

HANSER

Sample Pages

Plastics Technology

Christian Bonten

ISBN (Book): 978-1-56990-767-2

ISBN (E-Book): 978-1-56990-768-9

For further information and order see

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)

Preface

Immediately after I started working at the University of Stuttgart in late summer 2010, I revised the course “Fundamentals of Plastics Technology” with the help of my scientific staff. Since then, this important course has been held unchanged in Stuttgart for a long time. During the revision we not only updated figures and contents, but also gave the course a new structure, which I – inspired by didactic seminars of the German University Association – consider more contemporary. Numerous film sequences used in the lectures enable the students to understand the contents more quickly and deeply. I am convinced that the students in my course become well equipped with a comprehensive, fundamental knowledge of plastics and plastics technology for their upcoming professional life. If students want to deepen their knowledge of the subject, they can do so in the three main areas of “Materials Engineering”, “Processing Technology”, and “Product Engineering” in other courses later on.

This introductory and fundamental lecture series in Stuttgart is an elective course with four lessons per week for master students of process engineering, mechanical engineering (e.g. production engineering, automotive engineering), materials science, as well as of technology management. The course is actually aimed at technically educated students, but in the meantime non-technical students (economics, environmental issues) choose the course as well. While about 100 students had this subject examined after the 2010 winter semester, the number was growing year by year subsequently. The increasing interest of highly motivated and disciplined master’s students led me to supplement the figures with continuous text and publish them in the form of a book the first time in 2014.

In winter 2012/13, students started asking me about the critical topics that are “heard in the media”. I decided to get to the bottom of the topics “environmental pollution”, “toxins in plastics”, “bioplastics”, and “life cycle analyses” right down to the original sources and to prepare this as a part of the course as well. These topics form the final chapter “plastics and the environment” of this book, and I have the impression that factual information is the best means of clarification. The reader may decide whether I have succeeded in dealing with the topics in a factual way.

I was a little surprised when, just one and a half years after the start of sales of the first German edition, the publisher asked me to prepare the second one. The many reviews that were sent to the publisher were all positive, contained valuable suggestions and encouraged me to continue this book the same way. Since 2016, more than 500 students chose the course underlying this book in structure and content and also encouraged me to continue teaching in this way. In the second German edition, I concentrated on individual additions, revisions, and updates, as well as the correction of several errors.

In the meantime, I am being asked by university professors from all over the world to give not only scientific presentations, but master's courses about plastics technology there as well. Since not everyone speaks German and I usually do not speak their native language, I often hold the course in English. To help the students with the rework, I have decided to translate the second edition of this book into the English language and made only minor changes.

I would like to thank the publisher for their trust and advice as well as for offering this book in color and hardcover. I would also like to thank my supporting staff members, who have carefully worked through and gave valuable hints on mistakes and the comprehensibility of the text of the first and second German editions. Technical staff members supported me with figures and photos from their daily work. The students Adriana Steinitz and Lisa Schleeh greatly helped me with translation of the text and the figures.

I am sure that with the knowledge of the book I will give every reader/student the opportunity to quickly gain a foothold in the plastics industry and to enable her or him to decide early on in which application plastics can do great things.

Stuttgart, September 2019

Univ.-Prof. Dr.-Ing. Christian Bonten

The Author: Prof. Christian Bonten

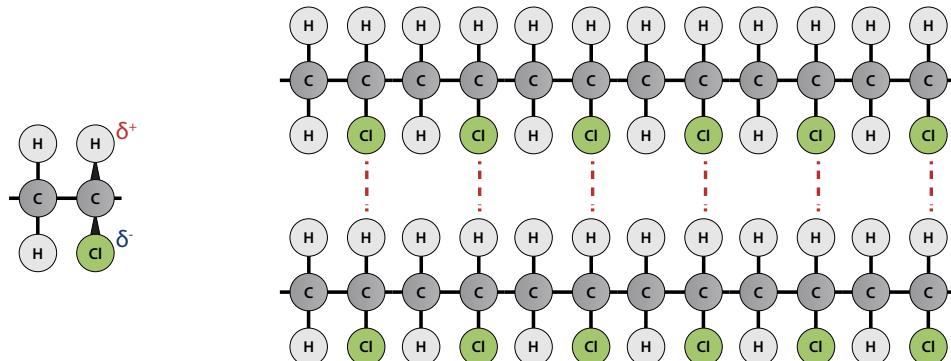
University Professor Dr.-Ing. Christian Bonten heads the Institute for Plastics Technology (Institut für Kunststofftechnik; IKT) in Stuttgart, one of the leading German research institutes in the field of plastics technology. After studying mechanical engineering in Duisburg/Germany and plastics processing at the University in Aachen/Germany, Prof. Bonten received his doctorate in the field of welding plastics under supervision of Prof. Ernst Schmachtenberg. After several years of technical responsibility and later business responsibility at the chemical company BASF and the bioplastics manufacturer FKuR, he was appointed Director and Head of the IKT by the University of Stuttgart in 2010. The institute works in all areas of plastics technology: materials engineering, processing technology, and product engineering.

Contents

Preface	V
The Author: Prof. Christian Bonten	VII
How to Use This Book	IX
1 Introduction	1
1.1 Plastics – Material of the Modern Age	1
1.2 Applications of Plastics	5
1.3 Plastics and Design	8
1.4 References	11
2 Fundamentals	13
2.1 From Monomer to Polymer – Basics of Polymer Chemistry	13
2.1.1 Origin of Monomers	13
2.1.2 Polymer Synthesis	16
2.1.2.1 Polymerization	16
2.1.2.2 Copolymerization (Special Form of Polymerization) ..	19
2.1.2.3 Polycondensation	19
2.1.2.4 Polyaddition	21
2.1.3 The Molar Mass of Polymers	22
2.1.4 Binding Forces and Brownian Molecular Movement	27
2.1.4.1 Intermolecular Physical Bonds	29
2.1.4.2 Brownian Molecular Motion – Mobility of Polymer Chains	32
2.1.5 Mechanisms of Solidification and Subdivision of Polymers	33
2.1.6 Primary Structure of Polymers: Constitution and Configuration ..	36
2.1.7 Secondary and Tertiary Structures of Polymers: Conformation ..	38
2.1.7.1 Amorphous Structures	40

2.1.7.2 Crystalline Structures	40
2.1.7.3 Influence of the Primary Structure	41
2.1.7.4 Superstructures	43
2.1.8 Polymers – Raw Materials Not Only for Plastics	47
2.2 Fundamentals of Force Transmission	48
2.2.1 Important Terms	48
2.2.1.1 Strength	48
2.2.1.2 Stiffness	48
2.2.1.3 Toughness	48
2.2.1.4 Stress-Strain Diagrams	49
2.2.2 State Ranges of Plastics	52
2.2.2.1 Glass Transition Temperature T_g	52
2.2.2.2 Crystalline Melting Temperature T_m	53
2.2.2.3 State Ranges of Crosslinked Polymers	54
2.2.3 Mechanical Replacement Models	56
2.3 Plastics and Plastics Technology – Definition of Terms	60
2.4 References	61
3 Plastics Materials Engineering	65
3.1 Behavior in the Melt – Flow Properties and Their Measurement	66
3.1.1 Fluid Mechanics Basics	66
3.1.2 Influences on the Flow Behavior	74
3.1.3 The Concept of Representative Viscosity	79
3.1.4 Elongation of Melt	81
3.1.5 Die Swell and Shrinkage	83
3.1.6 Rheometry – the Measurement of Flow Properties	85
3.1.6.1 Measurement of the Melt Flow Rate MFR	86
3.1.6.2 The High-Pressure Capillary Rheometer	87
3.1.6.3 Rotational Rheometer	89
3.1.6.4 Extensional Rheometer	94
3.2 Behavior as a Solid – Solid Properties and Their Measurement	95
3.2.1 Mechanical Properties of Plastics	96
3.2.1.1 The Tensile Test	96
3.2.1.2 The High Speed Tensile Test	99
3.2.1.3 Influence of Time and Temperature on the Mechanical Behavior	100
3.2.1.4 The Creep Test	103
3.2.1.5 The Vibration Test	105
3.2.1.6 The Bending Test	107
3.2.2 Physical Properties	110
3.2.2.1 Electrical Properties	110

3.2.2.2	Magnetic Properties	112
3.2.2.3	Optical Properties	113
3.2.2.4	Acoustic Properties	120
3.2.3	Values for Thermal and Mass Exchange	123
3.2.3.1	Specific Enthalpy h	123
3.2.3.2	Specific Heat Capacity c_p	124
3.2.3.3	Density ρ	127
3.2.3.4	Thermal Conductivity λ	128
3.2.3.5	Coefficient of Thermal Expansion α	130
3.2.3.6	Thermal Diffusivity a	131
3.2.3.7	Heat Penetration Coefficient b	133
3.2.3.8	Mass Transport	133
3.3	Influence of Additives on Properties	137
3.3.1	Reinforcing Materials – Active Additives	138
3.3.1.1	Fibers and the Principle of Reinforcement	141
3.3.1.2	The Tasks of the Matrix	144
3.3.1.3	Force Transmission of Fiber-Reinforced Plastic Composites	145
3.3.1.4	Defects in Fiber-Reinforced Plastic Composites	148
3.3.1.5	Nanoparticles as Active Additives	152
3.3.2	Functional Additives	154
3.3.2.1	Viscosity-Changing Additives – Flowing Agents	154
3.3.2.2	Plasticizers	155
3.3.2.3	Blending of Polymers	157
3.3.2.4	Impact Modifiers	157
3.3.2.5	Nucleating Agents	159
3.3.2.6	Coupling Agents	159
3.3.2.7	Conductive Additives	160
3.3.3	Fillers – Inactive Additives	162
3.4	From Polymer to Plastic – Introduction to Plastic Compounding	162
3.4.1	The Twin-Screw Extruder	163
3.4.2	Process Technology	164
3.4.3	Characteristic Values	168
3.4.4	Additional Units	169
3.5	Process, Structure, Properties – Influences due to the Converting Process	172
3.5.1	Residual Stresses	173
3.5.2	Orientation of Macromolecules	174
3.5.3	Orientation of Fibers	176
3.5.4	Crystallization	177
3.5.5	Formation of a Macrostructure: Foaming of Plastics	178


3.6 Changes over Time – Overview into the Aging of Plastics	179
3.6.1 Causes of Aging	181
3.6.2 Aging Processes	182
3.6.2.1 Mechanical Aging Mechanisms	182
3.6.2.2 Physical Aging Mechanisms	182
3.6.2.3 Chemical Aging Mechanisms	184
3.6.2.4 Mode of Action of Aging Stabilizers	186
3.6.3 Aging Phenomena	187
3.6.4 Characterization of the Aging Progress	188
3.7 Brief Description of Some Important Plastics	191
3.8 Polyethylene (PE)	194
3.9 Polypropylene (PP)	196
3.10 Ethylene-Propylene-(Diene) Copolymers (EPDM)	197
3.11 Polyvinyl Chloride (PVC)	200
3.12 Polystyrene (PS)	202
3.13 Styrene-Butadiene-Styrene Copolymers (SBS)	203
3.14 Styrene-Acrylonitrile Copolymers (SAN)	204
3.15 Acrylonitrile-Butadiene-Styrene Copolymers (ABS)	207
3.16 Acrylonitrile-Styrene-Acrylate Copolymers (ASA)	208
3.17 Polyamide (PA)	211
3.18 Polybutylene Terephthalate (PBT)	216
3.19 Polyethylene Terephthalate (PET)	217
3.20 Polycarbonate (PC)	220
3.21 Polymethyl Methacrylate (PMMA)	222
3.22 Polyoxyethylene (POM)	224
3.23 Polytetrafluoroethylene (PTFE)	227
3.24 Polyether Ether Ketone (PEEK)	228
3.25 Polyethersulfone (PES) und Polysulfone (PSU)	230
3.26 Polyphenylene Sulfide (PPS)	232
3.27 Cellulose Derivatives	234
3.28 Polyhydroxyalkanoates (PHA)	236
3.29 Polylactide (PLA)	237
3.30 Thermoplastic Polyurethane (TPE-U, also TPU)	239
3.31 Polyurethane (PUR)	240
3.32 Epoxy Resins (EP)	241

3.33 Melamine Formaldehyde Resin (MF)	242
3.34 Phenol-Formaldehyde or Phenol Resin (PF)	243
3.35 Urea-Formaldehyde Resin (UF)	244
3.36 Unsaturated Polyester Resin (UP)	245
3.37 References	246
4 Plastics Processing Technology	249
4.1 Extrusion	250
4.1.1 Extruder Screw and Barrel	251
4.1.2 The Helibar® High-Performance Extruder	258
4.1.3 Pipe and Profile Extrusion	260
4.1.4 Flat Film and Sheet Extrusion	265
4.1.5 Tube and Blown Film Extrusion	267
4.1.6 Extrusion Blow Molding	268
4.1.7 Co-extrusion	270
4.2 Injection Molding	272
4.2.1 The Injection Molding Process	274
4.2.2 The Plasticizing Unit	277
4.2.3 The Clamping Unit with Injection Mold	279
4.2.3.1 Rheological Design	282
4.2.3.2 Thermal Design	283
4.2.4 Influence of the Injection Molding Process on the Properties of the Component	286
4.2.5 Special Processes	289
4.2.5.1 Injection-Compression Molding	290
4.2.5.2 Thermoplastic Foam Injection Molding	291
4.2.5.3 Cascade Injection Molding	291
4.2.5.4 Injection Molding Compounding	292
4.2.5.5 Multi-component Processes	293
4.2.5.6 Sandwich Injection Molding	295
4.2.5.7 Fluid Injection Techniques	297
4.2.5.8 Back Injection Technology	298
4.2.5.9 Injection Stretch Blow Molding	299
4.2.5.10 Variothermal Mold Temperature Control	301
4.3 Processing of Crosslinking Plastics	302
4.3.1 Compression Molding	304
4.3.2 Transfer Molding	305
4.3.3 Injection Molding	306
4.3.4 Polyurethane Processing	307

4.4	Technology of Fiber-Reinforced Plastics	311
4.4.1	Hand Lay-up and Fiber Spraying	312
4.4.2	Pressing of SMC and GMT	313
4.4.3	Pultrusion of Continuous Fibers	316
4.4.4	Working with Prepregs	318
4.4.5	Resin Injection Molding	319
4.4.6	Three-Dimensional Fiber Reinforced Plastic Structures	321
4.5	Further Processing	323
4.5.1	Thermoforming	323
4.5.2	Mechanical Machining of Plastics	330
4.5.3	Welding	333
4.5.3.1	Hot Plate Welding	335
4.5.3.2	Hot Gas Welding	337
4.5.3.3	Extrusion Welding	337
4.5.3.4	Ultrasonic Welding	339
4.5.3.5	Vibration Friction Welding	340
4.5.3.6	Laser Welding	341
4.5.4	Adhesive Bonding	342
4.5.5	Joining by Snap Connections, Screws, and Rivets	347
4.5.6	Coating of Plastics	350
4.5.6.1	Coated Components	350
4.5.6.2	Coating Processes	354
4.6	References	357
5	Product Development with Plastics	361
5.1	Plastics as Construction Materials	362
5.1.1	Plastic-Specific Unique Selling Points	362
5.1.2	Material Preselection	365
5.2	Geometric Subdivision of Products	367
5.2.1	Large-Area Products	368
5.2.2	Housing-Like Products	368
5.2.3	Container-Like Products	369
5.2.4	Complex Products	370
5.2.5	Function-Specific Products	370
5.2.6	Importance for the Choice of the Processing Method	371
5.3	Designing with Plastics	372
5.3.1	Requirements for Products and Functions	373
5.3.2	Benefits of Design Freedom – Integration of Functional Elements	375
5.3.3	Use of Design Freedom – Increasing the Surface Moment of Inertia	380

5.3.4	Material-Specific Design	383
5.3.5	Production-Oriented Design	393
5.3.6	Stress-Oriented Design	396
5.3.6.1	Dimensioning against a Permissible Stress	398
5.3.6.2	Dimensioning against Critical Strain	400
5.3.6.3	Dimensioning against the Influence of Time – Service Life Prediction	404
5.3.7	Brief Summary of Designing with Plastics	406
5.4	Benefits of Prototypes in Product Development	408
5.4.1	Rapid Prototyping	408
5.4.1.1	Stereolithography (SLA)	409
5.4.1.2	Selective Laser Sintering (SLS)	410
5.4.1.3	Laminated Object Manufacturing (LOM)	411
5.4.1.4	3D Printing (3-D-P)	412
5.4.1.5	Fused Deposition Modeling (FDM or FFF)	413
5.4.2	Rapid Tooling	415
5.4.2.1	Casting	416
5.4.2.2	Laser Sintering	419
5.4.3	Selection of a Prototype Method	420
5.4.3.1	Requirements Placed on the Prototype	420
5.4.3.2	Prototypes for Large-Area Products and for Housing-Like Products	421
5.4.3.3	Prototypes for Container-Like Products	422
5.4.3.4	Prototypes for Complex Products	423
5.5	References	425
6	Plastics and the Environment	427
6.1	Plastic Waste	427
6.2	Are Plastics Toxic?	432
6.3	Biopolymers and Bioplastics	437
6.3.1	Biodegradable Plastics	437
6.3.2	Bio-based Plastics	441
6.3.3	From Biopolymer to Bioplastic – Compounding of Biopolymers	446
6.4	Conserving Resources with Plastics	448
6.4.1	Origin of the Term “Sustainability”	448
6.4.2	The Brundtland Report and the Kyoto Protocol	448
6.4.3	Conservation of Resources with Plastics	450
6.4.4	Regenerative Energy Generation with Plastics	455

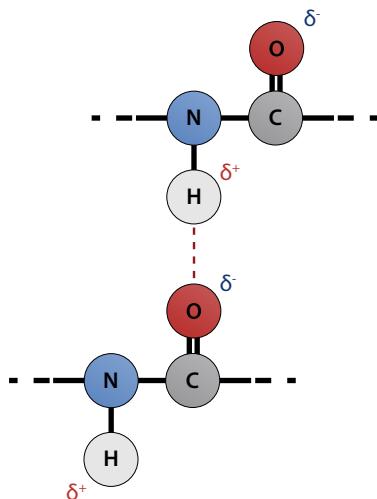
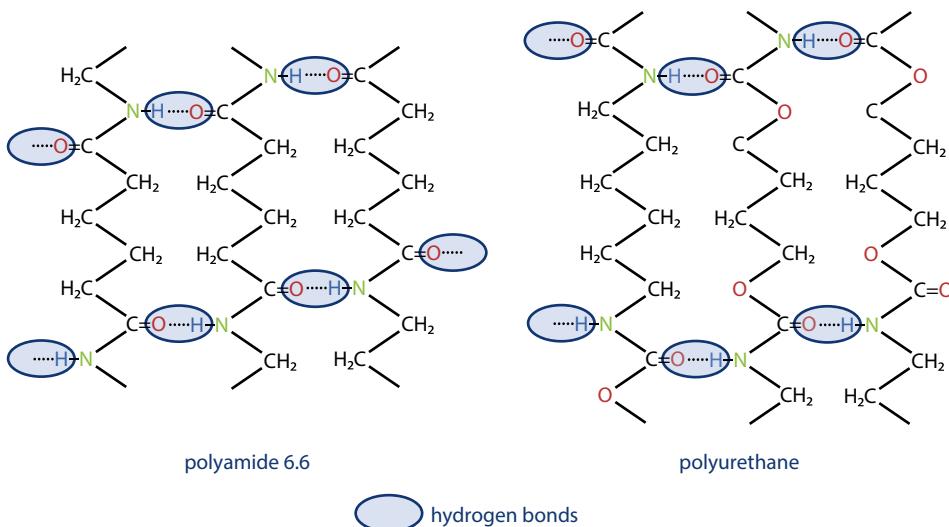

6.5 Conclusion	457
6.6 References	458
A Recommendations for Writing a Bachelor's/Master's Thesis at the IKT	461
A.1 Different Demands of Bachelor's, Master's, and Doctoral Theses	461
A.2 Scientific Methods	462
A.2.1 Source-Examining Methods	462
A.2.2 Theoretical Methods	462
A.2.3 Empirical Methods	463
A.3 Scientific Work	463
A.4 Bachelor's or Master's Thesis	464
A.4.1 About the Title of the Thesis	465
A.4.2 About the Content of the Thesis	465
A.4.2.1 Summary	465
A.4.2.2 Introduction	466
A.4.2.3 Main Part	466
A.4.2.4 Concluding Remarks	467
A.4.2.5 Appendix	467
A.4.3 About the Scope of the Thesis	467
A.4.4 About the Writing Style of the Thesis	468
Index	471

Figure 2.16 Dipole-dipole forces


Hydrogen Bonds

Hydrogen bonds are a special form of the dipole-dipole bond and are formed by a hydrogen atom covalently bonded to a much more electronegative atom (e.g. O, N, F) whose common electrons are shifted in the direction of this atom (Figure 2.17).

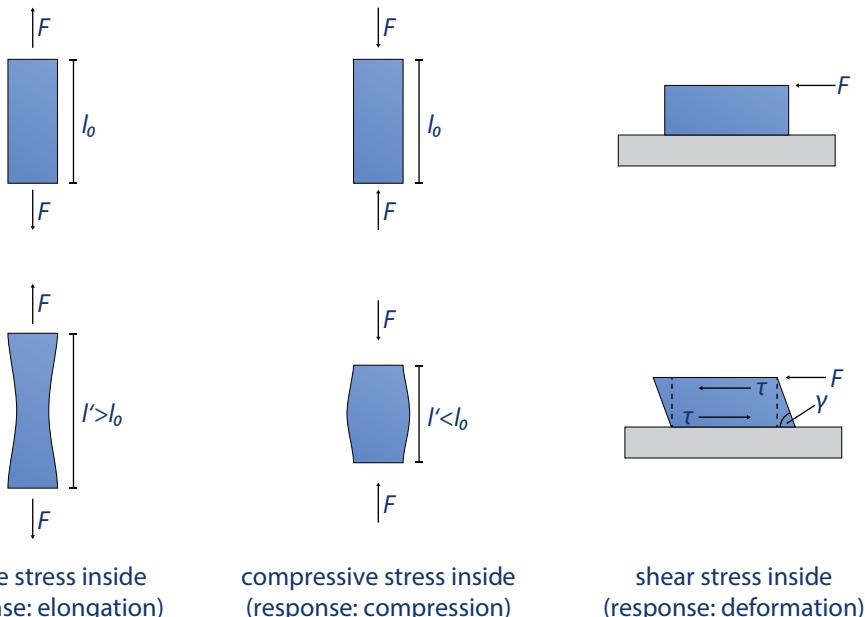
Figure 2.17
Hydrogen bonds

The hydrogen atom, which is partially positively charged by the electron shift, is more strongly bound to another electronegative atom of a second macromolecule and thus acts as a “hydrogen bridge” between the two molecule chains. With ~ 20 kJ/mol, this strongest type of intermolecular force reaches the order of weak main valence bonds. Figure 2.18 shows hydrogen bonds in polyurethane (PUR) and polyamide (PA).

Figure 2.18 PA66 and PUR as examples for formation of hydrogen bonds

Induction Forces

Induction forces are very weak secondary valence bonds. Molecules with permanent dipoles can cause electron shifts in adjacent nonpolar molecules and thus induce dipole moments. The binding energy is only 1/500 to 1/2000 of a main valence bond.


In summary, the following applies to the secondary valence forces already listed: a prerequisite for the occurrence of dipole-dipole forces and/or induction forces is the presence of permanent dipoles.

Dispersion Forces

With binding energies of 1/500 to 1/1000 of a main valence bond, dispersion forces (also Van der Waals forces, London dispersion forces) are also very weak. By random movement of the electrons and the resulting deformations of the electron cloud, momentary dipoles are formed even in non-polar molecules. These rapidly varying dipoles, which compensate each other to zero on a time average, also induce dipoles in the neighboring molecules in the rhythm of their own frequencies, but they are not permanent.


To illustrate this, Figure 2.19 shows spheres strung together as atoms which are connected to each other by main valence bonds and form polymer chains. Between the polymer chains there are secondary valence forces of different kinds, depending on the atoms of the polymer chain.

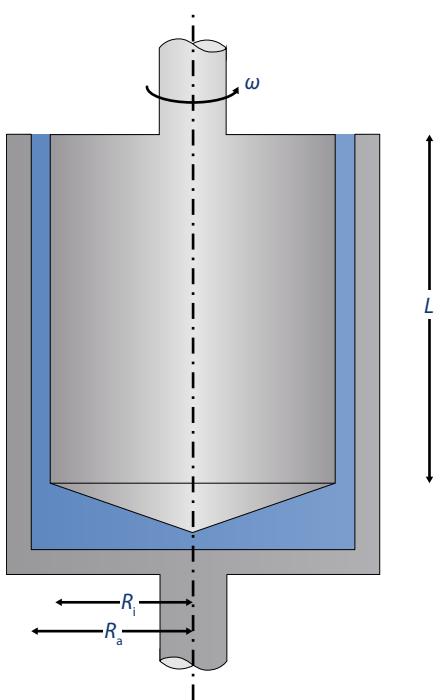
The mechanical stress of solids and fluids can basically be described by normal stresses (tension/compression) and shear stresses (Figure 2.40). If tensile stresses occur, the body responds with “elongation”. If compressive stresses occur, the result is called “compression”. If shear stresses occur, the result is “shear deformation”.

Figure 2.40 Typical stresses and their responses

Figure 2.41 lists some frequently occurring superimpositions of stresses: “peeling” is only possible with flexible (soft) components. The crack propagation front is always the main force application point, which is why the peeling stress is considered to be very challenging. A bending load, e. g. in the bar shown here, generates a compressive load (with resulting compression) on the underside and a tensile load (with resulting elongation) on the top. The virtual “neutral fiber” is neither stretched nor compressed. Torsional stress generates shear, tensile, and compressive stresses with their respective responses of shear deformation, elongation, and compression in the torsioned component. Here, as well, there is no stress in the neutral fiber, which is identical to the torsion axis in the picture.

Figure 2.41 Superimposed stresses

2.2.2 State Ranges of Plastics


For the mechanical behavior of plastics under temperature changes, we remember that the molecular motion of the long polymer chains also correlates with the absolute temperature. They “oscillate” more strongly at higher temperatures, resulting in an increase in their mean oscillation distance. A larger oscillation distance on average over time also means lower secondary valence forces and thus the possibility that the molecule chains slide against each other with less force and the material expands.

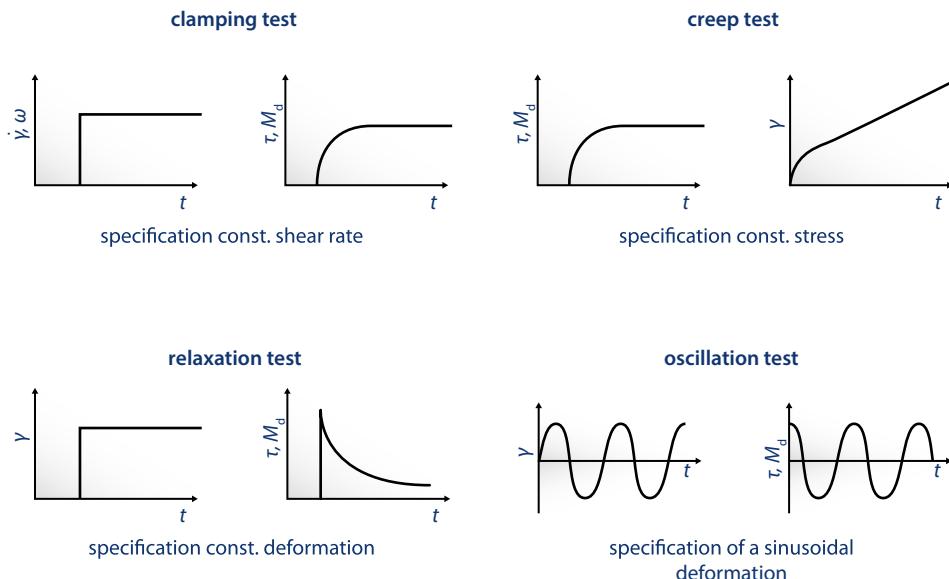
2.2.2.1 Glass Transition Temperature T_g

Glass transition is the softening of the amorphous molecular structures due to increasing Brownian molecular motion during heating. The thermoplastic changes from a brittle-stiff to an elastically flexible (“thermoelastic”) state (Figure 2.42). Amorphous thermoplastics undergo continuous change to the plastic (“thermoplastic”) state as the temperature continues to rise.

Plastics manufactured from amorphous polymers are generally used below their glass transition temperature, as they only have sufficient strength for use there. However, primary forming (see Chapter 4 “Processing”) takes place far above this softening temperature, at which the amorphous polymer flows with as little resistance as possible.

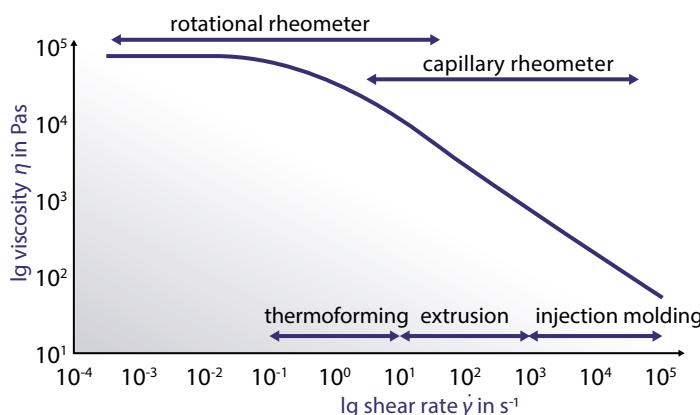
The **Couette rheometer** (Figure 3.33) is made of two concentrically arranged cylinders in which the sample is subjected to a shear flow by rotation of a cylinder. The large shear areas on the cylinder walls allow large torques even with low flow resistance, so that even low-viscosity substances such as monomer solutions can be measured. A disadvantage, however, is that highly viscous thermoplastic melts cannot be measured. There are also error influences due to the flow in the bottom area and on the concentric circular ring surface.

Figure 3.33
The Couette rheometer


Experiments with Rotational Rheometers

With rotational rheometers, different types of tests can be performed on melts (Figure 3.34). With a constant speed and thus a constant shear rate, the resulting shear stress can be determined by means of the torque setting. In this so-called **clamping test**, the viscosity function for small and medium shear rates can be determined by varying the speed and thus the shear rate.

A rotational rheometer can also be used to apply a constant shear stress and record the increasing shear. This is called a **creep test**. Conversely, a constant deformation and thus shear can be induced in the **relaxation test** and the spontaneous shear stress can be measured with its decay over time.


In the so-called **oscillation test**, oscillating shear is induced and the resulting torque/shear stress is measured. The vibration test mainly provides information about the viscoelastic behavior of the melt. A phase shift between 0° (purely elas-

tic behavior) and 90° (purely viscous behavior) occurs between the shear angle and the shear stress response, which can be used to characterize the viscoelastic properties of the plastic melt. The storage and loss modulus (G' , G'') as well as the loss factor $\tan \delta$ can be determined.

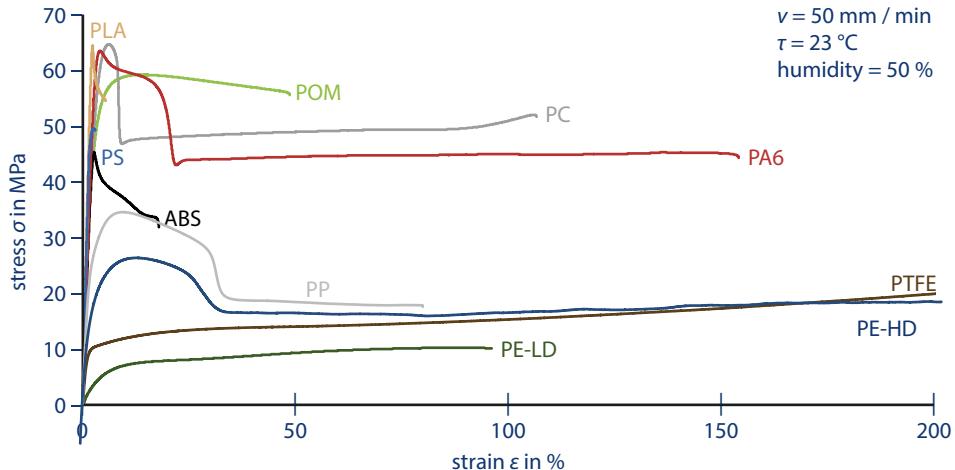


Figure 3.34 Different types of experiments with rotational rheometers

The qualitative viscosity curve shown in Figure 3.35 shows the shear rate range in which the various rheometers operate. The high-pressure capillary rheometer cannot achieve very low shear rates, but it can map the entire shear rate range relevant for plastics processing: from the very slow flow processes in thermoforming, through extrusion, to injection molding at very high shear rates.

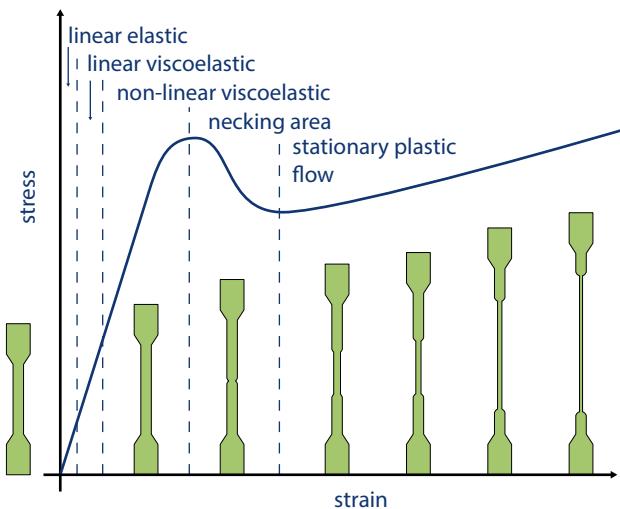
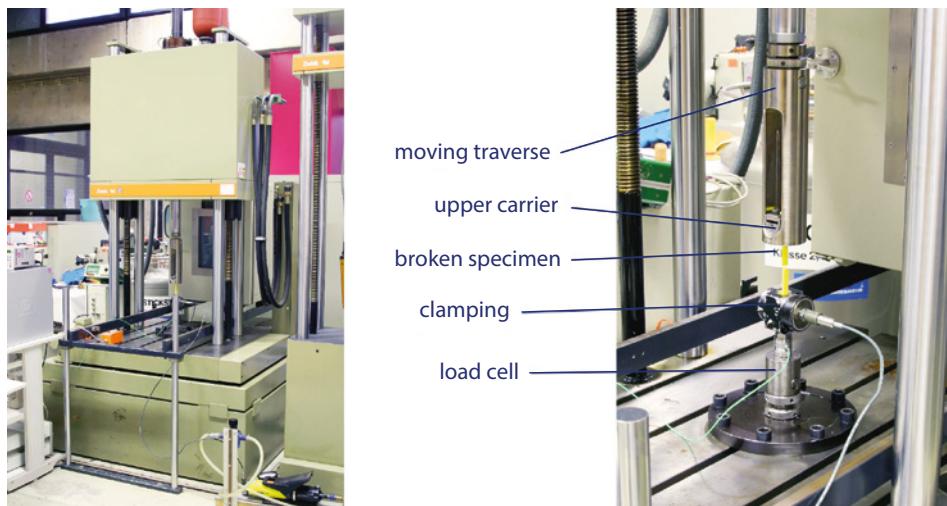


Figure 3.35
Application range of capillary and rotational rheometers

Figure 3.40 Comparison of different thermoplastics

Figure 3.41 qualitatively shows a typical stress-strain curve of a semi-crystalline thermoplastic. Close to the origin, i.e. in the range of small strains, plastics, including thermoplastics, behave in a linearly elastic manner. This means that after minor deformation they would spontaneously “reset” to their original state.


Figure 3.41
Deformation behavior under load; according to [3]

If one stretches a little further, a flow is superimposed, which can reset itself over time: here the material behaves linearly viscoelastically. In the further course of elongation, irreversible unloops, crazes, and microcracks, i.e. an irreversibly plastic deformation, are added. From now on, the material behaves as nonlinearly viscoelastic overall, because it still partially resets after relief.

Only after exceeding the yield point do the viscous behavior and the plastic deformation dominate, also recognizable by the constriction of the test specimen with a cross-sectional change. The elastic recovery is very low here.

3.2.1.2 The High Speed Tensile Test

Special testing machines allow for tensile tests at very high speeds. Figure 3.42 shows the high speed tensile testing machine of the IKT with test speeds of up to 20 m/s (!). In the background you can see the temperature chamber retracted here, very similar to that of the quasi-static tensile test (see above), so the temperature influence can also be recorded. An upper carrier grips a transverse yoke, which is attached to the upper part of a tensile specimen. The lower clamping is operated hydraulically.

Figure 3.42 High speed tensile testing machine of the IKT

Characteristic for this test arrangement is the uniaxial tensile stress with determination of a stress-strain curve as in the quasi-static tensile test, but at very high speeds. Compared to the impact tensile test with a pendulum impact tester (see below), very high loading speeds can be applied and set at different heights. The specimen is also deformed at a constant speed, while an impact pendulum slows down when it hits the ground (see below). Stresses and strains can be measured fully instrumentally. A disadvantage is certainly the far greater equipment effort compared to an impact pendulum.

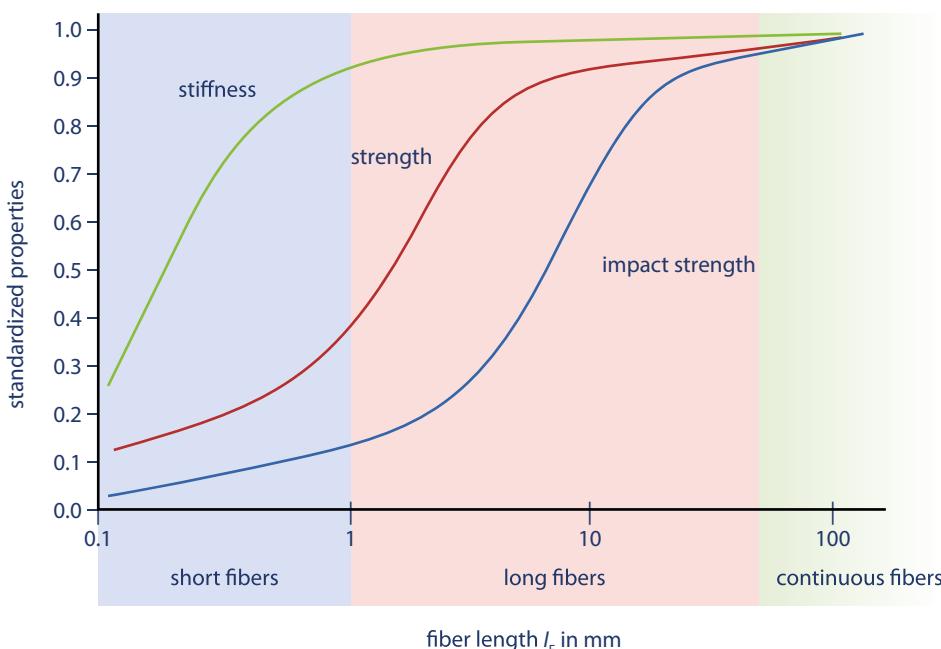
Figure 3.43 shows the behavior of polyoxymethylene (POM) at room temperature under load with very different strain rates. Lower strain rates result in greater strain at lower strength, while very high loading rates show less strain at higher strength.

This is changing right now. In 2009, BMW and carbon fiber specialist SGL Carbon (formerly Hoechst AG) founded the joint venture SGL Automotive Carbon Fibers. This ensures that BMW and its subsidiaries have an exclusive supply of carbon fiber-based materials and technologies. At the IAA 2013, BMW launched the i3, the world's first mass-produced vehicle with a passenger cell made of carbon fiber-reinforced plastics (CFRP). The chassis is still made of aluminum, and the electric motor has 125 kW (170 hp).

Figure 3.97

Leisure applications made of fiber-reinforced plastic composites

[Image source: IKT, IFB, Löhmann]


Fiber-reinforced plastic composites are also used in leisure applications. Figure 3.97 shows a boat hull made of glass fiber reinforced plastic (GFRP) (top), a bicycle frame made of carbon fiber reinforced plastic (CFRP) (middle), and the electric aircraft “e-Genius” (bottom), which is made entirely of carbon fiber reinforced plastic and manufactured by the Institute of Aircraft Construction (IFB) of the University of Stuttgart. These components, including the bicycle frame, are manufactured in small series.

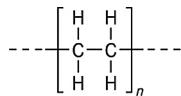
3.3.1.1 Fibers and the Principle of Reinforcement

A small insight into textile technology is helpful: mostly glass fibers, carbon fibers (inorganic), or aramid and natural fibers (organic) are used. The individual threads are called filaments and have a diameter d of 5 to 50 μm . The fiber bundles used can be divided into the following groups depending on their length:

- 0.1 to 1 mm (short fibers) $l/d > 10$
- 1 to 50 mm (long fibers) $l/d > 1000$
- > 50 mm (continuous fibers) $l/d = \infty$

Figure 3.98 schematically illustrates how the stiffness, strength, and impact strength of plastics can be influenced as a function of fiber length. While the stiffness of even short fibers is strongly influenced, only long fibers and continuous fibers show a sharp increase in strength and impact strength.

Figure 3.98 Fiber lengths influencing the mechanical properties of fiber-reinforced plastic composites [5]]


Abbreviation	Name	Section
High-performance thermoplastics		
PTFE	polytetrafluoroethylene	3.23
PEEK	polyether ether ketone	3.24
PES, PSU	polyethersulfone, polysulfone	3.25
PPS	polyphenylene sulfide	3.26
Thermoplastic biopolymers and bioplastics		
CA, CAB, CP	cellulose derivatives	3.27
PHA	polyhydroxyalkanoates	3.28
PLA	polylactide	3.29
Thermoplastic elastomers and other elastomers		
TPE-U/TPU	thermoplastic polyurethane	3.30
PUR	polyurethane	3.31
EPDM	ethylene-propylene-(diene) copolymer	3.10
Thermosets		
EP	epoxy resin	3.32
MF	melamine formaldehyde resin	3.33
PF	phenol-formaldehyde/phenol resin	3.34
UF	urea-formaldehyde resin	3.35
UP	unsaturated polyester resin	3.36

■ 3.8 Polyethylene (PE)

Semi-crystalline standard thermoplastic

Brief Description

Polyethylene can be produced in various polymerization processes that lead to a less or more branched chain structure.

Processing

Polyethylenes can be converted in all processing methods usual for thermoplastics. All welding processes, except high-frequency welding, can also be used. Due to the non-polar structure, gluing and coating are only applicable after pre-treatment of the surfaces.

Properties during Use

Polyethylene crystallizes to different degrees due to the different types of production. The mechanical properties increase with crystallinity. Low density polyethylene (PE-LD) is not very stiff and very ductile. Therefore, it is rarely used as a construction material, mostly as a film.

High density polyethylene (PE-HD) can be used as a construction material despite the still low level of mechanical properties versus engineering plastics. It is quite strong, stiff, and very tough, shows low creep, and is moderately heat resistant. Its sliding wear and electrical properties are good, and its water absorption is low. Its chemical properties are excellent: it is resistant to salt solutions, acids, alkalis, alcohols, and gasoline (petrol). Below 60 °C it is insoluble in all organic solvents, but swells in aliphatic and aromatic hydrocarbons. Strong oxidizing agents such as fuming sulfuric acid, concentrated nitric acid, and chromium sulfuric acid attack polyethylene. Polyethylene is unstabilized, not UV-resistant, and burns like wax.

Fields of Application (Selection)

Structural components: toys, medical applications, gas and gasoline tanks, chemical containers (welded from semi-finished products), canisters, garbage cans, suitcases, simple garden seating, household cans, and bottle crates.

Other components: packaging, closures, piping.

Trade Names (Selection)

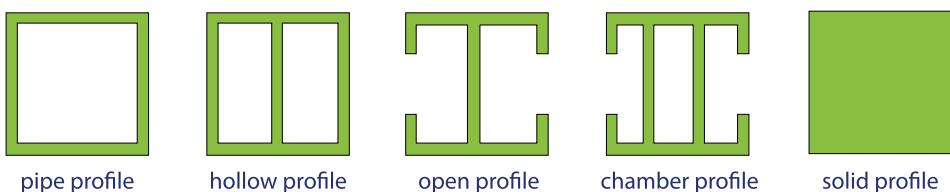
Alathon, Dowlex, Eltex, Eraclene, Escorene, Finathene, Fortiflex, Formolene, Hostalen, Lacqtene, Lupolen, marlex, Microthene, NeoZex, Novapol, Perothene, Polisul, Rigidex, Sclair, Sholex, Samylan, Samylex, Sumikathene, Unipol, Vestolen

Good Advice

Polyethylene is inexpensive and versatile. If the requirements for mechanical properties, especially those at higher temperatures, are not too high (low stiffness!), polyethylene can also be used for complex shaped parts.

Properties of Polyethylene

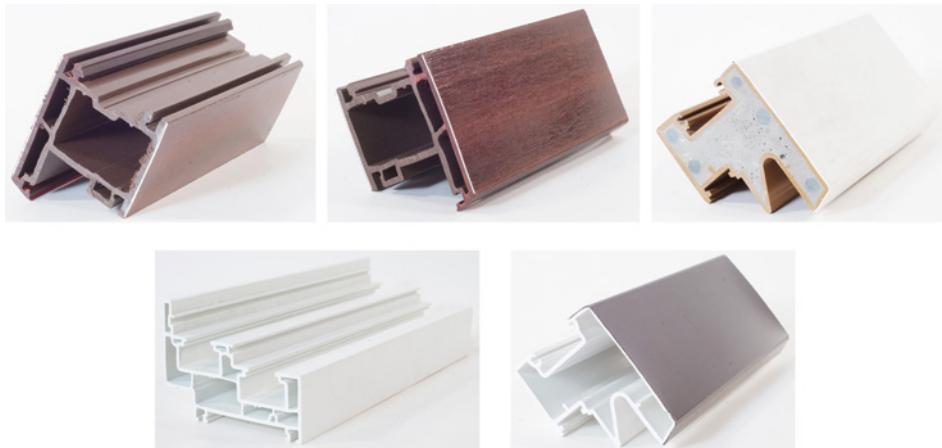
See Table 3.9.


annular melt is divided several times by the spider legs. This can lead to flow marks and mechanically weak points on this pipe.

In terms of flow dynamics, the spider legs should offer as little flow resistance as possible, i.e. be slim. However, it must be ensured that they keep the mandrel holder and the mandrel rigid in the tool. A solution is offered by somewhat more expensive double mandrel holders (Figure 4.18). They divide the melt several times, slightly offset, and lead to lower flow markings and better mechanical properties of the pipes.

Figure 4.18
Double mandrel holder

Figure 4.19 shows other common profile types that are manufactured in a very similar way. A distinction is made between the full profile and the pipe profile, the hollow profile, the open profile, and the chamber profile. Figure 4.20 shows typical examples of chamber profiles with window profiles.


Figure 4.19 Profile cross-sections

QR-Code 4-4

The video shows the extrusion of a PVC window profile: die exit, calibration, cooling, pull-off unit and assembly (Aluplast GmbH, Karlsruhe).

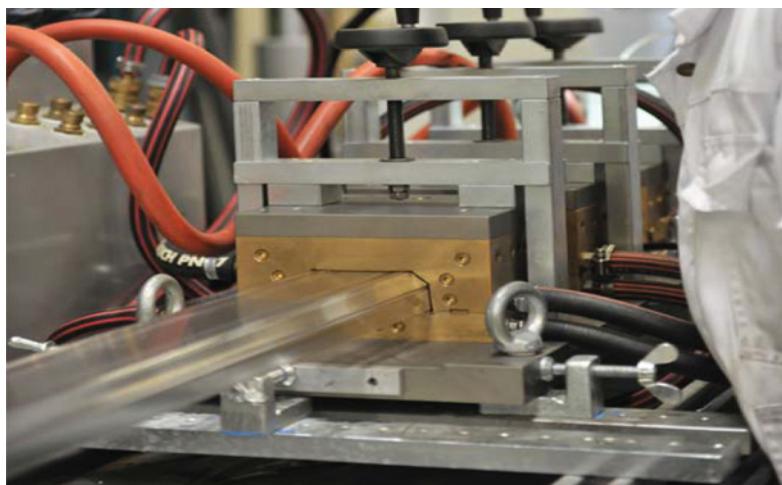

<http://www.ikt.uni-stuttgart.de/links/Videolinks/Profileextrusion>

Figure 4.20 Window profiles

The die exit usually does not have exactly the same shape and dimensions as the later profile (Figure 4.21). The shape and dimensions of the extrudate strand are influenced by several factors after leaving the die:

- the pull-off force,
- the die swell (see Section 3.1.6),
- the relaxation processes in the melt, and
- the cooling rate.

Figure 4.21 Profile extrusion [Image source: Technoform Kunststoffprofile GmbH]

Further remedial measures against component warpage are listed here:

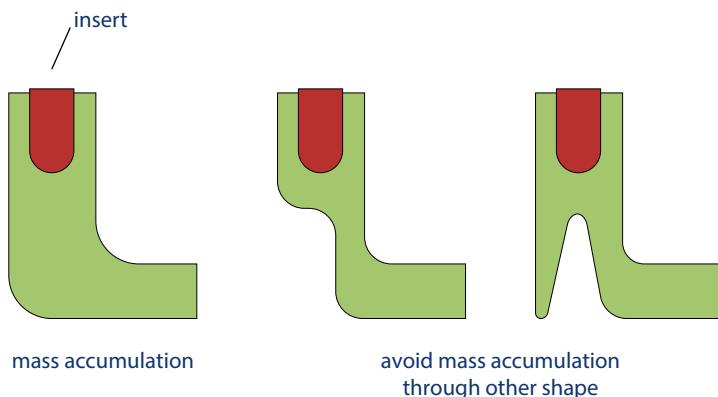
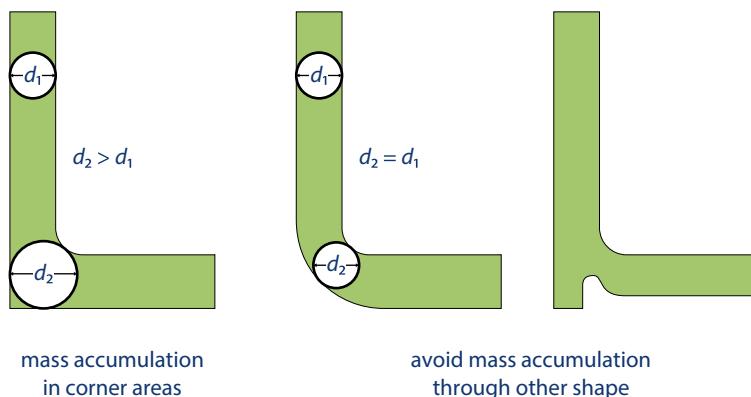

- Mold temperature as uniform as possible
 - Cooling time as long as possible
(possibly expensive)
 - Annealing under form constraint
(additional step: expensive)
- } Process engineer
- Selection of a stiff material
 - Insertion of stiffening elements
(ribs, stepped zones, ...)
 - uniform wall thicknesses
- } Product developer/designer

Figure 5.33


Broken door handle with void and brittle fracture

If an insert is to be overmolded, the mass accumulations associated with this can also be reduced by rethinking the shape. The designer's creativity is required here (Figure 5.34)!

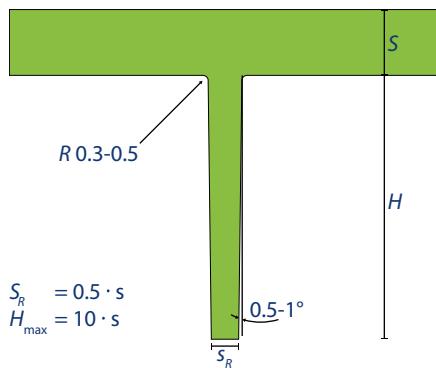

Figure 5.34 Avoidance of mass accumulations

Figure 5.35 gives suggestions for avoiding mass accumulations in the corner areas of a component.

Figure 5.35 Avoidance of mass accumulations in the corner area [12]

Ribs should also be relatively thin-walled in order to enable rapid heat dissipation and thereby keep the cooling time to a minimum. If component stiffness is not achieved, the number of ribs should be increased rather than their thickness. Figure 5.36 shows empirically determined design recommendations.

Figure 5.36
Dimensioning recommendation – empirically determined

As a reference value for the rib thickness S_R and the rib height H is valid:

$$S_R \approx 0.5 \cdot S \quad (5.3)$$

$$H_{\max} \leq 10 \cdot S \quad (5.4)$$

Index

Symbols

3D printing 412

A

ABS 193
absorption 114
acrylic ester-styrene-acrylonitrile 10
acrylonitrile 434
acrylonitrile-butadiene-styrene copolymers 207
acrylonitrile-styrene-acrylate copolymers 208
additives 47, 137, 154, 169, 433
adhesive 47
adhesive bonding mechanism
- chemical 344
- physical 344
aging 35, 179, 364, 404
- accelerated 404
aging mechanisms
- chemical 184
- mechanical 182
- physical 182
aluminum 2
anisotropy 138, 144
annealing 176
antioxidants 187, 434
Arrhenius equation 405
assembly injection molding 293

B

back injection technology 298
Baekeland, L. H. 3
Bagley correction 88
Bakelite 3

ball joint connection 347
barrier effect 350
barrier element 165
barrier layer 137, 270
barrier screw 259
Bayer, O. 4
bending test 107
benzene 434
binding nature 28
bio-based 441, 458
biodegradable 437, 442, 458
biomass 442
bioplastic 437
biostabilizers 187
biosynthesis 14
Bisphenol A 434
blend 19, 35, 157, 446
blowing agent 179, 308
blown film extrusion 267
braiding 321
breaking stress 50
brittle 49
Brownian molecular motion 32, 44, 52
Brundtland Report 448
Burger model 59

C

cantilever chair 10
caprolactam 145
CARPOW approach 78
Carreau approach 72
cascade injection molding 291
catalyst 18, 35
cavity 275, 280, 293, 313
celluloid 3
cellulose 15

- ceramic radiator 325
 chain growth reaction 17
 channel depth 252
 cheap image 8
 clamping unit 274, 279
 CO₂ footprint 453
 CO₂-neutrality 442
 coating 350, 354
 - hydrophilic 350
 - hydrophobic 350
 coatings 47
 co-extrusion 270
 coloring 8
 composite injection molding 293
 compounding 65, 157, 162
 - of biopolymers 446
 compression 51
 compression molding 304
 compression zone 251
 computed tomography 151
 concept phase 408
 conductivity 350
 configuration 36
 conformation 38
 conservation of resources 450
 constitution 36
 consumer goods 8
 contraction 85, 173, 287
 - thermal 173
 conveying element 165
 conveying zone 168
 cooling rate 44
 cooling time 275, 335, 393
 copolymer 19, 158
 core component 295
 core layer 177
 coupling agents 159
 craze 57
 creep test 103
 crosslinking 33, 35, 303, 308, 313
 crosslinking density 33
 crystalline melting temperature 53, 127
 crystallization 40, 172, 177
 cycle time 286, 335
- D**
- damper 57
 damping 121
 decomposition temperature 54
 degassing zone 168
 degree of crystallization 41
 degree of stretching 327
 delamination 148
 demolding system 280
 density 127, 307, 362
 design 8
 - material-specific 383
 - mechanical 281, 396
 - production-oriented 393
 - rheological 281, 311
 - stress-oriented 396
 - thermal 281, 283
 design engineering 60
 design freedom 8, 375
 desorption 133
 die
 - extrusion 163, 250
 dielectric strength 111
 die resistance 256
 die swell 83, 263
 differential scanning calorimetry 125, 189
 diffusion 134
 dipole-dipole forces 29
 discharge zone 257
 dispersion forces 31
 disposal route 441
 draft angle 395
 drilling 332
 ductile 49
 dwell time
 - average 169
- E**
- ecotoxicity 439
 edge layer 177
 elaboration phase 408
 elastic 56
 elastic shear modulus 156
 elastomer 33, 54, 302, 305
 - thermoplastic 35
 electrical engineering 3
 electron gas 27
 elongation 51
 elongation at break 50, 157
 elongation at yield 50
 embrittlement 187
 energy
 - specific 168

- energy efficiency 451
 energy generation
 - regenerative 455
 - renewable 458
 enthalpy
 - specific 123
 epoxy resin 144, 241
 ethylene 14
 ethylene-propylene-(diene) copolymers 197
 extensibility 363
 extensional rheometer 94
 extruder screw 251
 extrusion blow molding 268, 299
 extrusion welding 337
- F**
- feed zone 166, 251
 feel 8
 fiber
 - aramid 143
 - breakage 148
 - carbon 140, 143
 - chemical 47
 - continuous 141, 312, 315, 316, 319
 - glass 138, 143
 - long 141, 312, 315
 - natural 47, 143
 - neutral 51
 - orientation 313
 - reinforcement 144
 - semi-finished product 142
 - short 141, 176, 312, 313
 fiber plastic composite 455
 fiber-reinforced composite 452
 fiber reinforced plastic
 - three-dimensional structures 321
 fiber-reinforced plastic composite 311
 fibers 138
 fiber spraying 313
 fiber winding 322
 fillers 35, 137, 162
 - organic 162
 film
 - barrier 429
 film hinge 378, 396, 402
 filter model 366
 flame retardants 434
 flank
 - pushing 256
- flat film extrusion 265
 flight clearance 252
 flight width 252
 flow
 - laminar 285
 - turbulent 285
 flow activation energy 76
 flow aids 154
 flow behavior
 - Newtonian 68
 - shear thinning 68
 flow marks 262
 fluid injection technology 297
 foam 178, 291, 307
 - closed-cell 178
 - open-cell 178
 food packaging 6
 forced conveying 256
 forced deformation 395
 formaldehyde 434
 forming 323
 fragmentation 431, 439
 friction block 58
 friction properties 350
 fuel cell 456
 functional elements 375
 fused deposition modeling 413
 fused filament fabrication 413
- G**
- Geiger, K. 78
 glass mat reinforced 316
 glass transition 52, 126
 global warming potential 453
 glucose 15
 Goodyear, C. 35
 granulation. *See* pelletizing
 greenhouse gases 448
 grinding 331
 grooved barrel extruder 252
 Grünschloß, E. 258
- H**
- hand lamination 312
 hardener 303, 313
 heat capacity
 - specific 124, 364
 heat penetration coefficient 133

heat transfer 334
heavy metals 440
Helibar® 258
helix angle 252
Henry's law 134
high speed tensile test 99
holding pressure phase 275, 287
hormone active 434
hot gas welding 337
hot plate welding 335
Hyatt, J.W. 3
hydrogen bond 30
hydrolysis 186

I

impact bending test 108
impact modifiers 157
impact strength 108
induction forces 31
infrared spectroscopy 189
initiator 16
injection-compression molding 290
injection molding 10, 272, 306
– special processes 289
injection molding compounding 292
injection molding cycle 275
injection molding machine 273
injection nozzle
– open 278
injection phase 286
injection stretch blow molding 299
injection unit 273, 277
inline production 329
innovation material 8
insert 380
insulation 451
integral foam 308
interferometry 150
intermediate fiber breakage 148
investment casting 417
isotropy 144

J

joining 347

K

Keltool 419
Klatte, F. 4
Kyoto Protocol 448, 454

L

La Chaise 9
lamella 45
laminate 147
laminated object manufacturing 411
laser sintering 419
– selective 410
laser welding 341
L/D ratio 169, 252
leakage current 256
life cycle assessment 453
light stabilizers 187, 434
lightweight construction 5, 138, 452
load
– dynamic 363
long-range order 40, 43
loss factor 89, 93, 122
loss modulus 89

M

macromolecule 14, 28
main valence bond 27
mass accumulation 286, 387
mass throughput 168
material preselection 365
materials engineering 60, 65
matrix 144
Maxwell model 58
mechanical machining 330
melamine formaldehyde resin 242
melt channel 259
melt filter 170
melt flow index 86
melt flow rate 86
melt front 175
metabolism 438
metallic bond 27
metal spraying 417
metering zone 251, 253
microplastic 431
migration-capable 433

milling 330
 - circumferential 331
 - form 331
 mixing
 - dispersive 152, 164
 - distributive 164
 mixing element 165
 - dispersive 258
 - distributive 258
 mixing rule 145
 molar mass 22, 155, 433
 molar mass distribution 22, 76, 188
 mold
 - injection 280
 - open 326
 mold filling simulation 394
 monomer 13, 145
 - residual 434
 multi-axial fabrics 142
 multi-head system 339
 multi-station machine 328

N

nanoparticles 152
 nanotubes 153
 naphtha 14
 negative forming 324
 non-return valve 277
 non-uniformity 23
 normal stress 51
 notched impact strength 157
 notch effect 396
 nucleating agents 159

O

oil price 443
 oligomer 14
 one-dimensional flow 66
 opacity 40, 117
 organic sheet 299, 318
 orientation 334
 - fiber 142, 146, 176, 385, 394
 - molecular 118, 172, 174, 385, 394
 oscillation test 92
 outsert 378
 overflow mold 304
 oxidation 185

P

Panton, V. 10
 parallel axis theorem 381
 pelletizing
 - cold 171
 - dry 171
 - hot 171
 - strand 171
 - underwater 171
 - wet 171
 percolation threshold 111
 permeation 134, 135
 peroxide 35
 PET 193, 217, 435, 454
 phenol-formaldehyde resin 243
 phenol resin 243
 photovoltaics 456
 phthalates 434
 phyllosilicate 153
 pipe extrusion 261
 pitch 252
 plastic 8, 57
 plastic behavior 323
 plastic bottles 6
 plastic carrier bag 454
 plastic dust 431, 439
 plasticizers 155, 434
 plasticizing zone 166
 plastics
 - engineering 191
 - high-performance 191
 - standard 191
 plastics consumption 6
 plastics technology 60
 plastic waste 427, 430, 457
 plate machine 328
 PMMA 193
 polarization filter 44
 polishing 331
 polyaddition 21, 308
 polyamide 4, 193, 211
 polybutylene terephthalate 216
 polycarbonate 5, 193, 220
 polycondensation 19
 polydispersity 23
 polyether ether ketone 228
 polyethersulfone 230
 polyethylene 4, 18, 193, 194
 polymer 13, 60, 433

polymer chemistry 13
polymerization
- *in situ* 145
polymer membrane 456
polymer synthesis 16
polymethyl methacrylate 4, 222
polyolefin 193
polyoxymethylene 224
polyphenylene sulfide 232
polypropylene 193, 196
- long glass fiber-reinforced 10
polystyrene 4, 18, 193, 202
- expanded 4, 193, 451
polysulfone 230
polytetrafluoroethylene 193, 227
polyurethane 4, 10, 21, 193, 240, 307,
 451
porcelain 2
positive forming 326
power law approach 72
preform 299, 319
prepreg 318
pressure build-up zone 168
pressure drop 88, 393
pre-stretching 327
pre-stretch plug 324
primary forming 8, 52
primary shaping 249
primary structure 36, 41
processing 65, 172, 364
processing technology 60, 249
product development 361
products
- complex 370, 423
- container-like 369, 422
- housing-like 368, 421
- large-area 368, 421
profile extrusion 262
properties
- acoustic 120
- electrical 110, 365
- magnetic 112
- optical 113
- physical 110
propylene 14
prototype 408
- concept model 420, 423
- functional 420, 422, 424
- geometry 420, 422, 424
- technical 420, 422-424

pultrusion 316
PVC 4, 18, 156, 193, 200, 434

R

radical 16, 35
rapid prototyping 408
rapid tooling 284, 415
raw materials 65
- fossil 13, 430, 441
- renewable 14, 441
reaction injection molding 310, 415
recovery
- energy 429
- material 429
recyclability 353
recycling 428
reduction factor 400
reference stress 398
reflection 114
refractive index 116
Regnault, H. V. 4
reinforcing materials 137
relaxation 104
repeating unit 18
replacement model
- mechanical 56
reptation model 70
residual stress 130, 172, 173, 334
resin 303, 313
resin injection molding 319
resin injection processes 322
resin molding 416
resin nest 148
resin transfer molding 319
resource conservation 458
retardation 104
rheology 66
rheometer
- extensional 94
- high-pressure capillary 87
- rotational 89
rheometry 85
rib 380, 388
- intersection 391
ring snap connection 347
riveting 349
roll machine 328
roving 142
rubber 305

S

sagging 155
 sandwich injection molding 295
 sawing 330
 Schlack, P. 4
 Schnell, H. 5
 screw boss 377, 392, 399
 screw connection 348
 screw vestibule 277
 sealing time 275
 secondary structure 38
 secondary valence bond 29, 40
 semi-crystalline 40
 semi-finished product 324
 service life prediction 404
 shear 174
 shear deformation 51
 shear edge mold 304
 shear modulus 89
 shearography 150
 shear rate 68
 - transition 73
 shear stress 51, 67
 shear thinning 68
 sheet molding compound 313
 short-range order 40
 shrinkage 85, 385
 single-screw extruder 250
 single-station machine 328
 sink marks 386
 size exclusion chromatography 26
 skin component 295
 smooth-bore extruder 252
 snap connection 347, 376
 sonotrode 339
 sorption 133
 specification 371
 spherulite 43, 159
 spring 56
 sprue system 280, 282
 stabilizer 186
 stamping gap 290
 starch 15
 Stastny, F. 4
 Staudinger, H. 4
 step growth reaction 19
 stereolithography 409, 416
 stiffness 48
 storage modulus 89

strain 49
 - critical 402
 - outer fiber 401
 - permissible 401
 strength 48, 363
 stress 49
 - permissible 398
 stress at break 50
 stress cracking 183
 stress-strain curve 98
 stress-strain diagram 49
 styrene 434
 styrene-acrylonitrile copolymers 204
 styrene-butadiene-styrene copolymers 203
 surface moment of inertia 307, 380

T

tacticity 36
 tape laying 322
 temperature-control medium 284
 temperature control system
 - variotherm 301
 temperature shift 75
 tensile strength 50, 363
 tensile test 96
 tertiary structure 43
 textile technology 47
 thermal conductivity 128, 364
 thermal diffusivity 131
 thermal endurance graph 405
 thermal expansion 130, 364
 thermoelastic 52
 thermoforming 323
 thermography 149
 thermoplastic 33, 52, 144
 - amorphous 40, 52, 367
 - semi-crystalline 53, 367
 thermoplastic foam injection molding 291
 thermoplastic injection molding 274
 thermoplastic polyurethane 239
 thermoplastic pultrusion 317
 thermoplastics
 - semi-crystalline 40
 thermoset 33, 54, 144, 302
 three-zone screw 251, 277
 tie molecules 45
 time-temperature superposition principle 102, 405
 tool 249

tool resistance 256
toughness 48–50
toxicity 432, 457
transducer 339
transfer molding 305
transition zone 251
transmission 114
transmission electron microscope 45
transmission welding 341
transparency 114
turning 333
turntable 293
twin-screw extruder 157, 163
– co-rotating 163, 166
– counter-rotating 163

U

ultrasonic welding 339
ultrasound 151
undercut 394
undulation 148
unsaturated polyester resin 245
urea-formaldehyde resin 244
utilization
– energetic 442

V

vacuum casting 416
valence bond
– covalent. *See* main valence bond
valence electron 27, 28
Van der Waals forces 31
variothermal mold temperature control 301
VARI procedure 320
vibration friction welding 340
vibration test 105

vibration welding
– biaxial 340
– linear 340
viscoelasticity 58
viscometer (*See also* rheometer)
– Ubbelohde 25
viscosity 53, 145, 155
– apparent 79
– representative 79
– shear 68
– strain 82
– structural 287
– true 79
– zero 71, 73
viscous 57
void 386
volume
– free 136
– specific 127
vulcanization 35, 306

W

wall adhesion 67
wall thickness distribution 324
warpage 383
– angular distortion 383
welding 333
welding cycle 335
weld line 175, 394
weld seam 334
wetting 350

Y

yield point 78
yield strength 50
Young's modulus 56, 97, 145