Index

а	– in cancer therapy 116	
absorption coefficient 103	– in vaccine development 53, 54, 144	
Aβ peptide, see peptide	antimicrobial peptides (AMPs) 247, 251,	
activation agents 9	253, 254, 256, 258	
adhesion	assays	
– adhesion force(s) 72, 73, 80	– chloramphenicol transacetylase	
– adhesion phenomenon 81	(CAT) 310, 311	
- cell adhesion 80	- cyclic luciferase 315	
adjuvant, effect on immune response 144	- for analysis of biological interactions 230,	
alcohol dehydrogenase (ADH)	232	
inhibition 206–209	- growth inhibition 114, 125, 127	
Aldrich 111	– protein-fragment complementation	
Alzheimer, Alois 193 (PCA) 323–326		
Alzheimer's disease 101	– protein-splicing assay (PSA) 315,	
– role of β sheets 193	326–331	
- symptoms 193, 194	- two-hybrid 314, 317	
- treatment 194, 195	atomic force microscopy (AFM)	
amino acids, role in membrane rupture	- cantilever 73, 74, 76, 89	
process 252	– in study of composite fibers 14, 15	
aminopyrazoles 193, 195–201 – in study of silica– cell interacti		
amine 5, 126	- probe 73-76, 78-80, 82	
angiotensin-converting enzyme (ACE)	- scanners 73	
inhibitors 202	- sensitivity 80	
antibody – software 72		
– as biorecognition elements 223	– system 70	
– bifunctional 115, 116–118	- technique 71, 72	
– bispecific 116, 117	ATP binding cassette (ABC)	
- catalytic, see also cancer therapy	transporters 281, 287	
– chemically programmed (cpAb) 128,	Avanti Polar Lipids 144	
131		
– in cancer therapy 114–128	b	
– in chiral molecular imprinting 97	bacterial display 11	
– in prodrug therapy 116	β-sheet capping 193–201	
– monoclonal 113	B ₆ ester derivatives 113	
antibody-directed enzyme prodrug therapy	binding	
(ADEPT) 116	– coordinative 44	
antigen	– covalent 44	
- effect of adjuvant 144	– ephedrine 103	
– glycosphingolipids (GSLs) 159–161	- ionic 44	

Cellular and Biomolecular Recognition: Synthetic and Non-Biological Molecules. Edited by Raz Jelinek Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32265-7

340	Index	
	 nonspecific 103, 105, 225 of D-histidine to L-histidine-imprinted films 107 of nicotine 102 	cell membrane, composition 247, 248 cell separation 69 cell–silica particle interaction 70 – silica–cell contact 81
	of template to film 104template/analyte rebinding 105	silica–cell interaction 85cells
	bioconjugation, <i>see</i> conjugation biocompatibility in drug delivery systems 40	cancer cells 78, 80–83, 87, 89cervical cancer cells 72epithelial cells 72
	biodegradability in drug delivery systems 40	 human epithelial cells 73 human epithelial cervical cells 70, 72, 78
	biofunctionalization 42, see also nanoparticles bioluminescence, in luciferases	 normal cells 78, 80–83, 85, 87, 88 normal cervical cells 72, 77 red blood cells 69
	functions 310origins and characteristics 310	cell surface 70, 73–75, 78, 80–83, 89 chemical adaptor 123, 124
	bioluminescence resonance energy transfer (BRET) 315, 321, 322, 333	chemical ligation 5 chemical modification
	biomaterials for drug delivery 33, 52 biomolecule(s) – conjugation techniques 42	of silicon oxide 35of viruses, in combination with genetic modification 8
	immobilization 97, 226, 227purified, examples 49	chemical nanotechnology 31 chemical sensors for molecular imaging
	biomolecular sensing, see biosensors biopanning technique 8 biosensors, see also CPs; PDAs; SLO	313, 316 chemotherapeutic agents, concentration 111
	- development 177–190 - surface plasmon resonance (SPR)-based 219–238	chemotherapy 116–118, see also cancer therapy chiral discrimination 97, 104
	 using the protein-binding family 281–294 birecognition elements immobilization 224 	chiral drugs, chemical structure 100 chiral molecular imprinting, see MI chiral polymer 98
	- surface chemistry 224 blue fluorescent protein (BFP) 300, 303, 318	chiral specificity 100, 103 chiral templates 97 chromatographic separations 97, 98, see
	Bristol-Myers Squibb 130 bucky balls, see fullerenes	also MI circular dichroism (CD) 283, 286, 291, 292
	c camptothecin (CPT) 125	circular permutation 331, 332 critical micelle concentration (CMC) 39 coat protein(s)
	cancer, detection – of acute myeloid leukemia 125	- gene encoding 7 - M13 bacteriophage 3, 12
	- of breast 127, 129, 132, 272 - of colon 127	- tobacco mosaic virus (TMV) 21 colloidal dispersion 87
	of erythroleukemia 125of Kaposi's sarcoma 127of MOLT-3 T cell leukemia 122	colorimetric signals 178, signaling 179–189 conductance switching 21
	– of murine NXS2 neuroblastoma 118, 119, 122	conductivity, anisotropic 19 conjugated polymers (CPs)
	- of prostate 131 cancer research 272	- applications 177 - as sensing materials 177
	cancer therapy 114–128 CD1d 158, 163–167	examples 177properties 177

conjugation	– mass sensor 106, 107
– capture molecule 56	– – quartz crystal microbalance sensor
- conventional bioconjugation strategies 5	106
controlled 1D assembly of	optical 103–105
nanostructures 14	- redox characteristics 101
controlled 3D assembly of M13	drugs, anticancer
•	-
bacteriophage 19	- camptothecin (CPT) 125
controlled 3D assembly of TMV 19	- doxorubicin 115, 126, 133
convective alignment 18	- dynemicin 126–128
convective assembly process 19	- 5-fluorodeoxyuridine 2 112
core/shell particle 31, 50, 51, 54	– nitrogen mustard anticancer drug 5
coupling	112
between recognition layers and sensor	
surfaces 98, 99	e
– carbodiimide 5	electrical double-layer interaction 78
– diazonium 5	electrochemical impedance technique 107
– of proteins 43	electromagnetic radiation 31
– polymer–sensor 101	electrophilic substitution reaction 5
critical particle size D _c 37	electrospinning method 16, 18
crystallographic defects 34	electrospray ionization (ESI) 199
cyan fluorescent protein (CFP) 318, 319,	electrospraying 39
321	electrostatic 82
cyclic voltammetry 103	emission spectrographs 87
cyclization 118, 127	enantiomer 97–99, 107
cysteine 7–9, 20	enantioselectivity, see drug sensors
cytokine(s)	endocytosis 53, 54
– proinflammatory 139	endohedral materials 42
- stimulation activity of monophosphoryl	endotoxin, bacterial
lipid A 144	- discovery 137, 138
cytoplastic membrane 80	- inflammatory potential 138
cytopiastic membrane ov	energy transfer 21
d	enhanced permeability and retention
D-dopa, 1 101	(EPR) 120
Debye length 78	enzyme inhibition 202–210
deflection signal 70	-
	epitope approach 33, 46, 47, 49
Dennis, Edward A. 143	Escherichia coli
deposition, metals 9	- D-galactose/D-glucose-binding protein
Derjaguin approximation 79	(GGBP) 282–285
1,3-diketone 10 114	- glutamine-binding protein
differential scanning calorimetry	(GlnBP) 285–287
(DSC) 283	- inhibition 112
diffusional path 99	– lipid A, synthesis 138, 140
dimerization 84	ester(s)
dip-pen nanolithography (DPN) 17, 18	- activated 43
direct dissolution method 40	– derivatives, B ₆ 113, 114
direct-write lithographic method 17	1-ethyl-3-(3-dimethylaminopropyl)
discoids 85	carbodiimide hydrochloride (EDC) 43
drug release 112–115, 123, 125	etoposide, prodrug actrivation,
drug sensors	38C2-mediated 118-120
– development 97, 99	exponential force dependencies 78, 79
– electrochemical 101, 102	- fatty acid 138
– enantioselectivity 101, 103, 107	- functions 42
– label-free 99	– in prodrug activation 112–114
	- ~

f	 in nanoparticle detection 105
fd phage 20	– in probe preparation 265, 269–274
fibers	fluorescence signal 86, 87, 89
- composite 14–17	fluorescence spectroscopy 283, 284, 286,
- conductive 16	287, 289, 291
– continuous 16	fluorescent dyes 32
- 1D 12	fluorescent microscopy 87
– fiber-like structures 14, 15	fluorescent particles 83, 86, 87
- long 15, 16	– fluorescent silica particles 84, 85
– M13, applications 16	 ultra-bright fluorescent silica particles
- microfibers 16	85, 87
– nanofibers 15, 16	fluorescent proteins, see also BFP; CFP; GFF
– nonconjugated 18	RFP; YFP
nonconjugateu 18polyvinylpyrolidone (PVP),	– applications 307, 308
virus-blended 16	- factors influencing activities of 317
	– general requirements 307
films	-
- acrylic 103	- with changing with changing intensity or
- A7-ZnS 21	color 306, 307
- casting 40	fluorescent tagging 84
- in drug sensors 106, 107	5-fluorodeoxyuridine 2 112
- Langmuir-Blodgett (LB) 224	Förster distance 268
- molecularly imprinted polymers (MIPs),	Förster resonance energy transfer, see FRET
electropolymerized 103	Force curves 72, 73, 78, 80, 89
– monolayer 19	– normal cell force curves 80
– mutant M13–ZnS 21	– retraction force curves 80
– sol-gel	- retracting curves 72
– – imprinted with L-histidine 106	Fourier transform infrared (FTIR)
– – imprinted with nafcillin 104	spectroscopy 283, 286–289, 291
- – imprinted with propranolol 103	fullerenes 37, 42
– thin	functional peptides
– – applications 99	– in development of fusion protein
– fabrication by 2D assembly 17	probes 312
"flip-flop" type probe 314, 315, 321	– properties required 312, 313
Fllip, see "flip-flop" type probe	functional shells 42–49
fluorescence, see also fluorescent proteins	functional silanes 35
 resonance energy transfer 105, 178 	functional surfmers 43
– sensors, "turn-on" 178, 181–185,	fusion proteins
"mix-and-detect" 186–189	– A7 13
– use in biomolecular sensing 177	– immunogenic peptides 13
fluorescence anisotropy 314	 in production of nanostructures 7
fluorescence correlation spectroscopy	– J140– VIII 13
(FCS) 199	– probes for molecular imaging 307, 313,
fluorescence emissions 86, 87	316
fluorescence polarization 316	 variable lymphocyte receptor (VLR) 152
fluorescence resonance energy transfer	
(FRET)	g
– in determining protein	D-galactose/D-glucose-binding protein
phosphorylation 319–321	(GGBP) 282–285
- in determining protein–protein	genetic engineering 7
interactions 319	genetic modification 1
– in DNA detection 178	genetic mutation 8
- in glucose binding 284, 285	glucose-6-phosphate dehydrogenase (G6PD)
- in molecular imaging 317–321	inhibition 207–209
	- · · · · · · · · · · · · · · · · · · ·

glutamine-binding protein (GlnBP) 285–287	interfacial energy 12, 19 interfering compounds 103		
green fluorescent protein (GFP) – as fusion protein probes 307, 316	intramolecular folding sensor 315 isothermal titration calorimetry 208		
- as markers for gene expression 299,			
300	k		
- compared with RFP 301, 302	Kdo ₂ -lipid A, see LIPID MAPS		
- in determining molecular dynamics	keratinocyte serum-free medium 72		
316, 317	Kirin Pharmaceuticals 159		
– in determining protein–protein			
interactions 317–319			
- use in FRET 317, 318	Langmuir-Blodgett (LB)		
- variants, attributes 299–307	- deposition 224		
- wild-type, limitations 302, 306	- films 224		
grinding 32	- self-assembly 224		
glycocalyx molecules 82	leucine-rich repeats (LRRs) 139 L-dopa 104		
glycosphingolipids (GSLs), see sphingolipids	ligands, interaction with receptors 159		
spiningonpius	light-emitting devices 34		
h	light-harvesting systems 9, 20		
Hank's balanced salt solution (HBSS)	limit of detection (LOD) 101		
73, 74, 83, 87	- of surface plasmon resonance 233–235,		
hemolysis 69	237, 238		
Hertz–Sneddon model 75	lipids		
hexa-acylation 144	– bilayer 247, 248		
hybrid materials 12	- composition 248		
hybrid viruses 7	– Eritoran 151		
hybrid virus–inorganic nanostructures 20	- function 249		
hybrid virus–silicon nanotube 20	- identification, see LIPID MAPS		
hydrogen 82	– in drug delivery 41		
hydrogen bonding 72	– lipid A, see LPS		
hysteresis 72	– – chemical structure 138		
	– – derivatives, monosaccharide 146		
i	– hexa-acyl 144		
impedance spectroscopy 103	– in development of antibiotics 140		
immune response 137	intermediates 153		
– effect of adjuvant 144	– minimal, modified 140–143		
– role of MD-2/lipid IVa complex 149,	– – monophosphoryl lipid A 144		
150	synthesis 140		
immune response	– mycobacterial 160, 161		
- innate natural immunity 137	– physiological 41		
- T cell immunity 53, 54	- structure 249		
immunization, reactive 114	- synthetic 41		
immunosensors, surface plasmon-based 219, 223, see also biosensors	lipid-binding proteins (LPBs) 138, 148 – structure 148–152		
inorganic core materials	Lipid Metabolites And Pathways Strategy		
- crystalline nanoparticles 34	(LIPID MAPS) 143, 144		
- metal and metal oxides 36, 37	lipocalins and odorant-binding		
- silica nanoparticles 35, 36	protein 289–293		
inorganic nanowires 8, 10, 11, 14	lipopolysaccharide (LPS) 137, 138, see also		
inorganic nanoparticles 32	endotoxin		
inorganic oxides, preparation of 20	– biosynthesis 140, 144		
interface, assembly 14	– discovery 137, 138		
	•		

– effect of lipid IVa 149	metal oxide(s) 9, 32, 34		
– in detection of endotoxin in water 147	microemulsation 41		
– neutralization 147	microscopy 71		
– recognition 138, 139	microvilli 82, 89		
– relationship with Toll-like receptor 139,	microridges 82, 89		
151	mirror image binding profile 103		
liposomes	moiety		
– mannosylated 53	– aminopyrazole 196		
– neutral 54	- β-diketone 131, 132		
– poloaxmer F127 41	- carboxylic acid 114		
- stealth 41	- cysteine 43		
lithium-ion batteries, storage capacity 22	- Kdo 146		
localized surface plasmon resonance	- N-isopropyl acrylamide 40		
(LSPR)	- molecular recognition 32		
- compared with SPR 235	- simple phosphate 142		
- Mie theory 236	- targeting 120		
long-chain base (LCB) 153, 156	molecular clips 202, 205, 210		
LpXF 142	molecular dynamics (MD) 283, 284, 287,		
luciferases	291		
– as functional proteins 299, 308	molecular fluorophores		
 as reporters for bioanalysis and 	 as donors and acceptors in FRET-based 		
molecular imaging 310, 311	assays and sensors 265		
– attributes 299	 in development of luminescent quantum 		
– drawbacks 312	dots 265		
 from insects, marine organisms and 	– limitations 265, 269		
prokaryotes 308–311	molecular imaging		
luminescent proteins, factors influencing	 classical methods 313, 316, 317 		
activities 317	– new methods 317–332		
luminex 55, 56	molecular imprinting (MI)		
lysomotropic carrier systems 40	– chiral 97–107		
	– challenges 45, 46		
m	– development 97		
macropinocytosis 53	– of peptides 32, 45, 46		
magnetic beads/tweezers 70	- of polymers 31, 56, see also MIPs		
magnetic moment 31	- of proteins 32, 45		
magnetic nanoparticles, see also	– noncovalent 45		
nanoparticles	- reaction 33		
– applications 32, 37, 49, 50	 understanding the mechanisms 		
– attributes	 – by isothermal titration chemistry 		
– – diameter, see critical particle size D_c	(ITC) 45, 48		
– – superparamagnetic property 37, 38	– in chromatographic separations 97		
– biopurification 49, 50	- using protein surface recognition 210,		
- examples 37	214		
- production 37	molecular recognition		
mass spectroscopy 199	- biomimetic feature 32		
M13 bacteriophage	- in molecularly imprinted polymer (MIP)		
as template for inorganic materials			
synthesis 11	generation 47 – of target enantiomer 97		
•			
in nanowire synthesis 12mutants, streptavidin-binding 20	- recognition sites 97		
-	- role in nature 44		
- mutated 18	molecular tweezers 202, 205, 206, 210		
- native M13 11, 16	molecularly imprinted polymers (MIPs)		
membrane (cell) disruption 251	– applications		

– – creation of recognition elements for	n	
chiral drugs 99	molecularly imprinted polymers (nanoMIPs	
 – high-performance liquid 	– applications 44	
chromatography 55, 98	– L-boc-nanoMIPs 49	
– – immunoassays 55, 56	- techniques for generating 44-49	
– – protein purification 55, 56	nanocapsules, poly(alkylcyanoacrylate) 40	
– – sensor technology 55, 56	Nanocytes technology 54, 55	
– solid-phase extraction 55	nanodevices 34	
– – waste-water treatment 55	nanoparticles	
– coupling to sensor surface 99	- benefits 33, 51–54	
– ephedrine imprinted 103	- biodegradable 40	
– nanoparticulate 32	- biofunctionalization 42, 56	
– nanospheric 47	- biomimetic 31, 33, 42, 56	
- recognition layers 101	- controlling the size and	
- preparation 33	morphology 34–36	
- quartz crystal microbalance (MIP–QCM)	- core materials 31	
chiral sensor 106		
	- gold 31, 34, 39, 54, 234, 235, 237	
- tools for developing 44–49	- limitations 52	
design of experiments (DoE) 44, 45	- mannose-coated 53	
– – experimental high-throughput	- metal oxide 9	
screening 44	– poly(cyanoacrylate) 41, 54	
– – nuclear magnetic resonance (NMR)	– properties required 52	
spectroscopy 45	- solid phospholipid 41	
molecule(s)	- surface functionalization 35, 36, 54, 56,	
– analyte 103	see also biofunctionalization	
L-dopa 104	nanocircuits 20	
– amino-functionalized 43	nanoprecipitation 39, 40	
– immunostimulatory 137	nanorings	
– polymer 120	– formation 17	
 membrane-active, see peptide, 	– structure 16	
membrane-active	nanotechnology 1, 31, 70	
monomers	nanotemplate hybridization 18	
– achiral 98	nanowires 12, 13, 22, 23	
– functional 45	natural killer T (NKT) cells 158–165	
 in protein surface recognition 210–214 	NF-κB 139	
motifs	nucleation	
– functional binding 8	– by engineered virus 13	
– materials-specific 12	- of wurtzite ZnS 12, 13	
– substrate-specific 12	– of ZnS nanocrystals 13	
multivalency 210	neurotransmitter 101	
murine NXS2 neuroblastoma 118, 119		
mutagenesis	0	
 polymerase chain-reaction based site 	odorant-binding proteins (OBPs) 289-293	
directed 7	optical microscopy 87	
single amino acid substitution 7	optical tweezers 70	
M13 viral systems 20	orbital shakers 83	
M13 virus, genetically engineered	organic core materials	
- as template in fabrication of composite	- fullerenes 37, 42	
nanowires 22	- lipids 37, 41	
- conjugated with quantum dots 18	– polymers 37–39	
, agained man quantum dots	organic shell 31, 32, 42	
	Oswald ripening 47	
	Commit repering 17	

346	Index					
	– synthetic 44					
	cytolytic pore-forming toxins (PFTs) 179,	polymerization				
	see also PDAs	– copolymerization, radical 32				
	Parkinson's disease 101	- emulsion 39				
	peptides	- interfacial 40				
	– A7 12, 13	- miniemulsion 32, 44, 47–49				
	– Αβ	polysaccharides 69, 82				
	 – aggregation kinetics, methods of determining 199 	polyvinylpyrrolidone polymer 69 prodrugs 203, <i>see also</i> prodrug activation				
	 – inhibition 195, see also aminopyrazoles 	prodrug activation 111–114				
	- role in Alzheimer's disease 194- aminopyrazoles 195	conversion of a drug to a prodrug 116etoposide, antibody-mediated 118				
	- antimicrobial 247, 251, 253, 254, 256, 258	- in antitumor therapy, see cancer therapy				
	– anti-streptavidin 17	- prodrug 1 112, 115				
	– hexahistidine 17	– prodrug 4 112, 113				
	– membrane-active	– prodrug 7 113, 114				
	– – applications 247	– prodrug 11 115, 116				
	mode of action 249–252	- prodrug 14, see etoposide				
	– properties 249	– prodrug 19 126				
	– natural 247, 252–254	 single triggered trimeric prodrug 125 				
	– peptidomimetics 256	with antibody 38C2 114–116, 118–120				
	 supplementation fusiogenic 54 	primary cervical carcinomas 72				
	– synthetic 247, 254	probe–cell contact 74				
	Percoll 69	probe–cell interaction 78				
	Pfeiffer, Richard 138	proinflammatory cytokines 139				
	phage display 7	protease inhibitors 203				
	phospholipid membrane 70	protease probes, QD FRET-based 269–274				
	photostability 84	proteoglycans 82				
	pig odorant-binding protein (pOBP)	protein-fragment complementation assay				
	- functional characteristics and	(PCA) 323–326				
	applications 292, 293	proteins, see also coat proteins; fusion				
	- structural characteristics 291, 292	proteins; peptides – abnormal folding 210				
	PMB, effect on lypopolysaccharide	abnormal folding 210A7 engineered P8 13				
	toxicity 144	- artificial protein binders 210				
	polyaniline (PANI) 14, 16 polycrystalline 12	- β-sheet, role in Alzheimer's disease 193				
	polydiacetylene (PDA)	- CD14 138, 139, 144, 148				
	- advantages 178	- D-galactose/D-glucose-binding protein				
	- in development of biosensors for toxin	(GGBP) 282–285				
	detection 179–181	– D-trehalose/D-maltose-binding protein				
	- in fabrication of "turn-on" fluorescence	(TMBP) 287–289				
	sensors 181-185, see also fluorescence	– FhuA 148				
	poly(lactic acid) 40	- fluorescent, see BFP; CFP; GFP; RFP; YFP				
	poly(lacticco-glycolide) 40, 41	 glutamine-binding protein 				
	polymer(s)	(GlnBP) 285–287				
	 amphiphilic 40, in protein surface 	– gold staining 32				
	recognition 210	– immobilization 42, 43, 54				
	- conjugated 177, see also CPs	– lipid-binding proteins (LPBs) 138, 148				
	– copolymer 40, 122, 124, 134, in protein	structure 148–152				
	surface recognition 210, 214	- lipocalins and odorant-binding protein				
	- polymer-directed enzyme prodrug therapy	(OBP) 289–293				
	(PDEPT) 120–122	- misfolded components 194				
	– polymer-drug 121	- myeloid differentiation-2 (MD-2) 139, 149				
	– sol-gel 101	– – MD-2/lipid IVa complex 149				

– – MD-2/TLR4 complex 149–152	- chemical reaction vs transition state
– odorant-binding proteins	analog 114
(OBPs) 289–293	 copper-catalyzed azide–alkyne
- P3 3, 7, 12, 17	cycloaddition 5
- P6 7	- covalent conjugation 43
- P7 8	 doxorubicin prodrug 11 activation
– P8 3, 7, 12	115
- P9 7, 8, 17	- molecular imprinting 33
– photoproteins, see luciferases	- retro-aldol-retro-Michael 115, 116, 118,
purification 33	125, 126, see also prodrug activation
– solute-binding, functions and	- uncatalyzed 116
examples 281	– sol-gel ³² , 35
– surface recognition 210–214	reactive immunization, see immunization
- transport system 281–282	real-time biomolecular interaction
– viral synthesis 7	analysis 219
protein phosphorylation, probes for	receptors
determining 319	– artificial 97
protein–protein interactions	– biomolecular 32
- methods for determining	– CD14 138, 139, 148
– by BRET 321, 322	- CD1d 158, 163-167
– by FRET 318	- FhuA 148
– – by PCA 323–326	– macrophage phagocytic 53
– by two-hybrid systems 314	– natural killer T cell 158, 159–161, 166,
– probes for determining 319	167
protein tagging 314, 317	– ligand, interaction with 159
pulsed field-gradient longitudinal eddy-	– T cell receptors (TCRs) 158–168
current delay techniques 211	- TLR4 139, 145, 147, see also TLR4-MD-2
pyridoxal-5'-phosphate (PLP) 155	complex
	– tumor-related 54
9	 variable lymphocyte receptor (VLR),
quantum dots (QDs)	hagfish 152
– as alternatives to traditional molecular	red fluorescent proteins (RFPs) 301, 302,
fluorophores 269	304, 306, 307
– as reporting elements in chiral	refractive index 220–222, 224, 230, 234,
templates 105	237, 293
- incorporated in molecularly imprinted	reflectrometric interference spectroscopy
polymers 105	(RifS) 212
- in imaging applications 34	region of constant compliance 72
– in development of bioanalytical	
probes 265	S
– in lypopolysaccharide synthesis 147	"sea grass effect", mechanism 82, 83
- luminescent QDs	selective enzymatic activation of a nontoxic
– characteristics and types 266–268	drug to a toxic drug 112
– in development of protease	selectivity, in drug delivery 123
probes 269–274	self-assembled monolayers (SAMs) 224,
– – linked to molecular fluorophores 265	225, 227, 228
- – use in cancer detection 265	self-immolative dendrimer(s) 125
- surface functionalization 267	sensors, protein-based, see also biosensors;
– water-soluble QDs, applications 267, 268	drug sensors
	- for explosive compounds 284
r 	- for glucose 284
reactions	- for glutamine 286
– alkaline hydrolysis 35	
– carbodiimide coupling 5, 43	for gliadin 286optical 286, 294

sepsis	surface plasma resonance (SPR), see also		
- causes 139	biosensors		
- cost 139	 bioassays for enhancing sensitivity and 		
– mortality 140	limit of detection (LOD) 233		
serine palmitoyltransferase (SPT) in	 biorecognition elements 223 		
sphingolipid biosynthesis 155–157	– properties required 229		
shells	 compared with localized SPR (LSPR) 		
– functional 42–49	236		
- organic 31, 32, 42	- in biomolecular interaction analysis 219,		
sick cell anemia 210	220, 227–230		
signal transduction methods 103-107	– in mass sensors 107		
silanes, functional 35	- working principle 220-222		
silanol groups 69, 82	surfactant molecules 84		
silica 69	surfmers, functional 43		
– colloidal 69	,		
- crystalline 69	t		
- fused 69	T cells		
- organically modified 31	- immunity 53, 54		
– pure 69	– natural killer 158, see also receptors		
– silica ball 74, 82	templates		
– silica matrix 84	– biological 5		
	- chiral 97		
silica nanoparticles 70silica particles 69, 70, 73, 74, 75, 80,	– molecular 33, 44, 97		
-			
83–85, 87–89	- template/analyte rebinding 105		
- silica probe 80, 82	- template-monomer complex 44		
- silica sphere 73–75, 82, 83	tetraethyl orthosilicate (TEOS) 35		
- silica toxicity 69	thiopene 15		
- silica-coated polymeric beads 69	Thudichum, Johann 153		
silicon acid 70	thymidylate synthetase 112		
silicosis 69	time-resolved small angle X-ray scattering		
single-stranded viral RNA 7	(TRSAXS) 15		
small angle X-ray scattering (SAXS) 15	TLR4–MD-2 complex 149–152		
solute-binding proteins, functions and	tobacco mosaic virus (TMV)		
examples 281	– capsid monomer 6		
solvent displacement 39	 coat proteins, cysteine-substituted 		
specific capacity 22	2, 7, 9		
specific optical absorbance 31	– composite fibers, TMV/PANI		
sphingolipids	(polyaniline) 14		
– biosynthesis 154–157	– C-terminus 7		
– glycosphingolipids (GSLs) 154–168	– native TMV 9, 10		
 structure, function and metabolism 153 	 head-to-tail assembly 14 		
square wave voltammetry (SWV) 101	– nanoarrays fabrication 17		
steric repulsion 78, 82	– nanotemplates 18		
stimulators	Toll receptor 139, 146, see also receptors,		
– natural 137	TLR4		
– synthetic 137	transmission electron microscopy (TEM),		
Stöber process 35, 36	in composite fiber study 14, 15		
streptolysin O (SLO), detection of 179–181	D-trehalose/D-maltose-binding protein		
sulfonamide Edonentan 130	(TMPB) 287–289		
superconducting quantum interference	tumor necrosis factor-α (TNF-α) 43		
device (SQUID) 37, 38	– in cancer therapy 54, 55		
superparamagnetism 34, 37, 38, 50	– in sepsis 139		
supramolecular assembly of	type 3 library 8, 12		
polydiacetylenes 177, 179–181, see also	type 8 library 8, 12		
PDAs; SLO	tyrosine 5		

и	– wild-type 13, 18
"UAG" stop codon 7	variable lymphocyte receptor (VLR) 152 viscoelastic effects 73
ν	
vaccine development 1, 53	w
van der Waals attraction 82	wet-spinning process 16
van der Waals force 72	wurtzite CdS and ZnS phases 13
van der Waals interactions 89	wurtzite ZnS structure, hexagonal 13
virus, see also M13 bacteriophage; TMV	Č
– A7–P8 engineered 13	X
– bifunctional 17	xMAP technology, see luminex
– capsid 4	X-ray crystallography 1, 308
– cowpea chlorotic mottle virus 5	
– cowpea mosaic virus 5	у
- hybrid 7	yellow fluorescent protein (YFP) 300, 303,
– hybrid virus–inorganic nanostructures 20	304, 318, 319, 322, 323
– multifunctional 1	Young's modulus 78
– pVIII engineered 12	
- rod-like 19, 20, 22	Z
– tomato mosaic virus	ZnS nanocrystals 20
– virus-like particles (VLPs) 1	ZnS systems, mineralization 12