepared without a solvent-cast masterbatch, i.e., DMI and DME, exhibit very low viscosity values and almost a Newtonian behavior confirming that the direct melt-mixing method is not efficient in dispersing CNCs into the PLA matrix.

Figure 13.5 Steady-shear viscosity, η , versus shear rate, $\dot{\gamma}$, for: (a) PLA, and PLA with 1 and 4 wt% CNCs prepared via a solvent-casting method [20], and (b) PLA, PLA-CNC composites prepared via direct melt mixing utilizing an internal mixer or a twin-screw extruder, and PLA-CNC nanocomposites prepared using solvent-cast PLA-CNC masterbatches that were melt-mixed with PLA employing an internal mixer or a twin-screw extruder [18]

13.4.4 Transient Behavior

Another rheological measurement that can be utilized to obtain information about the quality of the CNC dispersion, efficiency of the preparation method, and consequently, the existence and strength of the CNC network is the transient (also called start-up or stress growth) shear test. In this experiment, a sudden and constant shear rate is applied and the variation of the transient viscosity, η^+ , of the samples with time is monitored. Figure 13.6a depicts how CNCs can change the behavior of a PLA matrix in such measurements by comparing the variation of η^+ with time for PLA and PLA-CNC composites prepared with direct melt mixing and combined solvent-casting and melt mixing [18]. The neat matrix and the composites without a CNC network, i.e., those prepared with direct melt mixing, do not show any overshoot due to the absence of any structure and their low viscoelasticity. For polymer-CNC nanocomposites prepared using a solvent-cast PLA-CNC masterbatch, however, overshoots are observed at the beginning of the tests and are attributed to the structure or network of CNCs within the polymer matrix [18, 20, 21]. These transient tests are destructive, and when the structure is broken down, the samples exhibit a steady-state viscosity. However, Figure 13.6b shows that when a reverse shear flow is suddenly imposed, the structure can be rebuilt depending on the rest

Figure 13.6 (a) Transient viscosity in shear stress growth as a function of time performed under a shear rate of 5 s^{-1} for PLA, PLA-CNC composites containing 4 wt% CNCs and prepared with direct melt mixing, batch and extrusion, and melt mixing of solvent-cast PLA-CNC masterbatch with PLA, and (b) transient viscosity for the same samples in reverse flow tests right after the cessation of the first shear test, and after 1000 s rest time (adapted from [18])

time. If the rest time is sufficiently long, for example 1000 s as shown in Figure 13.6b, particle-particle interactions increase and, consequently, the structure is gradually rebuilt and eventually, the initial structure as before the shear test is recovered [18, 20]. Again, for the PLA-CNC composites prepared with direct melt mixing, there was no evidence of CNC network formation after the rest time and

Index

Symbols

3D conductive network 206

3-D network structure 418

- stacking 106

β -form PP crystals 67

γ -form crystals 60

A

acid hydrolysis of cellulose 399

acoustic cavitation 30

activation energy 270

adhesion force 177

adhesives 387

AFM analysis 74

agglomerate 10

agglomerate dispersion 20

agglomeration of CNTs 310

alignment of CNTs 194

alignment of nanofillers 474

alternating foam/film structures 206

anion exchange capacity 346

anion exchange method 346

anisotropy factor 299

anomalous behaviors of N1 315

anomaly in extensional viscosity 335

anomaly in the percolation threshold 336

apparent yield stress 5

area ratio 4

aspect ratio 98, 301

atomic force microscopy (AFM) 160, 262, 373, 400

automotive 387

average aspect ratio 132

Avrami model 421

B

ball milling 122

barrel reactor 45

barrier property 424

batch foaming 252

batch mixer 172

biaxial stretching 238

biobased, biocompatible, and bio-degradable 388

biobased nucleating agent 415

biocomposites 388

biodegradable and biocompatible 396

biomedical 387

biomedical nanocellulose 388

birefringence 402

BN nanoflakes 471

Brabender twin screw extruder 323

breakage of single particles 122

breakdown of agglomerates 48, 56

Brownian motion 271

bubble cavitation 84

C

calcination/reconstruction method 346

capillary flow entrance pressure drop

315

capillary rheometer 210

capillary rheometry 102

carbon nanotube length 157

carbon nanotubes (CNTs) 97, 105, 201, 297, 435
carboxyl-functionalized short MWCNTs 441
cast film 61
catalysts 350
cavitation phenomenon 32
cell density 211, 225
cell growth 226
cell morphology 222
cell size 225
cellular morphology 251
cellulose 395
cellulose nanocrystals (CNC) 371, 396
cellulose nanoparticles 396
cellulosic nanoparticles 398
characteristic relaxation time 325
chemically modified CNC 411
chiral nematic structure 401
clay dispersion 100
clay exfoliation 2
CNC as a template 427
CNT agglomerates 107
CNT-CNT conductive network 202
CNT-filled polymer foam 207
CNT functionalization 438
CNT length reduction 214
CNT masterbatch 207
CNTs 177
CNTs dispersed in an aqueous suspension 435
CNTs in fiber-reinforced polymer composites 440
CNT surface area 438
coaxial ultrasonic device 42
cold crystallization temperature 384
colloidal suspensions of CNCs 373
compact tension (CT) 127
complex dynamic viscosity 68
complex viscosity 5, 58, 266, 378, 417
compliance C 129
conventional injection molding (CIM) 173
conveying elements 10, 109
co-precipitation method 346
core-shell structures 473
covalent bonding 136
covalent functionalization 106
covalent silane coupling 122
crack bridging 122
crack deflection 122, 141
crack pinning 141
crack propagation 447
crack tip opening displacement 128
crater morphology 310
critical energy release rate, GIC 128
crystallinity 66, 180
crystallization enthalpy 60
crystallization half-time ($t_{1/2}$) 273
crystallization rate 423
crystallization temperature 60, 181, 384
curing agent/CNT/waterborne epoxy mixture 442

D

Debye-Bueche theory 263
degree of delamination 322
degree of dispersion 98, 189
delamination and exfoliation 256
dielectric loss ($\tan \delta$). 249
differential scanning calorimetry (DSC) 180, 415, 421
dilute elongated particles 300
dimensional stability 187
discrete dispersion 256
disorientation kinetics 274
dispersed montmorillonite (MMT) 258
dispersion 10, 29
dispersion and distribution 72, 380
dispersion and distribution of CNCs 377
dispersion and distribution of CNTs 82
dispersion and exfoliation 476
dispersion, distribution, and orientation 210
dispersion of carbon nanotubes 158
dispersion of CNC 428
dispersion of CNTs 106, 435
dispersion of fillers 172

dispersion of fillers by the ultrasonic treatment 38, 86
 dispersion of nanotube bundles 452
 dispersion of NCs 1
 dispersion of the halloysite 122
 dispersive mixing 408
 dissolution and re-coprecipitation 349
 distributive mixing 408
 DMA tensile specimens 304
 draw ratio 301
 drug delivery 387
 DSC study 59
 dynamic loading 129
 dynamic mechanical analysis (DMA) 127
 dynamic mechanical thermal analysis (DMTA) 385, 415
 dynamic modulus 129
 dynamic oscillatory shear 266
 dynamic storage modulus 264
 dynamic viscosity 58

E

E-glass/waterborne epoxy laminates reinforced 435
 electrical conductivity 68, 105, 158, 178, 246, 247
 electrical percolation threshold 39, 68, 69, 73, 77, 114, 206, 237
 electrical properties 203
 electrical resistivity 173, 228
 electrical/thermal properties 172
 electromagnetic interference (EMI) shielding 236
 electron tunneling 202
 electrospinning 428
 electrostatic discharge dissipation 202
 electrostatic discharge (ESD) protection 236
 elongated nanoparticles 298
 elongational flow 280
 elongational mixing 469
 elongation at break 58, 81, 127, 384

elongation flow 299
 elongation time 329
 EMI shielding 202, 204
 EMI shielding efficiency (SE) 212
 EM wave reflection 204
 energy-dissipating mechanisms 150
 energy of break-up 291
 epoxy nanocomposites 122
 epoxy resins 121
 ethylene-octene copolymer 166
 exfoliated graphene nanoplatelets (GNPs) 476
 exfoliation 2, 20, 100, 113
 extensional flow 159, 321
 extensional mixer 109
 extensional rheological percolation threshold 335
 extensional rheometer 324
 extensional viscosity 314, 332
 extrudate swell 315

F

fast cooling 196
 fast Fourier transform (FFT) image analysis 257
 fatigue and cyclic loading 123
 fatigue crack propagation (FCP) 123
 fatigue crack propagation rate da/dN 131
 feed rate 11
 filler-matrix interactions 424
 filler-polymer percolating 3D network 338
 fine open cell structure of poly-caprolactone 205
 first normal stress difference (N1) 314, 315
 flame retardancy 344
 flame retardant products 255
 flexibility of smectite clay 262
 flexural modulus 450
 flexural strength 449
 flow-induced crystallization 182
 flow-induced orientation 280

foam coextrusion 223
foamed cellular structure of PP-MWCNTs 244
foamed polymer/CNT 205
foam injection molding 252
food packaging 387
fountain flow 299
Fourier transform infrared (FTIR) 292
Fourier transform infrared spectroscopy (FTIR) 101, 126
fracture surface 141
fracture surface characteristics 446
fracture toughness 122, 140, 439
freeze drying 404
friction force 177
functionalized CNTs 110
functionalized GNPs 116

G

gas barrier films 255
Gaussian distribution 260
glass transition/softening temperature 175
glass transition temperature (T_g) 136, 385, 415
GNP dispersion 114
grafting of long-chain aliphatic compounds 376
graphene derivatives 97
graphene oxide (GO) 112, 476
graphite nanoplatelets (GNPs) 189
graphite nanoplates (GNPs) 112
grooved barrel reactor 45

H

halloysite nanotubes (HNTs) 122
Halpin and Tai 264
H-bonding 136
heat transfer 176
Hencky rates 329
heterogeneous nucleating agent 423
heterogeneous nucleation 224
high aspect ratio 396

high cooling rates 175
high-frequency electrical power 32
high-frequency mechanical vibration 32
high-power ultrasound 31
high-resolution scanning electron microscopy 127
high-shear mixing 469
high shear rates 174
HRC (heat release capacity) 357
hydro-dispersible polymers 374
hydrodynamic stresses 101
hydrothermal method 349

I

impact strength 66
injection velocity 178, 185
in-line NIR 102
inorganic nanotubes (INTs) 297
in-situ LDH synthesis 352
in-situ polymerization 1, 30, 98, 359, 469
inter- and intra-molecular hydrogen bonds 372
intercalation 4, 100
interconnected cellulose nanoparticle network 409
interconnected network of nanoparticles 378
interface chemistry 135
interfacial adhesion 446
interfacial interaction 194
interfacial properties 124
interfacial stress transfer 136
interfacial tension 411
interfacial thermal resistance 471
intergallery spacing 99
interlamellar distance 4
interlaminar shear strength 435
interlayer anion exchange 345
interlayer spacing 346
internal mixer 3, 47
ion exchange 284
ion-exchange materials 350
ion-exchange reactions 99
isothermal crystallization kinetics 421

K

K-BKZ model 332
kneading 10, 80
kneading zone 110

L

large-amplitude oscillatory shear (LAOS) 271
large anharmonicity in molecular vibrations 464
large surface area 396
layer-by-layer (LbL) assembly 429
layered clays 97
layered double hydroxides (LDHs) 343
layered silicate 99, 255
layer multiplying elements (LMEs) 206
LDH interlayer galleries 354
length reduction 164
length-to-diameter (aspect) ratio 157
light scattering 402
limiting oxygen index (LOI) 66
linear viscoelastic response 257
liquid crystalline polymers (LCPs) 298
liquid crystallinity of cellulose nanocrystals 401
LLDPE/GNP 114
load-bearing applications 255
long MWCNTs 441
loss modulus 266, 418
low frequency storage modulus 420

M

magnetic-field 474
management of heat dissipation 463
masterbatch 11, 80, 84, 203
mechanical properties 414
mechanisms of heat conduction 483
melt blending 172
melt compounding intercalation 356

melting and crystallization 180
melting point 415
melting section 3
melting temperature 180
melting zone 10
melt intercalation 256
melt-mixing 1, 30, 98, 359, 469
melt processing 157, 202, 409
melt viscosity 158, 203
melt yield stress 102
mesostructure 257
microinjection molding 171
micromoldings 173
microstructure 2, 18, 457
microstructure and morphology 177
minimum-to-maximum load ratio 129
mixing sections 3
mode I fracture toughness 128
modeling of thermal conductivity 478
modelling of orientation 298
modification of the filler-matrix interface 473
modulus of elasticity 301
molding pressures 178
molding temperatures 178
mold temperature 185
molecular orientation 185, 321
montmorillonite 2, 99
morphology 203, 207
morphology evolution 222
multilayer coextrusion 206
multilayer structures 205
multimetal LDHs 344
multiwalled carbon nanotubes (MWCNTs) 157, 299
multiwalled carbon nanotubes (MWCNTs) nanocomposite foam 241
multiwalled CNT (MWCNT)/epoxy 438

N

nano-capacitor 249
nanocellular 241
nanoclay dispersion 102

nanocomposite laminates 435
nanocomposite preprints 435
nanocrystalline cellulose 396
nano-dielectric 249
nanographite platelets (NGP) 315
nanoindentation 184
nanoindentation testing 177
nano/microcellular foams 242
nanoparticle agglomerates 98
nanoparticle surface modification 98
nanoscale toughening 152
nanotube agglomerates 438, 447
nanotube aspect ratio 455
nanotube length reduction 158
nanotube pullouts 455
natural gas conversion reactions 350
natural rubber/GNP 114
nematic structure 401
network density 137
network formation of nanoparticles 418
Newtonian fluid 300
Nielsen 264
nonlinear viscoelastic region 316
normal stress differences 314
nucleating effect of CNCs 384
Nylon 6-based nanocomposites (N6CNCs) 258

O

organoclay network 268
orientability parameter 301
orientation development 298
orientation parameter 299
oriented shish-kebab structure 178
oriented structure 178
oscillatory rheometry 101
oscillatory shear 26
oscillatory shear flow 36
oxygen transmission rate (OTR) 424

P

PA6/CNT 187
PA6/expandable graphite (PA6/EG) 182
packaging materials 424
parallel plate rheometer 302
particle dispersion 124
particle-matrix interaction 122
particle-matrix interface 122
particle-polymer interactions 315, 483
particle-polymer surface interactions 411
particle pull-out 142
PBAT/GNP 314
PC/CNT 178
percolating filler network 409
percolation threshold 158, 190, 213, 246, 318, 415, 470
phonon scattering 464
pHRR (peak heat release rate) 357
physical foaming 236
pinning and twisting 122
PLA-CNC masterbatch 381
PLA/GNP 314
planar BN particles 477
PLA/PCL 185
plastic cavitation 151
plastic deformation 122
plastic void growth 143
plastic zone 128, 144
polarized light optical microscopy (PLOM) 177
polyacrylonitrile/butadiene/styrene (ABS)/CNT 204
polycaprolactone (PCL)-grafted CNCs 375
polycarbonate 302
polycarbonate/CNT 203
polyethylene oxide (PEO) 374
polymer-clay interphase 100
polymer-CNC nanocomposite 396
polymer foaming 236
polymethylmethacrylate (PMMA)/CNT 205
polymethylmethacrylate (PMMA)/polystyrene (PS) 167
polystyrene/CNT 207
polystyrene (PS)-grafted CNCs 375

polyurethane/CNT (PU/CNT) 195
 polyvinyl alcohol (PVOH) 374
 POM/CNT 178
 power consumption and torque change 78
 PP/clay 101
 PP/CNT 178
 PP/ethylenepropylene-diene rubber (EPDM) (PP/EPDM) 184
 PP/GNP 191
 PP/halloysite nanotube (PP/HNT) 185
 preferential orientation 317
 preferential orientation of CNTs 178
 pre-intercalation method 349
 processability of nanocomposites 86
 processing-induced orientation 298
 processing temperature 203
 properties of LDH/polymer nanocomposites 358
 PS/CNT 178
 pseudo-solid-like behavior 267

R

radiation frequency 205
 Raman scattering 400
 Rayleigh scattering 276
 real permittivity (ϵ') 249
 rectangular hyperbola model 320
 reduced graphene oxide (rGO) 112
 relaxation process 270
 relaxation time 326
 renewable and biobased CNCs 373
 residence time 11, 101, 163, 203
 rheological and electrical percolation threshold 70
 rheological percolation threshold 206, 378, 418
 rheological properties 417
 rod-like nanoparticles 371
 roll-mill mixing 469
 rotational relaxation rate 273
 rotation speed 163

S

scanning electron microscopy (SEM) 4, 160, 177, 402, 444
 scattering of phonons 471
 screw configuration 80
 screw design 163
 screw profile 16
 screw speed 10
 secondary agglomerates 203, 218
 secondary agglomeration 111, 203
 selective localization 252
 SEM analysis 70
 SEM micrographs 60
 shear bands 151
 shear damping 327
 shear flow 159, 299
 shear-induced orientation 299
 shear rates 109
 shear stress 159
 shear thinning 401
 shielding efficiency (SE) 204
 simulation software 195
 single-walled carbon nanotubes 441
 skin layer 185
 small-amplitude oscillatory shear (SAOS) 271
 small-angle light scattering 276
 small-angle neutron scattering (SANS) 276, 402
 solid-state compounding 289
 solid-state shear 288
 solution blending 124
 solution casting 409
 solution intercalation method 354
 solution mixing 30, 359
 solvent exchange 125
 solvent mixing 469
 sonication 469
 sonication assisted masterbatch (SAM) melt mixing 361
 sonication assisted mixing 361
 specific mechanical energy (SME) 3, 102, 163
 specific surface area 98

sphere-shaped AlN 477
spray drying 403
spreading radial flow 299
starch biopolymer 414
steady and dynamic shear 313
steady shear 271
steady shear experiment 315
steady shear tests 380
steady shear viscosity 316
stiffness of CNT/epoxy nanocomposites 438
storage and loss moduli 102, 314, 325, 378
storage modulus 60, 414, 417
strain at break 186
strain hardening 321
strain-induced hardening 282
stress intensity factor amplitude ΔK 129
structure and morphology 74
supercritical gas 236
surface area to volume ratios of microparts 176
surface functionalization 409
surface modification of CNC 428
surface-modified nanoparticles 122
surface roughness 142
surface tension 165, 174
surfactant-treated MWCNTs 439

T

TEM images 59
tensile strength 66, 105, 127, 186, 384
tensile tests 127
ternary and quaternary LDHs 345
thermal and chemical stabilities of LDHs 350
thermal annealing 110
thermal conductivity 105, 180, 464
thermal contact resistance 464
thermal gravimetric analysis (TGA) 210
thermal interface resistance 483
thermal stability 66, 344, 353, 415
thermal transfer 464

thermogravimetric analysis (TGA) 103, 126, 180, 416
thickness of the skin layer 178
three metal LDHs 344
three-point bending short beam shear test 443
three-point bending tests 443
three-roll mill 122, 126
time of flight-secondary ion mass spectrometry (TOF-SIMS) 103
time-temperature superposition principle 267
torque 78
total elongation strain 299
total shear strain 299
toughening mechanism 142
transmission electron micrograph 324
transmission electron microscopy (TEM) 4, 127, 135, 160, 177, 210, 257, 300, 362, 402
tungsten disulfide (WS₂) 297
twin screw compounding 101
twin screw extruder 98, 108, 159, 172, 302
twin screw extrusion 1, 381
two metal LDHs 344
two-roll mixers 172

U

ultrasonic agitation 442
ultrasonically-aided extrusion 34
ultrasonically-aided injection molding 54
ultrasonically-aided processing 29
ultrasonically-assisted twin-screw extruder 67
ultrasonic compounding 75
ultrasonic treatment 37, 125
ultrasonic treatment of nanocomposites 85
ultrasonic waves 29
unidirectional melt drawing 302
UV degradation protection 344

V

van der Waals forces 136, 202
van der Waals interactions 99, 106
variotherm system 175
viscosity and orientability 308
viscous shear stress 314
volume and surface resistivity 79
volume resistivity 211, 228

W

wall slip 174
waterborne epoxy resin 441
water sorption 427
Weibull distribution 259
WLF shift factor 274

X

X-band 227
X-band frequency 227
X-ray diffraction analysis 400
X-ray diffraction (XRD) 4, 300
X-ray photoelectron spectroscopy (XPS) 127
X-ray scattering 400
XRD patterns 59

Y

yield stresses 57
Young's modulus 63, 105, 127, 137, 186, 206, 384, 414