


# HANSER



## Sample Pages

**Polymer Science**  
Sebastião V. Canevarolo Jr.

ISBN: 978-1-56990-725-2

E-Book ISBN: 978-1-56990-726-9

**For further information and order see**

[www.hanserpublications.com](http://www.hanserpublications.com) (in the Americas)

[www.hanser-fachbuch.de](http://www.hanser-fachbuch.de) (outside the Americas)

# Preface

The idea of writing this book was to create a reference for the undergraduate and graduate students of polymer science in the Materials Engineering course of the Federal University of São Carlos, Brazil, where I have been lecturing for the past four decades. During this period much has been developed and discovered in the area of synthesis and technology of polymer materials. Despite all this frenetic development, the fundamental concepts discussed here, defined mainly by the great researchers in polymer science – Staudinger and Carothers in the 1920s, Ziegler and Natta in the 1950s, and Flory, to name a few – have remained constant because by being general they have the greatness of universality. Deeply understanding concepts such as degree of crystallinity, melting and glass transition temperature, and mechanical behavior and applying them to our needs has made it possible to scientifically solve the everyday problems polymer engineers face. I hope the way I set and discuss the basic concepts of the plastics world may help you too to tackle your everyday problems. Read it unhurriedly, reflect on each concept, go beyond the text itself, give wings to your logical imagination; this will give you confidence in the basic fundamentals of the ever-increasing modern commodity that plastics have become.

To better discuss the matters, I included in every chapter some problems and presented their solution. I hope that I have chosen examples that are sufficiently comprehensive and representative. More important than this, I hope the answers I have proposed are a way of showing the reader how to tackle the problem and solve it. At the end of each chapter a list of exercises was added, with the main intention of testing the clarity with which the concepts covered were understood by the reader, helping to assimilate each one of them in the best possible way.

I hope this text is light, having a minimum number of words, only those necessary to express the idea well. On the other hand, I would like it to be faithful to what many bright and tireless researchers thought, tested, and, after verifying that their ideas made sense, shared with us. A light text only in its approach, but dense in concept, indeed, as every textbook should be.

Thanks for choosing it and good reading.

*S. V. Canevarolo*

São Carlos, Brazil

October 2019

# About the Author



Sebastião Vicente Canevarolo was born on 30/May/1956 in São Carlos, SP, Brazil. In 1978, he finished the undergraduate course of Materials Engineering in the Department of Materials Engineering of the Federal University of São Carlos (UFSCar), joining immediately this same department as a lecturer, and is currently still working there.

He completed the Master's Program in Materials Engineering at UFSCar in 1982 and got his Ph.D. at the Institute of Polymer Technology at Loughborough University of Technology, England in 1986. He carried out a postdoctoral program at the Dipartimento di Ingegneria Chimica ed Alimentare of the University of Salerno, Italy from Jun/93 to Jul/94, and is a Researcher Fellow of CNPq (Brazilian National Council for Scientific and Technological Development) since 1994 and Full Professor at UFSCar since 2015.

In different periods, he has been the Vice-Head of DEMa (<http://www.dema.ufscar.br>), Supervisor of the Polymer Laboratories, Coordinator of the Polymer Group, member of the Department Council, Head of the Graduate Program in Science and Materials Engineering (<http://www.ppgcem.ufscar.br>), founder and for 20 years Director of the Brazilian Polymer Association, ABPol (<http://www.abpol.com.br>), Editor-in-Chief of the Brazilian polymers journal *Polímeros: Ciência e Tecnologia* (ISSN 1678-5169 and 0104-1428, [www.revistapolimeros.org.br](http://www.revistapolimeros.org.br)), honorary member of the Brazilian Association of Thermal Analysis and Calorimetry-ABRATEC, and member of the Editorial Board of Materials Research (<http://www.materialsresearch.org.br>). He has participated in the organizing committee of various congresses in the polymer area in Brazil (XIICBECIMAT, 4CBPol, 1CBRATEC, 1SBE, 9CBPol, 11CBPol) and abroad (PPS-18, Portugal).

His research field is developing optical techniques to characterize in real time (in-line) the extrusion process, constructing the hardware (slit-die, optical cell, in-line turbidimeter, in-line rheo-polarimeter, in-line colorimeter, in-line LALLS), and developing the software (in LabView). He has two patent applications, published one

chapter in an English-language book and two Portuguese-language books: *Ciência dos Polímeros*, ISBN 85-88098-10-5, 2010, and *Técnicas de Caracterização de Polímeros*, ISBN 85-88098-19-9, 2004, both from Artliber. The first one has become a standard reference in the area, being used as bibliographic source for all Brazilian undergraduate and graduate polymer courses, and its content is the basis for this book.

Canevarolo has published 55 original papers in international journals, 17 in Brazilian journals, and participated in presenting 130 articles in national and international congresses. He has given 23 invited conferences in national and international events, supervised three postdoc researches, nine Ph.D. theses, and 29 Master theses. He has participated in the CNPq PRONEX project and the FAPESP Thematic Program, coordinates an international cooperation agreement between Brazil and Portugal, and is the Brazilian National Representative in the Polymer Processing Society (PPS). Currently, he is Full Professor at DEMA/UFSCar and Research Fellow from CNPq PQ-2. He has an h-index of 13, with 775 citations.

<http://www.researcherid.com/rid/G-3880-2012>

CV LATTES: <http://lattes.cnpq.br/4153664441338178>

ORCID: 0000-0002-7959-1872

# Foreword

Dear reader, if you are in any way involved with plastic materials and looking for a direct but not superficial text, deep but easy to understand, rich in information without being boring, I believe this is the book that you were looking for. Read it once or twice and have it on hand for a quick look: its figures, charts, tables, and appendices have been prepared not only to illustrate the text but mainly to be accessed when necessary. An efficient and productive professional is not one who knows by heart hundreds of phone numbers but the one who knows where to find them.

In its over 350 pages, *Polymer Science: A Textbook for Polymer Engineers* tries to summarize in a didactic way the vast field of knowledge that was developed in the twentieth century in the area of polymers. Better known as plastics, these new materials started their lives in a timid way but quickly gained their space due to both their superior performance and the acceptance of the increasingly demanding consumers. Their low price, light weight, easy molding, good chemical, thermal, and mechanical resistance, easy coloring, and great functionality, permitting the production of goods with complicated shapes, are the reason for their total acceptance by the modern designer. All these characteristics, almost gifted, are not obtained for free. It is necessary that the technician/engineer who is choosing knows their particularities deeply so that the choice is not a “shot in the foot”. This book attempts to provide practitioners who are in some way involved with polymer materials, whether in obtaining, selecting, or molding, technical/scientific information that will enable them to act knowingly. The empirical method of trial and error has no place in the twenty-first century; professionals with decision-making power have to be aware of the basic fundamentals, their intricacies, and implications.

Finally, the purpose of this book is to give you technical knowledge about the vast and economically attractive field of plastic materials. It is easy to remember that having the information, not necessarily known by heart but definitely within reach, is what counts. Good reading and good business!

S. V. Canevarolo

# Contents

|                                               |     |
|-----------------------------------------------|-----|
| <b>Preface .....</b>                          | VII |
| <b>About the Author .....</b>                 | IX  |
| <b>Foreword .....</b>                         | XI  |
| <br>                                          |     |
| <b>1 General Introduction .....</b>           | 1   |
| 1.1 History .....                             | 1   |
| 1.2 Polymer Concept .....                     | 5   |
| 1.2.1 Reactive Double Bonds .....             | 6   |
| 1.2.2 Reactive Functional Groups .....        | 7   |
| 1.3 Terminology .....                         | 7   |
| 1.4 Sources of Raw Materials .....            | 8   |
| 1.4.1 Natural Products .....                  | 8   |
| 1.4.2 Mineral Coal .....                      | 9   |
| 1.4.3 Petroleum .....                         | 10  |
| 1.5 Problems .....                            | 11  |
| <br>                                          |     |
| <b>2 Polymer Molecular Structure .....</b>    | 13  |
| 2.1 Molecular Forces in Polymers .....        | 13  |
| 2.1.1 Primary or Intramolecular Bonds .....   | 13  |
| 2.1.1.1 Ionic or Electrovalent Bonds .....    | 13  |
| 2.1.1.2 Coordinate Bonds .....                | 14  |
| 2.1.1.3 Metallic Bonds .....                  | 14  |
| 2.1.1.4 Covalent Bonds .....                  | 14  |
| 2.1.2 Secondary or Intermolecular Bonds ..... | 16  |
| 2.1.2.1 Van der Waals Forces .....            | 17  |
| 2.1.2.2 Hydrogen Bonds .....                  | 19  |
| 2.1.3 Summary .....                           | 21  |

|         |                                         |    |
|---------|-----------------------------------------|----|
| 2.2     | Monomer Functionality                   | 21 |
| 2.3     | Types of Chains                         | 23 |
| 2.3.1   | Linear Chain                            | 23 |
| 2.3.2   | Branched Chain                          | 24 |
| 2.3.2.1 | Random Chain Architecture               | 24 |
| 2.3.2.2 | Star or Radial Chain Architecture       | 24 |
| 2.3.2.3 | Comb Chain Architecture                 | 25 |
| 2.3.3   | Cross-linked Chain                      | 25 |
| 2.4     | Copolymer                               | 27 |
| 2.4.1   | Random Copolymer                        | 27 |
| 2.4.2   | Alternating Copolymer                   | 27 |
| 2.4.3   | Block Copolymer                         | 28 |
| 2.4.4   | Graft Copolymer                         | 28 |
| 2.5     | Classification of Polymers              | 29 |
| 2.5.1   | Chemical Structure                      | 29 |
| 2.5.1.1 | Carbon Chain Polymers                   | 30 |
| 2.5.1.2 | Heterogeneous Chain Polymers            | 34 |
| 2.5.2   | Method of Preparation                   | 37 |
| 2.5.2.1 | Addition Polymers                       | 37 |
| 2.5.2.2 | Condensation Polymers                   | 37 |
| 2.5.3   | Mechanical Behavior                     | 38 |
| 2.5.3.1 | Plastics                                | 38 |
| 2.5.3.2 | Elastomers                              | 39 |
| 2.5.3.3 | Fibers                                  | 40 |
| 2.5.4   | Mechanical Performance                  | 40 |
| 2.5.5   | Commodity Thermoplastics                | 40 |
| 2.5.6   | Special Thermoplastics                  | 40 |
| 2.5.7   | Engineering Thermoplastics              | 40 |
| 2.5.8   | Special Engineering Thermoplastics      | 41 |
| 2.6     | Configuration of Polymer Chains         | 41 |
| 2.6.1   | Polymer Chaining                        | 41 |
| 2.6.1.1 | Head-to-Tail Chaining                   | 42 |
| 2.6.1.2 | Head-to-Head (or Tail-to-Tail) Chaining | 42 |
| 2.6.1.3 | Mixed Chaining                          | 42 |
| 2.6.2   | Isomerism in Dienes                     | 43 |
| 2.6.3   | Tacticity                               | 46 |
| 2.6.3.1 | Isotactic Polymer                       | 46 |
| 2.6.3.2 | Syndiotactic Polymer                    | 46 |
| 2.6.3.3 | Atactic Polymer                         | 47 |
| 2.7     | Conformation of Polymer Chains          | 48 |
| 2.7.1   | Random Coil                             | 49 |

|                                                                           |           |
|---------------------------------------------------------------------------|-----------|
| 2.7.2 Planar Zig-Zag .....                                                | 50        |
| 2.7.3 Helical .....                                                       | 51        |
| 2.7.4 Mnemonic Rule .....                                                 | 52        |
| 2.8 Problems .....                                                        | 53        |
| <b>3 Polymers in Solution .....</b>                                       | <b>55</b> |
| 3.1 Technological Importance .....                                        | 55        |
| 3.2 Conformation of the Polymer Chain in Solution .....                   | 55        |
| 3.2.1 Free Joined Chain Model .....                                       | 56        |
| 3.2.2 Free Tetrahedral Rotation Chain Model .....                         | 57        |
| 3.2.3 Restricted Movement Chain Model .....                               | 58        |
| 3.2.4 Characteristic Ratio .....                                          | 59        |
| 3.2.5 Expansion Factor .....                                              | 61        |
| 3.3 Theta Condition .....                                                 | 61        |
| 3.4 The Excluded Volume .....                                             | 65        |
| 3.5 Polymer Solubility .....                                              | 68        |
| 3.5.1 Basic (Empirical) Rules of Polymer Solubility .....                 | 69        |
| 3.5.2 Effect of Polymer Chain Type on Solubility .....                    | 69        |
| 3.5.3 Cohesive Energy Density in Polymers, CED .....                      | 70        |
| 3.5.4 Hildebrand Solubility Parameter .....                               | 71        |
| 3.5.5 Generalized or Hansen Solubility Parameter .....                    | 72        |
| 3.5.6 Methods for Determining the Solubility Parameter .....              | 80        |
| 3.5.6.1 Molar Attraction Constant, $G$ .....                              | 80        |
| 3.5.6.2 Solvent Swelling .....                                            | 81        |
| 3.5.7 Polymer Fractionation .....                                         | 81        |
| 3.5.7.1 Addition of a Non-Solvent .....                                   | 82        |
| 3.5.7.2 Evaporation of the Solvent .....                                  | 82        |
| 3.5.7.3 Temperature Reduction .....                                       | 82        |
| 3.6 Problems .....                                                        | 88        |
| <b>4 Polymer Solid-State Morphology .....</b>                             | <b>89</b> |
| 4.1 Introduction .....                                                    | 89        |
| 4.2 Morphological Models of Polymer Crystallization .....                 | 90        |
| 4.2.1 Fringed Micelle Model .....                                         | 90        |
| 4.2.2 Folded Chains, Lamellae, or Single Crystal Model .....              | 91        |
| 4.3 Molecular Chain Packing .....                                         | 93        |
| 4.4 Crystalline Structures Derived from the Crystallization Process ..... | 95        |
| 4.4.1 Spherulitic Crystallization Structure .....                         | 95        |
| 4.4.2 Shish-Kebab Crystallization Structure .....                         | 98        |

|          |                                                                             |            |
|----------|-----------------------------------------------------------------------------|------------|
| 4.5      | Interlamellar Links .....                                                   | 99         |
| 4.6      | Unit Cells of Some Semi-Crystalline Polymers .....                          | 100        |
| 4.6.1    | Polyethylene (PE) .....                                                     | 100        |
| 4.6.2    | Polypropylene (PP) .....                                                    | 103        |
| 4.6.3    | Polyhexamethylene Adipamide (Nylon 6,6) .....                               | 104        |
| 4.6.4    | Polyethylene Terephthalate (PET) .....                                      | 105        |
| 4.7      | Crystallinity Degree .....                                                  | 106        |
| 4.7.1    | Determination of the Degree of Crystallinity from the Specific Volume ..... | 107        |
| 4.7.2    | Determination of the Degree of Crystallinity from the Density ..            | 108        |
| 4.7.3    | Determination of the Degree of Crystallinity from the Melt Enthalpy .....   | 111        |
| 4.7.4    | Determination of the Degree of Crystallinity from Specific Heat             | 113        |
| 4.8      | Factors That Alter the Degree of Crystallinity .....                        | 114        |
| 4.8.1    | Polymer Structural Factors .....                                            | 114        |
| 4.8.1.1  | Chain Linearity .....                                                       | 114        |
| 4.8.1.2  | Tacticity .....                                                             | 114        |
| 4.8.1.3  | Side Chain Group .....                                                      | 114        |
| 4.8.1.4  | Configuration around Double Bonds .....                                     | 115        |
| 4.8.1.5  | Polarity .....                                                              | 115        |
| 4.8.1.6  | Stiffness or Flexibility of the Main Chain .....                            | 116        |
| 4.8.1.7  | Copolymerization .....                                                      | 116        |
| 4.8.2    | External Factors .....                                                      | 116        |
| 4.8.2.1  | Impurities and Additives .....                                              | 116        |
| 4.8.2.2  | Nucleating and Clarifying Agents .....                                      | 117        |
| 4.8.2.3  | Polymeric Second Phase .....                                                | 117        |
| 4.8.3    | Processing Conditions .....                                                 | 117        |
| 4.8.3.1  | Shear Rate .....                                                            | 117        |
| 4.8.3.2  | Cooling Rate .....                                                          | 118        |
| 4.9      | Problems .....                                                              | 118        |
| <b>5</b> | <b>Polymer Synthesis .....</b>                                              | <b>119</b> |
| 5.1      | Introduction .....                                                          | 119        |
| 5.2      | Classification of the Polymerization Processes .....                        | 119        |
| 5.2.1    | Number of Monomers .....                                                    | 119        |
| 5.2.2    | Type of Chemical Reaction .....                                             | 120        |
| 5.2.3    | Polymerization Kinetics .....                                               | 120        |
| 5.2.4    | Type of Physical Arrangement Methods .....                                  | 120        |
| 5.3      | Step Polymerization .....                                                   | 121        |

|                                                                         |     |
|-------------------------------------------------------------------------|-----|
| 5.3.1 Characteristics of Step Polymerization .....                      | 121 |
| 5.3.2 Some Factors Affecting Step Polymerization .....                  | 122 |
| 5.3.2.1 Reaction Time and Temperature.....                              | 122 |
| 5.3.2.2 Catalyst .....                                                  | 122 |
| 5.3.2.3 Non-Equimolar Addition of the Reagents .....                    | 122 |
| 5.3.2.4 Functionality of the Third Reagent .....                        | 123 |
| 5.3.2.5 Ways of Stopping Step Polymerization .....                      | 123 |
| 5.4 Chain Polymerization .....                                          | 124 |
| 5.4.1 Free-Radical Chain Polymerization .....                           | 125 |
| 5.4.1.1 Initiation .....                                                | 125 |
| 5.4.1.2 Propagation .....                                               | 126 |
| 5.4.1.3 Termination .....                                               | 126 |
| 5.4.2 Inhibitors and Retarders .....                                    | 130 |
| 5.5 Ionic Polymerization .....                                          | 131 |
| 5.5.1 Cationic Polymerization .....                                     | 131 |
| 5.5.1.1 Initiation .....                                                | 131 |
| 5.5.1.2 Propagation .....                                               | 131 |
| 5.5.1.3 Termination .....                                               | 132 |
| 5.5.2 Anionic Polymerization .....                                      | 132 |
| 5.5.2.1 Initiation .....                                                | 133 |
| 5.5.2.2 Propagation .....                                               | 133 |
| 5.5.2.3 Termination .....                                               | 133 |
| 5.6 Ring-Opening Polymerization .....                                   | 134 |
| 5.7 Copolymerization .....                                              | 135 |
| 5.8 Methods of Polymerization According to the Physical Arrangement ... | 136 |
| 5.8.1 Bulk Polymerization .....                                         | 136 |
| 5.8.2 Solution Polymerization .....                                     | 137 |
| 5.8.3 Suspension Polymerization .....                                   | 137 |
| 5.8.4 Emulsion Polymerization .....                                     | 137 |
| 5.9 Degradation .....                                                   | 139 |
| 5.9.1 Depolymerization .....                                            | 139 |
| 5.9.2 Chain Scission .....                                              | 139 |
| 5.9.2.1 Nylon Hydrolysis .....                                          | 140 |
| 5.9.2.2 Thermo-Mechanical Degradation of Polypropylene .....            | 140 |
| 5.9.2.3 Thermo-Mechanical Degradation of Polyethylene .....             | 142 |
| 5.9.3 Loss of Side Groups .....                                         | 143 |
| 5.10 Problems .....                                                     | 144 |

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| <b>6 Polymer Molecular Weight and Distribution</b> .....            | 147 |
| 6.1 Introduction .....                                              | 147 |
| 6.2 Types of Average Molecular Weights .....                        | 148 |
| 6.2.1 Number Average Molecular Weight ( $\overline{M}_n$ ) .....    | 148 |
| 6.2.2 Weight Average Molecular Weight ( $\overline{M}_w$ ) .....    | 149 |
| 6.2.3 Viscosity Average Molecular Weight ( $\overline{M}_v$ ) ..... | 149 |
| 6.2.4 z-Average Molecular Weight ( $\overline{M}_z$ ) .....         | 150 |
| 6.3 Methods for Measuring Average Molecular Weights .....           | 151 |
| 6.3.1 Number Average Molecular Weight ( $\overline{M}_n$ ) .....    | 151 |
| 6.3.1.1 Chain-End Analysis .....                                    | 151 |
| 6.3.1.2 Colligative Properties .....                                | 151 |
| 6.3.2 Weight Average Molecular Weight ( $\overline{M}_w$ ) .....    | 153 |
| 6.3.2.1 Light Scattering .....                                      | 153 |
| 6.3.2.2 Ultracentrifugation .....                                   | 154 |
| 6.3.3 Viscosity Average Molecular Weight ( $\overline{M}_v$ ) ..... | 155 |
| 6.3.3.1 Viscosimetry of Dilute Polymer Solutions .....              | 155 |
| 6.3.4 z-Average Molecular Weight ( $\overline{M}_z$ ) .....         | 160 |
| 6.4 Molecular Weight Distribution Curve .....                       | 160 |
| 6.4.1 Size Exclusion Chromatography (SEC) .....                     | 165 |
| 6.5 Most Probable Molecular Weight Distribution Function .....      | 169 |
| 6.5.1 Polycondensation with Linear Chains .....                     | 169 |
| 6.5.2 Chain Polymerization .....                                    | 172 |
| 6.5.2.1 Chain Transfer Termination .....                            | 172 |
| 6.5.2.2 Combination Termination .....                               | 172 |
| 6.5.2.3 Polymerization without Termination .....                    | 172 |
| 6.6 Molecular Weight and Chain Length .....                         | 173 |
| 6.7 Molecular Weight Fractioning Principles .....                   | 176 |
| 6.7.1 Precipitation from a Polymer Solution .....                   | 176 |
| 6.7.2 Preparative Size Exclusion Chromatography (Prep-SEC) .....    | 177 |
| 6.8 Problems .....                                                  | 177 |
| <b>7 Polymer Thermal Behavior</b> .....                             | 179 |
| 7.1 Characteristic Transition Temperatures in Polymers .....        | 179 |
| 7.1.1 Glass Transition Temperature or $T_g$ .....                   | 179 |
| 7.1.2 Crystalline Melting Temperature or $T_m$ .....                | 180 |
| 7.1.3 Crystallization Temperature or $T_c$ .....                    | 183 |
| 7.1.4 Other Transition Temperatures sub- $T_g$ .....                | 184 |
| 7.2 Free Volume Theory .....                                        | 185 |

|          |                                                                                      |            |
|----------|--------------------------------------------------------------------------------------|------------|
| 7.3      | Flory's Theory for the Reduction of the Melt Temperature .....                       | 188        |
| 7.3.1    | Effect of the Diluent on $T_m$ .....                                                 | 189        |
| 7.3.2    | Effect of the Polymer Molecular Weight in its $T_m$ .....                            | 191        |
| 7.3.3    | Effect of the Comonomer Content in the Copolymer's $T_m$ .....                       | 192        |
| 7.4      | Engineering Polymer Temperatures .....                                               | 192        |
| 7.5      | Main Experimental Techniques for the Determination of Transition Temperatures .....  | 193        |
| 7.5.1    | Differential Scanning Calorimetry, DSC .....                                         | 193        |
| 7.5.2    | Dynamic-Mechanical Thermal Analysis, DMTA .....                                      | 196        |
| 7.5.3    | Vicat and HDT Softening Temperatures .....                                           | 198        |
| 7.6      | Effect of the Chemical Structure on $T_g$ and $T_m$ .....                            | 199        |
| 7.6.1    | Structural Symmetry of the Main Chain .....                                          | 200        |
| 7.6.2    | Rigidity/Flexibility of the Main Chain .....                                         | 201        |
| 7.6.3    | Polarity of the Main Chain .....                                                     | 203        |
| 7.6.4    | Steric Effect of the Main Chain Side Group .....                                     | 205        |
| 7.6.4.1  | Side Group Volume .....                                                              | 206        |
| 7.6.4.2  | Side Group Length .....                                                              | 206        |
| 7.6.5    | Residual Double Bond Isomerism .....                                                 | 207        |
| 7.6.6    | Copolymerization .....                                                               | 208        |
| 7.6.6.1  | Homogeneous, Miscellaneous, or Single-Phase Systems .....                            | 208        |
| 7.6.6.2  | Heterogeneous, Immiscible, or Polyphasic Systems .....                               | 211        |
| 7.6.7    | Polymer Molecular Weight .....                                                       | 213        |
| 7.6.8    | Branching .....                                                                      | 215        |
| 7.7      | Influence of External Factors on $T_g$ and $T_m$ .....                               | 216        |
| 7.8      | Summary of the Factors Affecting Crystallinity, $T_g$ , and $T_m$ .....              | 217        |
| 7.9      | Problems .....                                                                       | 218        |
| <b>8</b> | <b>Polymer Crystallization Kinetics .....</b>                                        | <b>219</b> |
| 8.1      | Crystal Nucleation .....                                                             | 219        |
| 8.1.1    | Nucleation Rate .....                                                                | 221        |
| 8.2      | Crystal Growth .....                                                                 | 221        |
| 8.3      | Total Isothermal Crystallization .....                                               | 224        |
| 8.4      | Avrami's Isothermal Crystallization Kinetics Theory .....                            | 225        |
| 8.4.1    | Measuring Crystallization Kinetics via Dilatometry .....                             | 226        |
| 8.4.2    | Measuring Crystallization Kinetics via Differential Scanning Calorimetry (DSC) ..... | 229        |
| 8.5      | Isothermal Crystallization Rate .....                                                | 234        |
| 8.6      | Equilibrium Melting Temperature .....                                                | 235        |
| 8.7      | Problems .....                                                                       | 236        |

|                                                                                                  |     |
|--------------------------------------------------------------------------------------------------|-----|
| <b>9 Polymer Mechanical Behavior</b> .....                                                       | 237 |
| 9.1 Introduction .....                                                                           | 237 |
| 9.2 Polymer Viscoelasticity .....                                                                | 238 |
| 9.2.1 Linear Viscoelasticity Models .....                                                        | 239 |
| 9.2.1.1 Maxwell Model .....                                                                      | 241 |
| 9.2.1.2 Voigt Model .....                                                                        | 242 |
| 9.2.1.3 Combined Maxwell-Voigt Model .....                                                       | 243 |
| 9.2.2 Creep and Stress Relaxation .....                                                          | 243 |
| 9.2.3 Rubber Elasticity .....                                                                    | 246 |
| 9.3 Considerations upon Polymer Mechanical Testing .....                                         | 249 |
| 9.3.1 Testing Recording Stress–Strain Curves .....                                               | 249 |
| 9.3.2 Testing under Impact .....                                                                 | 253 |
| 9.4 Fracture Characteristics .....                                                               | 255 |
| 9.4.1 Brittle Fracture Mechanism .....                                                           | 255 |
| 9.4.2 Ductile Fracture Mechanism in Toughened Systems .....                                      | 256 |
| 9.4.2.1 Shear Yielding .....                                                                     | 256 |
| 9.4.2.2 Crazing .....                                                                            | 257 |
| 9.5 Parameters Affecting Polymer Mechanical Behavior .....                                       | 257 |
| 9.5.1 Chemical Structure .....                                                                   | 257 |
| 9.5.2 Degree of Crystallinity .....                                                              | 258 |
| 9.5.3 Molecular Weight .....                                                                     | 259 |
| 9.5.4 Molecular Orientation .....                                                                | 260 |
| 9.5.4.1 Peterlin Molecular Reorientation Model .....                                             | 260 |
| 9.5.4.2 Characterization of Molecular Orientation via Dichroic Ratio in Polarized Infrared ..... | 261 |
| 9.5.5 Copolymerization .....                                                                     | 264 |
| 9.5.6 Plasticization .....                                                                       | 264 |
| 9.5.7 Elastomer Toughening .....                                                                 | 267 |
| 9.5.8 Fiber Reinforcing .....                                                                    | 268 |
| 9.6 Superposition Principles .....                                                               | 269 |
| 9.6.1 Boltzmann Stress Superposition Principle .....                                             | 269 |
| 9.6.2 Time–Temperature Superposition Principle .....                                             | 270 |
| 9.7 Reptation Theory .....                                                                       | 272 |
| 9.8 Polymer Physical States .....                                                                | 273 |
| 9.9 Physico–Chemical Methods for Polymer Transformation .....                                    | 275 |
| 9.9.1 Physical Methods .....                                                                     | 275 |
| 9.9.1.1 Orientation .....                                                                        | 275 |
| 9.9.1.2 Plasticization .....                                                                     | 276 |
| 9.9.1.3 Solubilization .....                                                                     | 276 |

|                                                                           |            |
|---------------------------------------------------------------------------|------------|
| 9.9.1.4 Foaming .....                                                     | 276        |
| 9.9.1.5 Reinforcing .....                                                 | 277        |
| 9.9.1.6 Toughening .....                                                  | 277        |
| 9.9.2 Chemical Methods .....                                              | 277        |
| 9.9.2.1 Mastication .....                                                 | 277        |
| 9.9.2.2 Cross-linking .....                                               | 278        |
| 9.9.2.3 Grafting .....                                                    | 278        |
| 9.9.2.4 Oxidation .....                                                   | 278        |
| 9.10 Problems .....                                                       | 278        |
| <b>10 Experiments in Polymer Science .....</b>                            | <b>281</b> |
| 10.1 Identification of Plastics and Rubbers .....                         | 281        |
| 10.1.1 Objective .....                                                    | 281        |
| 10.1.2 Introduction .....                                                 | 281        |
| 10.1.3 Materials .....                                                    | 283        |
| 10.1.4 Equipment .....                                                    | 283        |
| 10.1.5 Method .....                                                       | 283        |
| 10.1.6 Results .....                                                      | 284        |
| 10.2 Observation of Polymer Solubilization .....                          | 286        |
| 10.2.1 Objective .....                                                    | 286        |
| 10.2.2 Introduction .....                                                 | 286        |
| 10.2.3 Materials .....                                                    | 287        |
| 10.2.4 Equipment .....                                                    | 287        |
| 10.2.5 Method .....                                                       | 287        |
| 10.2.6 Results .....                                                      | 288        |
| 10.2.7 Questions .....                                                    | 288        |
| 10.3 Observation of the Precipitation of a Polymer Solution .....         | 289        |
| 10.3.1 Objective .....                                                    | 289        |
| 10.3.2 Introduction .....                                                 | 289        |
| 10.3.3 Materials .....                                                    | 289        |
| 10.3.4 Equipment .....                                                    | 290        |
| 10.3.5 Method .....                                                       | 290        |
| 10.3.6 Results .....                                                      | 291        |
| 10.3.7 Questions .....                                                    | 292        |
| 10.4 Identification of Polymers by Infrared Absorption Spectroscopy ..... | 293        |
| 10.4.1 Objective .....                                                    | 293        |
| 10.4.2 Introduction .....                                                 | 293        |
| 10.4.3 Materials .....                                                    | 296        |
| 10.4.4 Equipment .....                                                    | 296        |
| 10.4.5 Method .....                                                       | 296        |

|                                                                                             |     |
|---------------------------------------------------------------------------------------------|-----|
| 10.4.6 Results .....                                                                        | 296 |
| 10.4.7 Questions .....                                                                      | 297 |
| 10.5 Characterization of Polymers by Infrared Absorption Spectroscopy .....                 | 297 |
| 10.5.1 Introduction .....                                                                   | 297 |
| 10.5.2 Determination of <i>Cis/Trans</i> /Vinyl Isomer Concentration in Polybutadiene ..... | 298 |
| 10.5.2.1 Objective .....                                                                    | 298 |
| 10.5.2.2 Materials .....                                                                    | 298 |
| 10.5.2.3 Equipment .....                                                                    | 298 |
| 10.5.2.4 Method .....                                                                       | 299 |
| 10.5.2.5 Results .....                                                                      | 299 |
| 10.5.3 Quantification of the Components in a Binary Polymer Blend .....                     | 301 |
| 10.5.3.1 Objective .....                                                                    | 301 |
| 10.5.3.2 Materials .....                                                                    | 301 |
| 10.5.3.3 Equipment .....                                                                    | 301 |
| 10.5.3.4 Method .....                                                                       | 301 |
| 10.5.3.5 Results .....                                                                      | 302 |
| 10.5.3.6 Questions .....                                                                    | 304 |
| 10.6 Characterization of Polymer Molecular Orientation via the IR Dichroic Ratio .....      | 304 |
| 10.6.1 Objective .....                                                                      | 304 |
| 10.6.2 Introduction .....                                                                   | 304 |
| 10.6.3 Materials .....                                                                      | 305 |
| 10.6.4 Equipment .....                                                                      | 305 |
| 10.6.5 Method .....                                                                         | 305 |
| 10.6.6 Results .....                                                                        | 307 |
| 10.6.7 Questions .....                                                                      | 308 |
| 10.7 Observation of the Spherulitic Crystallization in Polymers .....                       | 308 |
| 10.7.1 Objective .....                                                                      | 308 |
| 10.7.2 Introduction .....                                                                   | 308 |
| 10.7.3 Materials .....                                                                      | 309 |
| 10.7.4 Equipment .....                                                                      | 309 |
| 10.7.5 Method .....                                                                         | 309 |
| 10.7.6 Results .....                                                                        | 311 |
| 10.7.7 Supplementary Activities .....                                                       | 311 |
| 10.8 Determination of the Degree of Crystallinity by Density Measurements .....             | 313 |
| 10.8.1 Objective .....                                                                      | 313 |
| 10.8.2 Introduction .....                                                                   | 313 |
| 10.8.3 Materials .....                                                                      | 314 |
| 10.8.4 Equipment .....                                                                      | 315 |

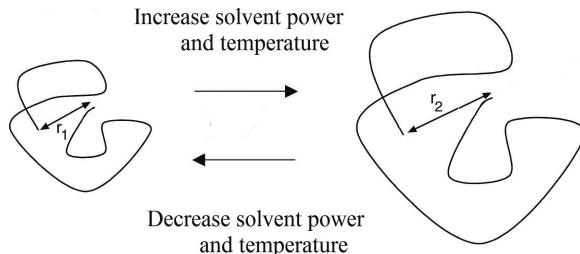
|                                                                                                    |     |
|----------------------------------------------------------------------------------------------------|-----|
| 10.8.5 Preparation of the Liquid Mixture Having the Same Density as the Sample .....               | 315 |
| 10.8.6 Pycnometry .....                                                                            | 315 |
| 10.8.7 Results .....                                                                               | 316 |
| 10.8.8 Questions .....                                                                             | 318 |
| 10.9 Determination of the Degree of Crystallinity by Differential Scanning Calorimetry (DSC) ..... | 318 |
| 10.9.1 Objective.....                                                                              | 318 |
| 10.9.2 Introduction .....                                                                          | 318 |
| 10.9.3 Materials .....                                                                             | 319 |
| 10.9.4 Equipment .....                                                                             | 319 |
| 10.9.5 Method .....                                                                                | 319 |
| 10.9.6 Results .....                                                                               | 320 |
| 10.9.7 Questions .....                                                                             | 320 |
| 10.10 Free-Radical Bulk Polymerization of Methyl Methacrylate .....                                | 321 |
| 10.10.1 Objective.....                                                                             | 321 |
| 10.10.2 Introduction .....                                                                         | 321 |
| 10.10.3 Materials .....                                                                            | 322 |
| 10.10.4 Equipment .....                                                                            | 322 |
| 10.10.5 Method .....                                                                               | 322 |
| 10.10.6 Results .....                                                                              | 323 |
| 10.10.7 Questions .....                                                                            | 323 |
| 10.10.8 Supplementary Activities .....                                                             | 323 |
| 10.11 Determination of the Viscosity Average Molecular Weight .....                                | 324 |
| 10.11.1 Objective.....                                                                             | 324 |
| 10.11.2 Introduction .....                                                                         | 324 |
| 10.11.3 Materials .....                                                                            | 325 |
| 10.11.4 Equipment .....                                                                            | 325 |
| 10.11.5 Method .....                                                                               | 325 |
| 10.11.6 Results .....                                                                              | 327 |
| 10.11.7 Questions .....                                                                            | 328 |
| 10.12 Determination of the Melt Flow Index (MFI) .....                                             | 328 |
| 10.12.1 Objective.....                                                                             | 328 |
| 10.12.2 Introduction .....                                                                         | 329 |
| 10.12.3 Materials .....                                                                            | 329 |
| 10.12.4 Equipment .....                                                                            | 329 |
| 10.12.5 Method .....                                                                               | 330 |
| 10.12.6 Results .....                                                                              | 331 |
| 10.12.7 Questions .....                                                                            | 331 |
| 10.13 Determination of Vicat Softening Temperature .....                                           | 331 |

|                                                                          |            |
|--------------------------------------------------------------------------|------------|
| 10.13.1 Objective.....                                                   | 331        |
| 10.13.2 Introduction .....                                               | 331        |
| 10.13.3 Materials .....                                                  | 332        |
| 10.13.4 Equipment .....                                                  | 332        |
| 10.13.5 Method .....                                                     | 333        |
| 10.13.6 Results .....                                                    | 333        |
| 10.13.7 Questions .....                                                  | 334        |
| 10.14 Determination of Cross-linking Density in Vulcanized Rubbers ..... | 334        |
| 10.14.1 Objective.....                                                   | 334        |
| 10.14.2 Introduction .....                                               | 334        |
| 10.14.3 Materials .....                                                  | 335        |
| 10.14.4 Equipment .....                                                  | 335        |
| 10.14.5 Method .....                                                     | 335        |
| 10.14.6 Results .....                                                    | 336        |
| 10.14.7 Questions .....                                                  | 336        |
| <b>11 Further Reading .....</b>                                          | <b>337</b> |
| <b>12 Appendix A .....</b>                                               | <b>341</b> |
| 12.1 Terminology .....                                                   | 341        |
| 12.2 Abbreviations .....                                                 | 348        |
| <b>13 Appendix B .....</b>                                               | <b>351</b> |
| <b>Index .....</b>                                                       | <b>363</b> |

# 3

# Polymers in Solution

## ■ 3.1 Technological Importance


For formulation, production, and quality control in the paint, varnish, and adhesive industries, it is necessary to obtain stable solutions (which do not undergo major changes in viscosity with storage time), with safe handling (the use of flammable solvents should be avoided if possible) at a competitive cost (an expensive solvent may be replaced by a mixture of other organic liquids to produce a thinner with the power to solubilize the solids). That is, what is the best thinner (or mixture of solvents) to solubilize a given formulation (or mixture of polymers)?

The melt viscosity shown by a polymer while being processed is due to the difficulty polymer chains face to change conformation during flow. This difficulty is created by the large number of entanglements, formed among the long polymer chains. Thus, it is important to know and control the average molecular weight obtained during the polymerization. The molecular weight is an average of the length (or weight) of all chains measured individually. For this measurement, it is necessary to separate the chains, which can be done in a practical manner by solubilizing the polymer in a suitable solvent.

## ■ 3.2 Conformation of the Polymer Chain in Solution

The conformation of a polymer chain defines the spatial geometric arrangement of the atoms forming the molecule. This arrangement can undergo many spatial changes as long as the carbon tetrahedral geometry is maintained. This usually occurs by rotation of single covalent C-C bonds, keeping the distance and the angle of the bonds fixed. Despite these two constraints, there are a large number of positions in which the carbon atoms of the main chain can place themselves, since

all points in the cone defined by the equidistant locus of the previous carbon atom by a fixed distance (bond length) forming a fixed angle (bond angle) can be used. Figure 3.1 shows a schematic representation of a polymeric chain in solution when subjected to a change in temperature or solvent power.



**Figure 3.1** Schematic representation of the change in the volume occupied by a polymer chain in solution and its end-to-end chain distance when subjected to a change in temperature or solvent power

The most stable conformation in solution is the random coil conformation. In the presence of a good solvent and/or high temperatures, the hydrodynamic volume occupied by the polymer chain increases. Likewise, in the presence of a poor solvent and/or low temperatures, the volume occupied by the molecule in solution tends to decrease. A practical way to quantify the hydrodynamic volume size is by estimating the geometric mean distance between the chain ends. For this purpose, the square root of the mean squares of the distances between chain ends is calculated as:

$$\bar{r} = \left( \overline{r^2} \right)^{1/2} \quad (3.1)$$

In an attempt to calculate the average distance between the two ends of a chain, several theoretical models were developed by Prof. Paul John Flory (19/Jun/1910–9/Sep/1985), physicochemical professor at Stanford University, California, USA, Nobel prize in chemistry of 1974, with different levels of detail. The most known are:

### 3.2.1 Free Joined Chain Model

This is the simplest model where it is assumed that the chain is formed by a sequence of bars with a fixed length ( $l$ ) connected by the tips without restriction of the angle formed between them. This model can also be seen as that of a Brownian movement or “the walking drunk man”. In this case, the mean square distance that the drunkard will walk after  $n$  steps with fixed length  $l$  will be:

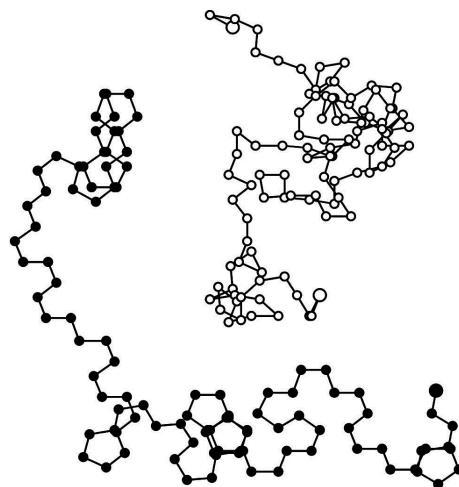
$$\bar{r} = \left( \bar{r}^2 \right)^{1/2} = l\sqrt{n} \quad (3.2)$$

Figure 3.2 shows a possible conformation of a polymer chain obtained from a numerical simulation using random bond angles (open points). The simulation took 100 single C-C bonds with unit bond length, following the predicted freely joined chain model. This model is two-dimensional and does not take into account short- and long-range interactions. This allows the crossing of two segments, something that is impossible in reality, making a much more closed conformation than the real one. In any case, it serves as a starting point in the development of other simulations, presenting results that are closer to reality.

### 3.2.2 Free Tetrahedral Rotation Chain Model

If the bond angle is set as fixed, the constraint increases and the mean square distance between the chain ends becomes:

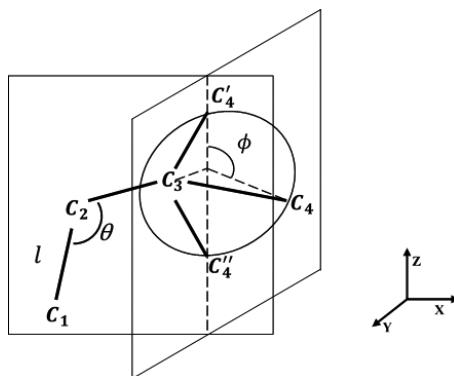
$$\bar{r} = \left( \bar{r}^2 \right)^{1/2} = l\sqrt{n} \left[ \frac{1 - \cos\theta}{1 + \cos\theta} \right]^{1/2} \quad (3.3)$$


which, in the case of the carbon–carbon single bond, reduces to:

$$\bar{r} = \left( \bar{r}^2 \right)^{1/2} = l\sqrt{2n} \quad (3.4)$$

The tetrahedral angle  $\theta = 109^\circ 28'$  then  $\cos\theta = -1/3$ . This results in a mean square distance of the free tetrahedral rotation chain model 41% higher than the value calculated by the free joined chain model.

$$\left( \bar{r}_{\text{tetrahedral}}^2 \right)^{1/2} = \sqrt{2} \left( \bar{r}_{\text{random}}^2 \right)^{1/2} = 1.41 \left( \bar{r}_{\text{random}}^2 \right)^{1/2} \quad (3.5)$$


Figure 3.2 also shows the result of a simulation using the free tetrahedral rotation chain model (full points) for a chain with 100 C-C single bonds.



**Figure 3.2** Conformations of a polymer chain according to the model of the free joined chain (open points) and with the free tetrahedral rotation chain (full points). Simulation with 100 C-C single bonds and unitary bond length. The restriction imposed at the C-C-C angle by the free tetrahedral rotation model creates a more expanded chain (with a higher hydrodynamic volume) and a larger quadratic mean distance between chain ends

### 3.2.3 Restricted Movement Chain Model

One can further restrict movement by considering that repulsion effects present in a given position will also be present on the other side of the molecule (action symmetry). Thus, the angle of rotation of the chain  $\phi$  is defined as the angle the next carbon atom makes relative to the plane formed by the three carbon atoms prior to it in the chain. Figure 3.3 shows a diagram with the angle of rotation  $\phi$ .



**Figure 3.3** Diagram of a sequence of four single bonded carbon atoms showing the bond length  $l$ , bond angle  $\theta$ , and the rotation angle  $\phi$



### Solved problem 4.1

Calculate the densities of the orthorhombic and monoclinic crystalline phases of polyethylene.

Taking the top view of the *orthorhombic polyethylene unit cell* as shown in Figure 4.9b, it is possible to observe that it is formed of a quarter of a mer in each corner plus an integer mer in the center, that is,  $4 \times 1/4 + 1 = 2$  mers/unit cell. A polyethylene mer contains  $2 \times C + 4 \times H$ , i.e., it weighs  $2 \times 12 + 4 \times 1 = 28$  g/mol. Then we can calculate the density of the orthorhombic unit cell of polyethylene, which is equal to the density of the crystal or crystalline phase, by:

$$\rho = \frac{m}{V} = \frac{2 \times \frac{28 \text{ g/mol}}{\text{mer}} / 6.02 \times 10^{23} \text{ mers/mol}}{7.42 \text{ \AA} \times 4.95 \text{ \AA} \times 2.55 \text{ \AA} \times (10^{-8} \text{ cm}/\text{\AA})^3} = 0.993 \text{ g/cm}^3$$

This value is very close to the experimental value of  $1.011 \text{ g/cm}^3$ , with an error of only  $-1.8\%$ .

The calculation using the *monoclinic unit cell* follows the same methodology, using Figure 4.9c. The unit cell forms the geometric figure of a trapeze that has as its area:

$$\begin{aligned} A_{UC\text{ monoclinic}} &= \text{Base} \times \text{Height} = \text{side a} \times (\text{side b} \times \sin 72.1^\circ) \\ &= 8.09 \times (4.79 \times 0.9516) = 36.87 \text{ \AA}^2 \end{aligned}$$

It is also formed from a quarter of a mer in each corner plus half a mer on each side, that is,  $4 \times 1/4 + 2 \times 1/2 = 2$  mers/unit cell.

$$\rho = \frac{m}{V} = \frac{2 \times \frac{28 \text{ g/mol}}{\text{mer}} / 6.02 \times 10^{23} \text{ mers/mol}}{36.87 \text{ \AA} \times 2.55 \text{ \AA} \times (10^{-8} \text{ cm}/\text{\AA})^3} = 0.989 \text{ g/cm}^3$$



### Solved problem 4.2

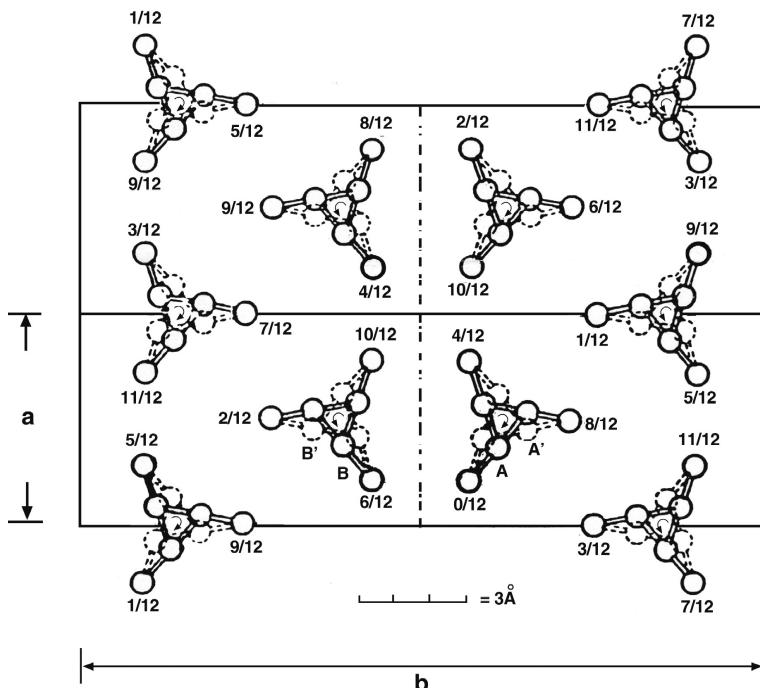
Calculate the number of PE chains required to produce a  $100 \text{ nm}$  ( $1000 \text{ \AA}$ ) diameter fibril. Assume an orthorhombic unit cell (UC).

We start by calculating the number of PE chains per unit cell:

$$\frac{\text{no. of chains}}{\text{UC}} = 4 \frac{1}{4} + 1 \times 1 = 2 \text{ chains/UC}$$

The area of a UC is:  $A_{gross\text{ UC}} = a \times b = 7.42 \times 4.95 = 37.5 \text{ \AA}^2$

The cross-sectional area of a fibril is:  $A_{fibril} = \frac{\pi D^2}{4} = \frac{\pi (1000 \text{ \AA})^2}{4} = 7.85 \times 10^5 \text{ \AA}^2$


The number of UCs per fibril is:  $n_{UC} = \frac{A_{fibril}}{A_{cross\ UC}} = 7.85 \times 10^5 \text{ \AA}^2 / 37.5 \text{ \AA}^2$   
 $n_{UC} = 20.933$

Finally, the number of PE chains per fibril is:

$$n_{chains\ per\ fibril} = 2 \times 20.933 \cong 42.000$$

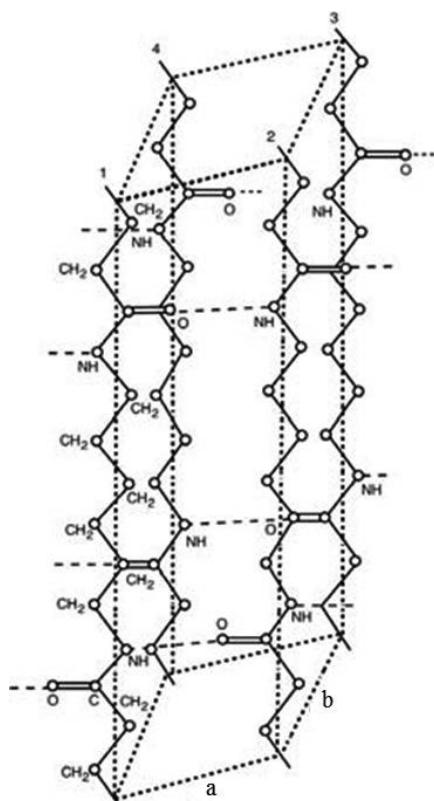
### 4.6.2 Polypropylene (PP)

Isotactic polypropylene PPi has a monoclinic unit cell with the following unit cell parameters:  $a = 6.65 \pm 0.05 \text{ \AA}$ ;  $b = 20.96 \pm 0.15 \text{ \AA}$ ;  $c = 6.50 \pm 0.04 \text{ \AA}$ ; and angles  $\alpha = \gamma = 90^\circ$  and  $\beta = 99^\circ 20'$ . Figure 4.10 shows a view along the  $c$ -axis, i.e., the axis of the main chain. The circular arrows at the center of the chains indicate the direction of rotation of the helix and the fractional numbers next to the carbon atom of the side group  $-\text{CH}_3$ , its partial height inside the unit cell, counted from the basal plane, subdivided into 12 fractions.



**Figure 4.10** Projection of the monoclinic crystalline unit cell of the polypropylene seen along the  $c$ -axis, i.e., the main-chain axis

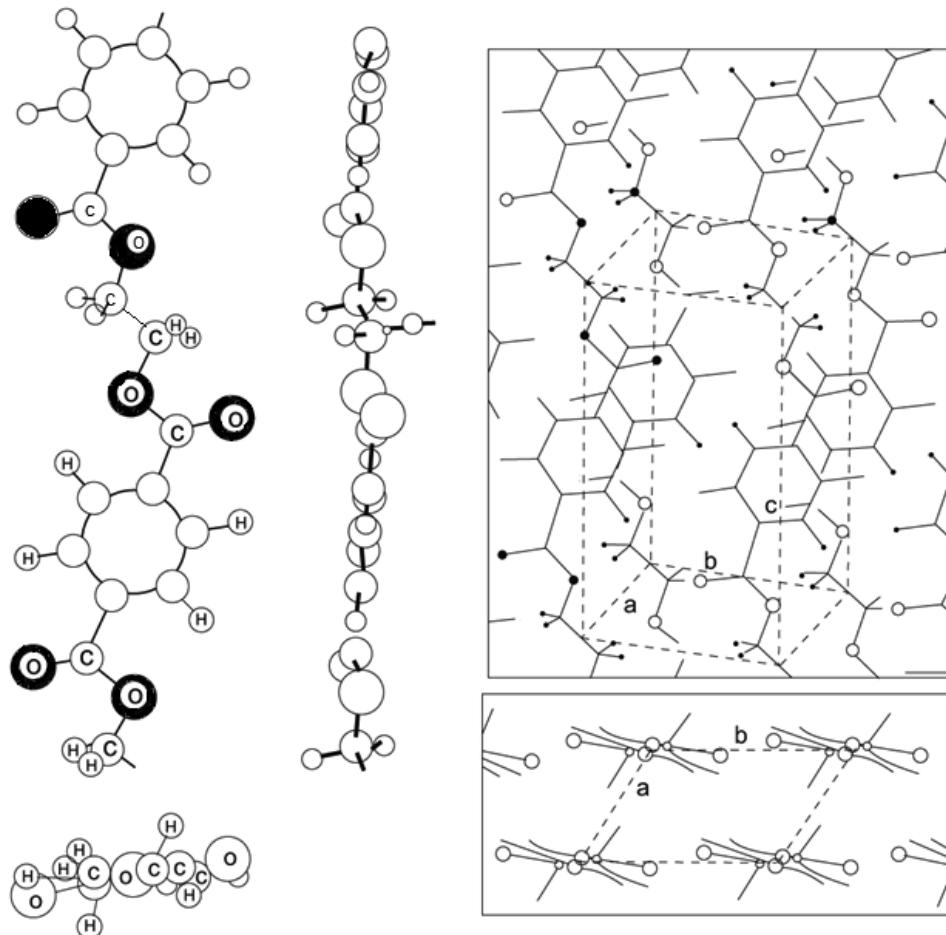
### 4.6.3 Polyhexamethylene Adipamide (Nylon 6,6)


The crystalline phase of nylon 6,6 may be present in at least three distinct crystallographic forms. At room temperature, the forms  $\alpha$  and  $\beta$  are stable, both triclinic, with a planar zig-zag conformation. Figure 4.11 shows the unit cell of the  $\alpha$  form.

The  $\gamma$  form only appears at high temperatures and is not yet well defined.

The unit cell parameters of the  $\alpha$  and  $\beta$  forms are:

| $\alpha$ form          | $\beta$ form           |
|------------------------|------------------------|
| $a = 4.9 \text{ \AA}$  | $a = 4.9 \text{ \AA}$  |
| $\alpha = 48.5^\circ$  | $\alpha = 90^\circ$    |
| $b = 5.4 \text{ \AA}$  | $b = 8.0 \text{ \AA}$  |
| $\beta = 77^\circ$     | $\beta = 77^\circ$     |
| $c = 17.2 \text{ \AA}$ | $c = 17.2 \text{ \AA}$ |
| $\gamma = 63.5^\circ$  | $\gamma = 67^\circ$    |


The hydrogen bond formed between the  $-\text{NH}$  and  $-\text{C=O}$  groups creates strong secondary intermolecular links, aligning the zig-zag planes of the layered chains where the bonding forces between the chain segments within each layer are greater than the intermolecular dispersion forces between the layers.



**Figure 4.11** Triclinic unity cell of the  $\alpha$  form of nylon 6,6

#### 4.6.4 Polyethylene Terephthalate (PET)

The crystallization conformation of polyethylene terephthalate (PET) is planar zig-zag forming a triclinic unit cell with the following parameters:  $a = 4.56 \text{ \AA}$ ;  $b = 5.94 \text{ \AA}$ ;  $c = 10.75 \text{ \AA}$  and angles  $\alpha = 98.5^\circ$ ;  $\beta = 118^\circ$ ;  $\gamma = 112^\circ$ . To allow more packing, the terephthalic acid group makes a small angle with the axis of the polymer chain. Figure 4.12 shows several views of the PET unit cell.

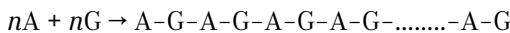


**Figure 4.12** Planar zig-zag crystallization conformation of the PET chains and its triclinic unit cell

$$\overline{M_n} = \frac{\sum h_i}{\sum N_i} = \frac{390}{4.85 \times 10^{-3}} = 80,400 \text{ g/mol};$$

$$\overline{M_w} = \frac{\sum N_i (M_i)^2}{\sum h_i} = \frac{3.46 \times 10^7}{390} = 88,700 \text{ g/mol};$$

$$\overline{M_z} = \frac{\sum N_i (M_i)^3}{\sum N_i (M_i)^2} = \frac{3.83 \times 10^{12}}{3.46 \times 10^7} = 110,700 \text{ g/mol};$$


and the polydispersity  $PD = \frac{\overline{M_w}}{\overline{M_n}} = \frac{88,700}{80,400} = 1.1$

## ■ 6.5 Most Probable Molecular Weight Distribution Function

It is theoretically possible to predict the width of the molecular weight distribution depending on the type of polymerization reaction. Thus, polycondensation tends to produce mainly linear chains that grow with the polymerization reaction time. On the other hand, the chain polymerization will be dependent on its preferential type of termination mechanism.

### 6.5.1 Polycondensation with Linear Chains

The polycondensation reaction of two initial bifunctional materials yields a long linear chain where each component enters alternately during the chaining. This produces the so-called **most probable distribution function**. Assuming the reaction of a diacid (A) with a dialcohol (G, glycol) forms a linear polyester chain, as shown:



then if for the formation of this chain a total of  $x$  molecules of the reactants (half of the molecules of diacid and half of glycol) are used, then  $x-1$  bonds are formed. Assuming that the probability of each of these esterification reactions to occur is  $p$ , also known as reaction extension, one can conclude that the probability of a molecule being formed with exactly  $x$  units is  $n_x$  given by:

$$n_x = p^{x-1} (1-p) \quad (6.25)$$

the first term relating to the probability that the same reaction ( $p$ ) happens  $x-1$  consecutive times, and the second term appears to ensure that the chain stops growing exactly after these  $x-1$  reactions. Thus, the number of molecules ( $N_x$ ) with a size of exactly  $x$  is the total number of molecules available ( $N$ ) times their probability of existing  $n_x$ :

$$N_x = N \times n_x \quad (6.26)$$

or

$$N_x = N (1-p) \times p^{x-1} \quad (6.27)$$

but the total number of molecules available is the total number of unreacted molecules ( $N_0$ ), i.e.,

$$N = N_0 \times (1-p) \quad (6.28)$$

Replacing these equations, the **number most probable molecular weight distribution function** is:

$$N_x = N_0 \times (1-p)^2 \times p^{x-1} \quad (6.29)$$

which can be converted into **weight function** by neglecting the loss of mass due to the elimination of molecules of low molecular weight after each condensation reaction (water in the case of formation of the ester bond).

$$w_x = x \times \frac{N_x}{N_0} \quad (6.30)$$

that is, obtaining the **weight most probable molecular weight distribution function** as:

$$w_x = x \times (1-p)^2 \times p^{x-1} \quad (6.31)$$

Figure 6.11a graphically shows the number most probable MWD function and Figure 6.11b shows the weight most probable MWD function, calculated for four probability values:  $p = 0.90, 0.96, 0.98$ , and  $0.99$ . The higher the probability of the polymerization reaction, the greater the number of initial molecules that will react, generating larger chains and shifting the curves to the right. With the lowest probability,  $p = 0.90 = 90\%$ , the average number of reacted molecules, defined by the peak of the weight function, is only  $x \approx 10$ . By increasing the probability to  $p = 0.96 = 96\%$ , the average number of molecules that react to form the chain increases

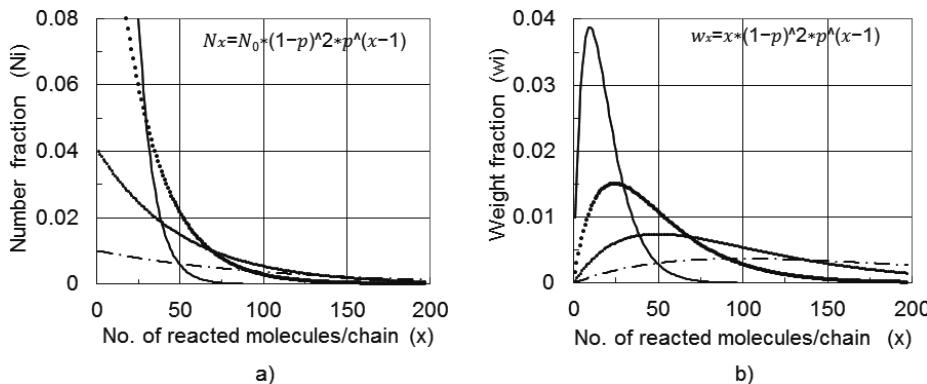
to  $x \approx 25$ , and if we reach  $p = 0.99 = 99\%$ , it increases even more to  $x \approx 140$ , the typical value of a commercial poly(ethylene terephthalate) PET polymer.

The **number average polymerization degree** ( $\overline{x}_n$ ) can also be estimated as:

$$\overline{x}_n = \sum x \times n_x = \sum x \times p^{x-1} \times (1-p) = \frac{1}{1-p} \quad (6.32)$$

and in weight fraction ( $\overline{x}_w$ ) as:

$$\overline{x}_w = \sum x \times w_x = \sum x \times x \times p^{x-1} \times (1-p) = \frac{1+p}{1-p} \quad (6.33)$$


Thus, the width of the most probable MW distribution curve of a polycondensation with linear chain is:

$$\frac{\overline{x}_w}{\overline{x}_n} = 1 + p \quad (6.34)$$

assuming  $p \approx 1$ , then one can say that

$$\frac{\overline{x}_w}{\overline{x}_n} \approx 2 \quad (6.35)$$

i.e., the polydispersity calculated for a polycondensation is approximately 2 (see Table 6.5). Nylons are polymers obtained by this type of polymerization and commercial products have  $PD \approx 2$ .



**Figure 6.11** (a) Number most probable MW distribution function and (b) weight most probable MW distribution function, simulated for four different reaction probabilities:  $p = 0.90, 0.96, 0.98$ , and  $0.99$

## 6.5.2 Chain Polymerization

This polymerization presents three types of preferential terminations:

### 6.5.2.1 Chain Transfer Termination

The hydrogen is transferred from the solvent molecule to the reactive growing chain end, terminating the polymerization. In this case, the most probable molecular weight distribution function can be applied, in the same way it was for the polycondensation or step polymerization. In order to synthesize a polyethylene with degree of polymerization  $x = GP = 1000$ , it is necessary that the probability of the ethylene addition reaction has at least 3 nines, that is,  $p \geq 99.9\%$ .

### 6.5.2.2 Combination Termination

In this case, two growing radical chains meet and react by forming a single covalent bond. The molecular weight of the final chain will be the sum of the initial two that formed it. In this case, the **distribution function** is narrower than the most probable:

$$w_x = \frac{x}{2} (x-1) \times (1-p)^3 \times p^{x-2} \quad (6.36)$$

### 6.5.2.3 Polymerization without Termination

This type of termination occurs specially in anionic polymerizations. The distribution function follows **Poisson's distribution**:

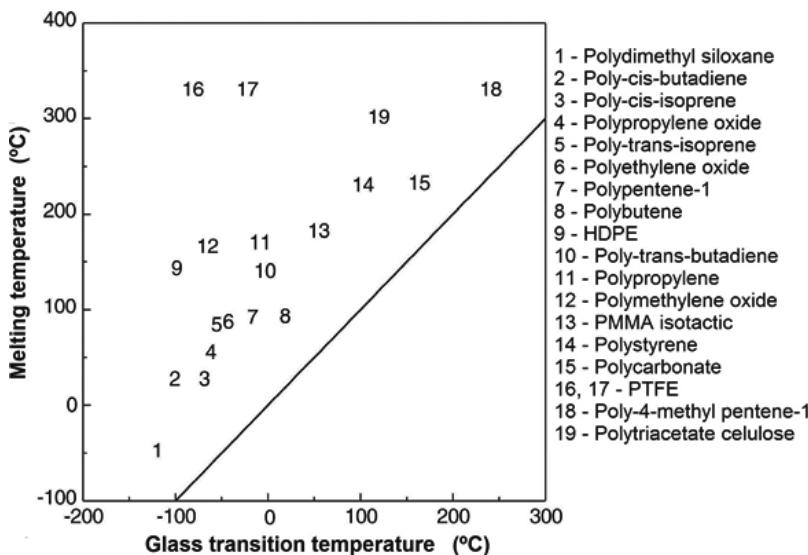
$$N_x = \frac{e^{-\nu} \times \nu^{(x-1)}}{(x-1)!} \quad (6.37)$$

and

$$w_x = \frac{\nu \times x \times e^{-\nu} \times \nu^{(x-2)}}{(\nu+1) \times (x-1)!} \quad (6.38)$$

$\nu$  being the number of reacted monomers per polymer chain. The distribution width in the anionic polymerization is:

$$\frac{\overline{x_w}}{x_n} = 1 + \frac{\nu}{(\nu+1)^2} \quad (6.39)$$


If  $\nu$  is big then:

$$\frac{\overline{x_w}}{x_n} \cong 1 + \frac{1}{\nu} \cong 1 \quad (6.40)$$

1. **Vicat softening temperature:** is the temperature that, during heating at a constant and predetermined rate, a flat tip needle with an area of  $1 \text{ mm}^2$  ( $1.120 \text{ mm} < D < 1.137 \text{ mm}$ ), penetrates the sample at a depth of  $1 \pm 0.01 \text{ mm}$ , subject to a constant and predetermined load. Two types of loads,  $10 \pm 0.2 \text{ N}$  ( $1 \text{ kg} = 9.80665 \text{ N}$ ) or  $50 \pm 1.0 \text{ N}$ , are used and heating rates of  $50 \pm 5 \text{ }^{\circ}\text{C/h}$  or  $120 \pm 10 \text{ }^{\circ}\text{C/h}$ . ASTM 1525 standardizes this method.
2. **Heat distortion temperature, HDT:** is the temperature that, during heating at a constant rate of  $2 \pm 0.2 \text{ }^{\circ}\text{C/min}$ , a rectangular section bar of  $13 \text{ mm}$  thickness and length between supports of  $100 \text{ mm}$ , positioned in its side and tensioned in the center, deforms the bar  $0.25 \text{ mm}$  (0.01 in). The maximum fiber tension ( $S$ ) should be  $0.455 \text{ MPa}$  (66 psi) or  $1.82 \text{ MPa}$  (264 psi). ASTM 648 standardizes this method.

## ■ 7.6 Effect of the Chemical Structure on $T_g$ and $T_m$

Since the  $T_g$  and  $T_m$  transition temperatures refer to overcoming secondary forces and giving mobility to the polymer chain, any factor leading to an increase in secondary intermolecular forces and chain stiffness will increase both  $T_g$  and  $T_m$ . Figure 7.7 shows the positioning in the space  $T_m$  vs  $T_g$ , with values presented in degrees Celsius, of a long list of semi-crystalline polymers. The maximum range of the  $T_g$  is  $-100 \text{ }^{\circ}\text{C} \leq T_g \leq 300 \text{ }^{\circ}\text{C}$  and for the  $T_m$  is  $0 \text{ }^{\circ}\text{C} \leq T_m \leq 400 \text{ }^{\circ}\text{C}$ , making a total span of  $400 \text{ }^{\circ}\text{C}$  in both cases. These ranges are extremely convenient because they provide polymers for many types of commercial applications with varying levels of thermal stability. For example, applications where the material is expected to perform exclusively at room temperature and do not require any high mechanical strength can be provided by polyolefin, whose range is  $100 \text{ }^{\circ}\text{C} \leq T_m \leq 200 \text{ }^{\circ}\text{C}$ , which is considered a low melting temperature range. On the other hand, applications where the materials will have to perform at constant temperatures in the range of  $100 \text{ }^{\circ}\text{C}$  should have a range of  $200 \text{ }^{\circ}\text{C} \leq T_m \leq 300 \text{ }^{\circ}\text{C}$ , which is considered a medium-high melting temperature, requiring the use of engineering thermoplastics.



**Figure 7.7** Relationship between the  $T_m$  and  $T_g$  values of various commercial polymers. The line represents  $T_m = T_g$

The large variation in the values of  $T_g$  and  $T_m$  presented by the polymers is dependent on particular structural factors. The most important are listed, commented on, and exemplified in the next section. It is also possible in some cases to change them further by making use of external factors, which will be discussed in the next section of this chapter.

### 7.6.1 Structural Symmetry of the Main Chain

In Figure 7.7, it can be seen that most of the polymers present a difference between the transition temperatures of the order of 110 °C. On the other hand, some polymers present a greater difference. According to the **Boyer/Beaman Law**, the greater the symmetry of the polymer chain with respect to its side groups, the greater the difference between  $T_g$  and  $T_m$ . Taking the temperature in Kelvin, one gets:

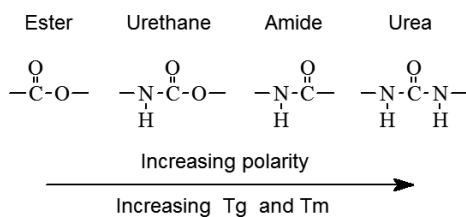
1.  $\frac{T_g}{T_m} \cong 0.5$  for **symmetrical polymers** either without a lateral group, as in PE, POM, etc., or with two groups symmetrically placed on both sides of the same carbon atom, as for PTFE, PVDC, etc.
2.  $\frac{T_g}{T_m} \cong 0.75$  for **asymmetrical polymers** either with only one side group, as for PP, PS, PVC, etc., or two that should be very different in size, as in the case of PMMA.

The presence of side groups may not increase  $T_g$  and  $T_m$  at the same level when they are arranged symmetrically with respect to the main chain axis. This allows for better-balanced motions of the molecule, not requiring high levels of energy to achieve mobility. This effect is confirmed by the values of the transition temperatures of polyvinylidene chloride, PVDC, which are lower than those of polyvinyl chloride, PVC, although the former presents twice as many chlorine atoms as the PVC (and therefore a lateral group with double the volume) but they are disposed symmetrically, with a chlorine atom on each side of the polymer chain, as seen in Table 7.1.

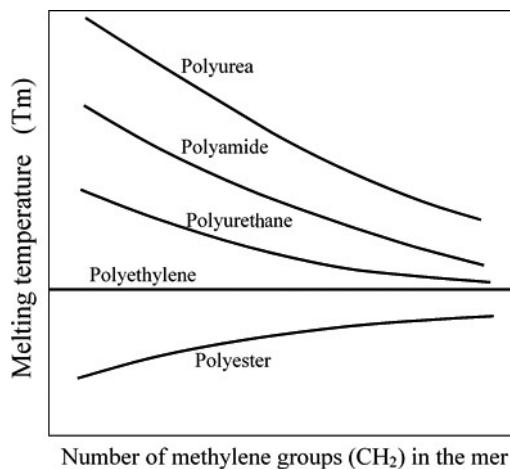
**Table 7.1**  $T_g$  and  $T_m$  of Some Vinyl Polymers

| Polymer                         | Mer | $T_g$ (°C) | $T_m$ (°C) | $T_g/T_m$ (K/K) |
|---------------------------------|-----|------------|------------|-----------------|
| Polyvinyl chloride<br>PVC       |     | 87         | 212        | 0.74            |
| Polyvinylidene chloride<br>PVDC |     | -19        | 198        | 0.54            |

### 7.6.2 Rigidity/Flexibility of the Main Chain


The presence of rigid groups within the main chain will promote rigidity, leading to an increase in both  $T_g$  and  $T_m$ . An example is the ***p*-phenylene rigid group** with two single bonds flat within the plane defined by the benzene ring. This is found in PET with  $T_g = 69$  °C and  $T_m = 265$  °C. In contrast, another polymer with a similar chemical structure, but not containing the *p*-phenylene group, polyethylene adipate (PEA), has much lower values ( $T_g = -46$  °C and  $T_m = 45$  °C); it, therefore, has fewer commercial applications. The same happens with other polymers (polyamides, polyesters, etc.) where ethylene sequences are replaced by *p*-phenylene groups. On the other hand, some elements can generate chain flexibility as in the case of **oxygen** and **sulfur** atoms because they form flexible bonds with carbon. Thus, polyethylene oxide, which has a flexible ether bond  $-C-O-C-$  within the main chain, has a  $T_m = 66$  °C, much lower than the value given by polyethylene, which is  $T_m = 135$  °C. For a comparative analysis between various chemical structures, analyze the examples presented in Table 7.2.

**Table 7.2** Stiffening Effect of the *p*-Phenylene Group on Some Condensation Polymers


| Polymer                                      | Mer                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $T_g$ (°C) | $T_m$ (°C) |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Polyethylene (PE)                            | $\left[ \text{CH}_2\text{CH}_2 \right]_n$                                                                                                                                                                                                                                                                                                                                                                                                           | -100       | 135        |
| Polyethylene <i>p</i> -phenylene             | $\left[ \text{CH}_2\text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_2 \right]_n$                                                                                                                                                                                                                                                                                                                                                                 |            | 380        |
| Polyethylene oxide                           | $\left[ \text{CH}_2\text{CH}_2\text{O} \right]_n$                                                                                                                                                                                                                                                                                                                                                                                                   |            | 66         |
| Polyethylene adipate (PEA)                   | $\left[ \text{H} \text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{OH} \right]_n$                                                                                                | -46        | 45         |
| Polyethylene terephthalate (PET)             | $\left[ \text{H} \text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{OH} \right]_n$                                                                                                             | 69         | 265        |
| Polyoctene sebacate                          | $\left[ \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \right]_n$ |            | 75         |
| Aromatic polyester                           | $\left[ \text{O} \text{---} \text{CH}_2\text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_2\text{---} \text{O} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \right]_n$                                                                                                                                                               |            | 146        |
| Polyhexamethylene adipamide (nylon 6,6)      | $\left[ \text{H} \text{---} \text{N} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{N} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \right]_n$                                                                     | 87         | 263        |
| Polyhexamethylene terephthalamide (nylon 6T) | $\left[ \text{H} \text{---} \text{N} \text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{CH}_2\text{---} \text{N} \text{---} \text{C} \text{---} \text{O} \text{---} \text{CH}_2\text{---} \text{C}_6\text{H}_4\text{---} \text{CH}_2\text{---} \text{C} \text{---} \text{O} \right]_n$                                                                                  |            | 350        |

### 7.6.3 Polarity of the Main Chain

The existence of polar groups in polymer macromolecules causes a strong attraction between the chains, bringing them closer together and increasing the secondary forces. Thus, the presence of **polarity** increases  $T_g$  and  $T_m$ , and they are greater the higher the polarity value. Common polar groups in polymers include the carbonyl group,  $-\overset{\text{O}}{\underset{\text{C}}{\text{||}}}-$ , in which its polarity value will be affected depending on the type of atom bonded laterally to it. Nitrogen atoms tend to donate and oxygen to withdraw electrons, respectively. Ester, urethane, amide, and urea polar groups have increasing polarity in this order and therefore polymers with similar chemical structures (changing only the polar group but keeping their content along the polymer chain constant) increase  $T_g$  and  $T_m$  in this order.



This effect can also be seen in Figure 7.8 where the change of the melting temperature of several homologous series (with the same functional group) of aliphatic polymers (with linear  $\text{CH}_2$ -methylene sequences) is shown as a function of the number of  $\text{CH}_2$  groups connecting the functional groups. For the same number of methylenes, the higher the polarity of the functional group present, the greater the  $T_m$  of the polymer. On the other hand, the higher the number of  $\text{CH}_2$ s, the lower the concentration of the functional groups per unit length of molecule and, therefore, the lower its attraction effect. In this way, the values of  $T_m$  are close to that presented by a very long sequence of methylenes, which is no more than polyethylene itself. Table 7.3 exemplifies the latter case for a series of linear aliphatic polyamides. When the number of methylenes is even, both N-H and C=O bonds are placed at the same side of the main chain; when it is odd, they sit on opposite sides. This particular configuration affects the crystallization kinetics and the melting temperature.



**Figure 7.8** Variation of  $T_m$  for several homologous series of aliphatic polymers

**Table 7.3** Melting Temperatures of Some Polyamides (Nylon N)

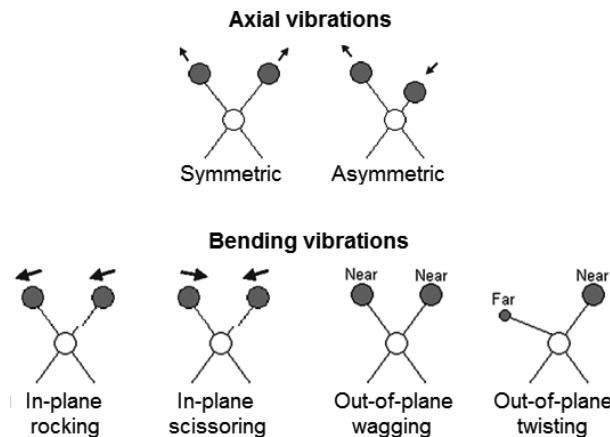
| Nylon type | Mer of some nylon types                                                                                                                                                                                             | $T_m$ (°C) |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 3          | $\left[ \begin{array}{c} \text{H} \\   \\ \text{N} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \\   \\ \text{O} \end{array} \right]_n$                                                             | 320-330    |
| 4          | $\left[ \begin{array}{c} \text{H} \\   \\ \text{N} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \\   \\ \text{O} \end{array} \right]_n$                                               | 260-265    |
| 5          | $\left[ \begin{array}{c} \text{H} \\   \\ \text{N} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \\   \\ \text{O} \end{array} \right]_n$                                 | 260        |
| 6          | $\left[ \begin{array}{c} \text{H} \\   \\ \text{N} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \\   \\ \text{O} \end{array} \right]_n$<br>Polycaproamide | 215-220    |
| 7          | $\left[ \begin{array}{c} \text{H} \\   \\ \text{N} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{C} = \text{O} \\   \\ \text{O} \end{array} \right]_n$     | 225-230    |

2. Discuss how copolymerization and chain branching affect the radius of interaction  $R$ . What experimental technique makes use of this property to characterize different types of homopolymers and copolymers?
3. Justify why Eq. (10.2) (from Chapter 3, Section 3.5.4) is valid. What is the advantage of it being valid for the commercial production of a thinner?

$$\delta^m = \sqrt{\left(\delta_d^m\right)^2 + \left(\delta_h^m\right)^2 + \left(\delta_p^m\right)^2} \quad (10.2)$$

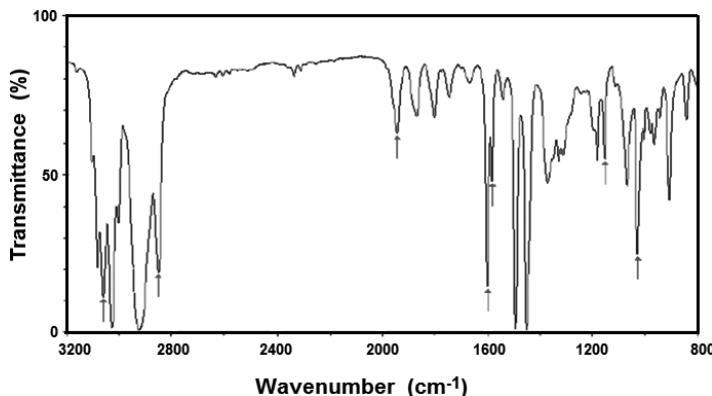
## ■ 10.4 Identification of Polymers by Infrared Absorption Spectroscopy

### 10.4.1 Objective


Use the infrared absorption spectroscopy FTIR technique for a qualitative analysis in the identification of the chemical structure, molecular configuration, components, formulation, etc., of pure polymers, their blends, and composites.

### 10.4.2 Introduction

Infrared absorption spectroscopy is one of the most widely used tools for identifying and characterizing polymeric materials. The vibrational analysis of polymers can provide information on three important structural aspects: chemical composition, configurational, and conformational structure. It also provides indications of interatomic forces due to the presence of molecular interactions. The technique of characterization of materials by absorption in the infrared is based on the observation of the frequency (qualitative analysis identifying the type of chemical bond) and intensity (quantitative analysis measuring the chemical bond concentration) of absorbed infrared radiation when a beam of this radiation crosses the sample. The infrared region corresponds to the range of wavelengths of the electromagnetic spectrum of 1 micron to 1 mm.


For a molecule to absorb infrared radiation, a change in the dipole moment of the molecule must occur during its axial and angular deformation movements. The incidence of infrared radiation in the molecule at the same frequency as the vibration of one of its bonds absorbs part of the incident energy with increasing amplitude of this vibration. By measuring the decreases in intensity of the transmitted radiation, a spectrum of the absorbed infrared radiation, characteristic of the material being analyzed, is generated.

The atoms that make up a molecule are in continuous motion due to various types of vibrations. They can be classified into two fundamental modes: **axial deformation** (or stretch) and **angular deformation**, shown in Figure 10.2 for a triatomic molecule. These vibrations occur only on some quantized frequencies, that is, they are unique and characteristic of each chemical bond.



**Figure 10.2** Vibration modes of a simple three-atomic molecule

If a radiant energy of known intensity at all wavelengths of its spectrum is supplied to the sample through an incident beam and the intensities at each particular wavenumber of the transmitted beam are analyzed, it may be seen that the intensity will be lower with some particular wavenumbers. This means that chemical bonds present in the sample selectively absorb at these frequencies. Such knowledge allows the identification of some of the bonds present in the sample contributing to their identification. In practical terms, spectra of the unknown sample can be compared with standard sample spectra facilitating the identification of the material. Figure 10.3 shows the infrared absorption spectrum of polystyrene.



**Figure 10.3** Infrared absorption spectrum of a polystyrene PS thin film. The arrows indicate some of the bands used to calibrate the equipment

A large number of polystyrene characteristic bands can be used for spectrophotometer calibration. Table 10.4 shows these reference bands, some with precision to the first decimal place (in  $\text{cm}^{-1}$ ). The table also gives an indication of the relative intensity of each band, assuming the strongest ones have a maximum intensity of 10.

**Table 10.4** Wavenumber for Some Absorption Bands Characteristic of Polystyrene and Their Relative Intensity, Normalized between Zero (baseline) to 10 (Highest Absorption)

| Wavenumber<br>( $\text{cm}^{-1}$ ) | Relative<br>intensity | Wavenumber<br>( $\text{cm}^{-1}$ ) | Relative<br>intensity | Wavenumber<br>( $\text{cm}^{-1}$ ) | Relative<br>intensity |
|------------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------------|-----------------------|
| 3027.1                             | 9                     | 1583.1                             | 5                     | 1154.3                             | 4                     |
| 2924                               | 10                    | 1495                               | 10                    | 1069.1                             | 6                     |
| 2850.7                             | 7                     | 1454                               | 10                    | 1028.0                             | 8                     |
| 1944.0                             | 3                     | 1353                               | 5                     | 906.7                              | 3                     |
| 1871.0                             | 3                     | 1332                               | 5                     | 842                                | 3                     |
| 1801.6                             | 3                     | 1282                               | 3                     | 752                                | 10                    |
| 1601.4                             | 9                     | 1181.4                             | 4                     | 698.9                              | 10                    |

The identification of an unknown sample is done by analyzing the position and intensity of the absorption bands present in the spectrum, comparing them with standard tables. In this experiment, it is initially suggested to try the identification of pure and known polymers. After the operator has acquired some experience, it is recommended that they identify polymer plastic products found on the market such as packaging, pipes, pots, films, injected parts, etc.

# Index

## Symbols

$\varepsilon$ -caprolactam 134  
 $\theta$  condition 158

## A

absorption bands 262  
absorption coefficient 298, 300  
absorptivity 300  
acetylation 120  
activated monomer 125, 131–133  
adipic acid 122  
alternating copolymer 27  
amidation 120  
amide bond 134, 140  
amide group 19  
amorphous state 274  
angular deformation 294  
anionic polymerization 131–133  
atactic polymer 47  
average chain length 174, 175  
average molecular weight 148–151, 153, 155, 156, 158, 160–164, 173, 175  
average molecular weight between cross-links 247, 248  
Avrami's constant 225  
Avrami's equation 225  
Avrami's exponent 225  
Avrami's plot 226, 229, 232  
axial deformation 294

## B

back biting 127  
Bakelite 1, 34, 39  
Beer–Lambert law 297  
Beilstein test 282, 284, 285  
benzene 9  
benzoyl peroxide 125, 144  
biaxial orientation 275  
bifunctional 22, 23, 37  
birefringence compensators 313  
block copolymer 28  
blowing agent 276  
Boltzmann stress superposition principle 269  
bond energy 15, 19  
bond length 15, 19, 21  
branched chain 24  
brittle behavior 250, 251, 253  
brittle fracture 253, 255  
bulk polymerization 136, 145  
by-products 121

## C

calibration curve 166, 167  
carbonyl group 19  
cast from solution 276  
catalyst–cocatalyst complex 131  
cationic polymerization 131, 145  
cavitation 256  
cellulose 8  
chain cleavage 278  
chain-end analysis 151

chain end segments 247  
chain length 173  
chain polymerization 120  
chain scission 139–142  
chain scission distribution function 142  
chain stiffness 199, 217  
chain terminator 129, 133  
chain transfer 128  
chain transfer termination 172  
characteristic ratio 59, 60  
cis isomer 31, 45, 48  
cis isomerism 300  
clarifying agent 117  
cloud point 63, 289, 291  
coal 9  
cocatalyst 131  
cohesive energy 70  
cold crystallization 194–196  
cold drawing 260, 262, 306, 307, 314  
cold flow 150  
comb chain architecture 25  
combination 126  
combination termination 172  
condensation 2, 7  
conductive polymers 4  
configuration 3, 20, 41, 44, 46, 47, 52, 53  
copolymer 27  
copolymerization 120, 135  
counter-ion 132  
covalent bonds 5, 14  
Crankshaft mechanism 185  
crazing 256, 257  
creep 237, 243–245, 278  
critical radius 220, 221  
critical strain intensity factor 255  
critical temperature 63, 64  
cross-linked chain 25  
cross-linking 278  
cross-linking density 25, 270–272, 335  
cryoscopy 153  
crystal growth rate 221, 223  
crystalline melting temperature 179, 194, 196, 210, 212, 217  
crystalline state 274  
crystallinity index 107  
crystallization enthalpy 193–195  
crystallization fractionation 86  
crystallization temperature 179, 183, 193, 194, 196  
crystal stability parameter 235  
cure 276, 278  
cured epoxy resin 253, 269

**D**

degradation 139  
degree of crystallinity 89, 91, 93, 95, 107–114, 116–118, 182, 194–196, 206, 212, 239, 257–260, 275, 279, 308, 313–315, 317–320, 334  
degree of molecular orientation 260, 262, 304, 305, 307  
degree of polymerization 148, 158–160, 172, 174  
density 89, 90, 93–95, 97, 100–102, 108–110, 114, 118  
depolymerization 139  
diacid 2, 7  
dichroic ratio 261, 262, 304, 305, 307, 308  
differential scanning calorimetry 193, 318  
dilatometry 226–228, 232  
dioctyl phthalate 264, 265, 276  
dispersion forces 17  
disproportion 127  
Doolittle's equation 185  
ductile behavior 250, 251  
ductile fracture 255  
dynamic crystallization 183  
dynamic-mechanical thermal analysis 193, 196

**E**

ebulliometry 152, 153  
elastomer toughening 267  
elongational flow 98  
elution volume 166–168, 177  
emulsifying agent 137

emulsion polymerization 137  
 enthalpy 229, 231, 232  
 epoxy resins 9, 34  
 equilibrium melting temperature 181, 235, 236  
 equimolar ratio 122  
 esterification 2, 120, 169  
 ethene addition 120  
 ethylene-propylene-diene-monomer copolymer 30  
 excluded volume 3, 59, 61, 65, 66  
 expansion factor 61

## F

fiber reinforcing 268  
 fibers 5  
 Flory–Rehner equation 335  
 Flory's equation 189  
 Flory's interaction parameter 189  
 foaming 276  
 folded chains 91  
 fold period 91  
 fold plane 91  
 forced termination 132  
 formaldehyde 1, 9  
 fracture toughness 255  
 free joined chain model 56  
 free-radical chain polymerization 125  
 free-radical mass polymerization 321  
 free surface energy 181  
 free tetrahedral rotation chain model 57  
 free volume 186, 187, 213, 215  
 fringed micelle 90, 91, 106, 118  
 full-wave retardation plate 311  
 functionality 6, 123

## G

glass transition temperature 17, 18, 39, 47, 179, 184, 193, 194, 196–198, 213, 215–217, 257, 264, 267, 270, 271, 275  
 glycol 2, 7  
 graft copolymer 28  
 grafting 278

## H

half-time crystallization 234  
 Hampton equation 298  
 Hansen solubility parameter 72  
 head-to-tail chaining 42  
 heat distortion temperature 199  
 helicoidal 4  
 heterogeneous nucleation 221  
 Hevea Brasiliensis 1  
 hexagonal unit cell 101  
 hexamethylene adipamide 122  
 hexamethylene diamine 122  
 high density polyethylene 4  
 high-impact polystyrene 267  
 Hildebrand solubility parameter 71  
 Hoffman–Weeks plot 236  
 homogeneous nucleation 221  
 homopolymerization 120  
 hydrodynamic volume 56, 58, 61, 62, 65, 67, 82  
 hydrogen bonds 8, 17, 19, 35, 265, 266  
 hydrogen transfer 132  
 hydroquinone 129

## I

induction forces 19  
 induction time 130  
 infrared absorption spectroscopy FTIR 293  
 inherent viscosity 156  
 inhibitor 119, 129, 130, 145, 322  
 initiation 124–126  
 initiator 119, 121, 125, 134, 136–138, 321–323  
 interaction radius 73, 75, 77, 292  
 interlamellar links 99, 260  
 intermolecular bonds 16  
 intermolecular forces 20, 32, 33, 180, 199, 217  
 intramolecular bonds 13  
 intramolecular forces 14, 20, 53  
 intrinsic viscosity 150, 156–159, 324, 325, 327, 328  
 ionic polymerization 131

isocyanates 9  
isomerism 207, 217  
isotactic polymer 46  
isothermal crystallization 183, 222–236  
isothermal crystallization rate 234

## L

lamellae 91, 118  
lamellar morphology 258  
Lewis acid 131  
Lewis base 133  
light scattering 153, 314  
linear chain 23  
linear polarizers 309  
linear thermal expansion 181  
living polymers 161  
long-range order 273, 274  
loss modulus 196  
loss of side groups 143  
loss tangent 197

## M

macromolecular theory 2  
maleic anhydride 123  
Maltese Cross 95, 96, 308, 310  
Mark–Houwink–Sakurada equation 156, 160, 325  
master curve 271, 272  
mastication 277  
maximum crystal growth rate 223  
maximum crystallization conversion rate 183  
Maxwell model 241–245  
mean square distance 56, 57, 59–62, 66, 67  
melamine-formaldehyde 9  
melt flow index 329, 331  
melting enthalpy 111, 112, 188, 194–196, 319, 320  
mer 5  
methacrylate polymers 207  
methanol 132  
Michel–Lévy color chart 312  
molar attraction constant 80

molecular orientation 260, 261, 263, 274, 275  
molecular weight 3–6  
molecular weight distribution curve 150, 151, 155, 160, 161, 163, 168, 175, 176  
molecular weight regulator 129  
monoclinic unit cell 101  
monofunctional 21  
monomer 4–8  
most probable distribution function 169

## N

naphtha 10  
natural rubber 3, 8, 9  
nominal degree of crystallinity 224  
non-oriented state 274  
norbornadiene 30  
notch tip 254  
nucleating agent 117, 219  
nucleation rate 221, 222  
number average molecular weight 148  
number average molecular weight between cross-links 336  
number average polymerization degree 171  
number most probable molecular weight distribution function 170  
number of cross-links per chain 247  
nylon 6 2, 122, 123, 134  
nylon 6,6 2, 22, 23, 38, 122, 123  
nylon 9 9  
nylon 11 9  
nylon hydrolysis 140  
nylon salt 122, 123

## O

olefin elastomers 268  
optical path difference 312  
oriented state 274  
orthorhombic unit cell 101  
osmometry 151, 153  
osmotic pressure 151–153  
oxidation 129, 140, 278

**P**

particle scattering factor 154  
 p-benzoquinone 129  
 peptizing agents 277  
 permanent dipole-induced dipole interaction 19  
 permanent dipole-permanent dipole interaction 18  
 PET bottle 274  
 Peterlin model 260, 261, 275  
 petroleum 10, 11  
 phenol 1, 9, 11  
 phenol-formaldehyde 9  
 plasticization 264, 276  
 plasticizer 257, 264–266, 276  
 plastics 5  
 Poisson's distribution 172  
 polarized infrared radiation 261, 262, 304  
 polarizing filter 304, 305, 310  
 polyacetal 34  
 polyaddition 120, 124  
 polyamides 2  
 polybutadiene 24, 28, 31, 43–45, 47, 48, 298, 299  
 polycondensation 120, 123, 169, 171, 172  
 polydispersity 161–164, 166, 169, 171, 173, 177  
 polyesters 2  
 polyethylene 6, 9  
 polyethylene oxide 201  
 polyethylene unit cell 263  
 polymer 1–8, 10, 12  
 polymer chaining 41  
 polymer fractionation 81  
 polymerization 119, 120, 122, 144  
 poly(methyl methacrylate) 321  
 polymorphism 90, 100  
 polytetrafluoroethylene 3, 33  
 polyvinyl acetate 34  
 polyvinyl chloride 6, 9  
 polyvinylidene chloride 32  
 preparative size exclusion chromatography 177  
 propagation 124, 126, 131, 133, 134

PS sub-inclusions 267  
 pycnometry 313, 315

**R**

radial chain architecture 24  
 radius of the notch tip 254  
 random chain architecture 24  
 random coil conformation 56  
 Rayleigh ratio 154  
 reactive compatibilization 278  
 reactive functional groups 6, 7, 22, 37  
 reactivity ratio 135, 136  
 rearrange with the counter-ion 132  
 reduced viscosity 156  
 refractive index 313  
 reinforcing 277  
 relative viscosity 156  
 relaxation time distribution 270  
 reptation theory 4, 272  
 restricted movement chain model 58  
 retarder 322  
 retarders 130, 145  
 ring-opening polymerization 120, 134  
 rubber elasticity 237  
 rubber equation 247, 248  
 rubbers 5  
 rubbery state 273

**S**

sapphire 113  
 SBR 27, 31, 32, 43  
 secondary crystallization 224, 225  
 shear yielding 256  
 shish-kebab 98, 118, 275  
 short-range order 273, 274  
 side groups 14, 18, 36, 41, 42, 45, 46, 50, 51  
 single crystal 91  
 size exclusion chromatography 151, 153, 163, 165, 177  
 solution polymerization 137  
 specific heat 113  
 specific viscosity 156

specific volume 93, 107–109, 180–184  
spherulite 95–97, 308–311  
stabilized morphology 278  
step polymerization 120, 121  
stereoblock isotactic polypropylene 232  
stereoregular synthesis 4  
storage modulus 196, 198  
strain rate 240, 244, 253, 272  
stress relaxation 237, 243–245, 271, 272,  
    278  
stress–strain curves 251–253, 259  
stretching direction 260, 263  
styrene 9  
styrene–butadiene triblock copolymer  
    28  
styrene–isoprene triblock copolymer 28  
Styrofoam 32  
super-cooling 219, 221, 234  
surfactant 137, 138  
suspension agent 137  
suspension polymerization 137  
swelling 69, 70, 80, 81  
swollen gel 286  
symmetrical polymers 200  
syndiotactic polymer 46  
synthetic rubber 3

## T

tacticity 46  
temperature rising elution fractionation  
    83  
tensile stress–strain curve 250, 253,  
    258, 279  
termination 126, 132–134  
terpolymerization 120  
thermal degradation 304, 321  
thermal expansion 180, 181, 186  
thermo-mechanical degradation 140,  
    142  
thermoplastic 2  
thermosets 25  
theta condition 3, 61  
thinner 55, 76–79, 82, 88, 288, 289, 293,  
    325, 326

time–temperature equivalence 270  
time–temperature superposition principle  
    270  
toughening 277  
toughening mechanisms 277  
toughness 250, 255, 260, 279  
transfer to the solvent 129  
trans isomer 44, 45  
trans isomerism 300  
triclinic unity cell 104  
true solution 287, 289

## U

Ubbelohde viscometer 324, 325, 327  
ultracentrifugation 153, 154, 160  
urea-formaldehyde 9, 36

## V

van der Waals forces 17  
Van't Hoff equation 152  
Vicat softening temperature 199,  
    331–334  
vinyl chloride 6, 9  
vinyl isomers 44  
vinyl terminal double bond 132  
viscoelasticity 237, 238, 278  
viscosimetry 155, 159  
viscosity average molecular weight 149,  
    324, 325, 327  
viscous state 273  
vitreous state 273  
Voigt model 242–245  
volumetric expansion coefficient 186,  
    187, 213  
vulcanization 1, 30, 31, 39, 44, 45, 278  
vulcanized rubber 15, 25, 39

## W

water absorption 265, 266  
weight average molecular weight 149,  
    162

weight most probable molecular weight  
distribution function 170  
WLF equation 187, 188, 270

**Z**

z-average molecular weight 150, 160  
Ziegler-Natta 23, 30, 31, 44, 47  
Zimm plot 154