
1

1
Ideal Fluids

1.1
Modeling by Euler’s Equations

Physical laws are mainly derived from conservation principles, such as conserva-
tion of mass, conservation of momentum, and conservation of energy.

Let us consider a fluid (gas or liquid) in motion, i.e., the flow of a fluid.1) Let

u(x, y, z, t) =

0
B@

u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

1
CA

be the velocity,2) and denote by ρ = ρ(x, y, z, t) the density of this fluid at point
x = (x, y, z) and at time instant t.

Let us take out of the fluid at a particular instant t an arbitrary portion of vol-
ume W(t) with surface ∂W(t). The particles of the fluid now move, and assume
that W(t + h) is the volume formed at the instant t + h by the same particles that
formed W(t) at time t.

Moreover, let ϕ = ϕ(x, y, z, t) be one of the functions describing a particular state
of the fluid at time t at point x, such as mass per unit volume (= density), interior
energy per volume, momentum per volume, etc. Hence,

R
W(t) ϕ d(x, y, z) gives the

full amount of mass or interior energy, momentum, etc., of the volume W(t) under
consideration.

We would like to find the change in
R

W(t) ϕ d(x, y, z) with respect to time, i.e.,

d
dt

Z

W(t)

(x, y, z, t)d(x, y, z) . (1.1)

1) Flows of other materials can be included
too, e.g., the flow of cars on highways,
provided that the density of cars or particles
is sufficiently high.

2) Note that bold letters in equations normally
indicate vectors or matrices.
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We have

d
dt

Z

W(t)

ϕ(x, y, z, t)d(x, y, z) = lim
h→0

1
h

8
><
>:

Z

W(t+h)

ϕ(̃y, t + h)d(y1, y2, y3)

–
Z

W(t)

ϕ(x, y, z, t)d(x, y, z)

9>=
>;

,

where the change from W(t) to W(t + h) is obviously given by the mapping

ỹ = x + h · u(x, t) + o(h)`
ỹ = (y1, y2, y3)T´ .

The error term o(h) also depends on x but the property limh→0
1
h o(h) = 0 if differen-

tiated with respect to space, provided that these spatial derivatives are bounded.
The transformation of the integral taken over the volume W(t + h) to an integral

over W(t) by substitution requires the integrand to be multiplied by the determi-
nant of this mapping, i.e., by

˛̨
˛̨
˛̨
˛̨
˛

(1 + h ∂xu1) h ∂yu1 h ∂zu1

h ∂xu2
`
1 + h ∂yu2

´
h ∂zu2

h ∂xu3 h ∂yu3 (1 + h ∂zu3)

˛̨
˛̨
˛̨
˛̨
˛

+ o(h)

= 1 + h ·
`
∂xu1 + ∂yu2 + ∂zu3

´
+ o(h)

= 1 + h · div u(x, t) + o(h) .

Taylor expansion of Vϕ(̃y, t + h) around (x, t) therefore leads to

d
dt

Z

W(t)

ϕ(x, y, z, t) d(x, y, z) =
Z

W(t)

{∂tϕ + ϕ div u + 〈u,∇ϕ〉} d(x, y, z) . (1.2)

Here, ∇v denotes the gradient of a scalar function v, and 〈· , ·〉 means the standard
scalar product of two vectors out of R

3.
The product rule from differentiation gives:

ϕ div u + 〈u,∇ϕ〉 = div(ϕ · u) ,

so that (1.2) leads to the so-called Reynolds’ transport theorem3)

d
dt

Z

W(t)

ϕ(x, y, z, t) d(x, y, z) =
Z

W(t)

{∂tϕ + div(ϕu)} d(x, y, z) . (1.3)

As already mentioned, the dynamics of fluids can be described directly by conser-
vation principles and – as far as gases are concerned – by an additional equation of
state.

3) Osborne Reynolds (1842–1912); Manchester
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1. Conservation of mass: If there are no sources or losses of fluid within the sub-
domain of the flow under consideration, the mass remains constant.

Because W(t) and W(t+h) consist of the same particles, they have the same mass.
The mass of W(t) is given by

R
W(t) ρ(x, y, z, t) d(x, y, z), and therefore

d
dt

Z

W(t)

ρ(x, y, z, t) d(x, y, z) = 0

must hold. Taking (1.3) into account (particularly for ϕ = ρ), this leads to the re-
quirement

Z

W(t)

{∂tρ + div(ρu)} d(x, y, z) = 0 .

Since this has to hold for arbitrary W(t), the integrand has to vanish:

∂tρ + div(ρu) = 0 . (1.4)

This equation is called the continuity equation.

2. Conservation of momentum: Another conservation principle concerns the mo-
mentum of a mass, which is defined as

mass ~ velocity .

Thus,
Z

W(t)

ρu d(x, y, z)

gives the momentum of the mass at time t of the volume W(t) and

q =

0
B@

q1

q2

q3

1
CA = ρu

describes the density of momentum.
The principle of the conservation of momentum, i.e., Newton’s second law

force = mass ~ acceleration,

then states that the change of momentum with respect to time equals the sum of
all of the exterior forces acting on the mass of W(t).

In order to describe these exterior forces, we take into account that there is a cer-
tain pressure p(x, t) at each point x in the fluid at each instant t. If n is considered to
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be the unit vector normal on the surface ∂ W(t) of W(t), and it is directed outwards,
the fluid outside of W(t) acts on W(t) with a force given by

–
Z

∂ W(t)

p n do (do = area element of ∂ W(t)) .

Besides the normal forces per unit surface area generated by the pressure, there
are also tangential forces which act on the surface due to the friction generated by
exterior particles along the surface.

Though this so-called fluid viscosity leads to a lot of remarkable phenomena, we
are going to neglect this property at the first step. Instead of real fluids or viscous
fluids, we restrict ourselves in this chapter to so-called ideal fluids or inviscid fluids.
This restriction to ideal fluids, particularly to ideal gases, is one of the idealizations
mentioned in the Preface.

However, as well as exterior forces per unit surface area, there are also exterior
forces per unit volume – e.g., the weight.

Let us denote these forces per unit volume by k, such that Newton’s second law
leads to

d
dt

Z

W(t)

q d(x, y, z) =
Z

W(t)

k(x, y, z, t) d(x, y, z) –
Z

∂W(t)

p · n do .

Thus, by Gauss’ divergence theorem, we find

Z

∂W(t)

p n do =

0
BBBBBBBBBBBB@

Z

∂W(t)

p n1 do

Z

∂W(t)

p n2 do

Z

∂W(t)

p n3 do

1
CCCCCCCCCCCCA

=

0
BBBBBBBBBBBB@

Z

W(t)

∂xp d(x, y, z)

Z

W(t)

∂yp d(x, y, z)

Z

W(t)

∂zp d(x, y, z)

1
CCCCCCCCCCCCA

=
Z

W(t)

∇p d(x, y, z) .

Together with (1.3),

Z

W(t)

8
><
>:

∂tq +

0
B@

div(q1u)
div(q2u)
div(q3u)

1
CA – k + ∇p

9
>=
>;

d(x, y, z) = 0

follows.
Again, this has to be valid for any arbitrarily chosen volume W(t). If, moreover,

div(qi u) = 〈u,∇qi〉 + div u · qi

is taken into account,

∂tq + 〈u,∇〉 q + div u · q + ∇p = k ,
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i.e.,

∂tq +
1
ρ

〈q,∇〉 q + div
„

1
ρ

q
«

q + ∇p = k (1.5)

has to be fulfilled.
The number of equations represented by (1.5) equals the spatial dimension of

the flow, i.e., the number of components of q or u.
By means of the continuity equation, (1.5) can be reformulated as

∂tu + 〈u,∇〉 u +
1
ρ
∇p = k̂ , (1.6)

where the force k per unit volume has been replaced by the force k̂ = 1
ρ k per unit

mass.
Equation (1.4) together with (1.5) or (1.6) are called Euler’s equations.4)

ρ, E, q1, q2, q3

are sometimes called conservative variables whereas ρ, ε, u1, u2, u3 are the primitive
variables. Here,

E := ρ ε +
ρ
2
‖u‖2 = ρ ε +

‖q‖2

2ρ

gives the total energy per unit volume, where ε stands for the interior energy per unit
mass, e.g., the heat per unit mass.

ρ
2
‖u‖2

obviously introduces the kinetic energy per unit volume.5)

〈u,∇〉 u is called the convection term.

s Remark

Terms of the form ∂tw + 〈w,∇〉w are often abbreviated in the literature to Dw
Dt and

are called material time derivatives of the vector-valued function w.

3. Conservation of energy: Next we consider the first law of thermodynamics, name-
ly:

The change per time unit in the total energy of the mass of a moving fluid volume
equals the work done per time unit against the exterior forces.

4) Leonhard Euler (1707–1783); Basel, Berlin,
St. Petersburg

5) ‖ · ‖ : 2-norm
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For ideal fluids, this means that

d
dt

Z

W(t)

E(x, y, z, t) d(x, y, z) =
Z

W(t)

D
ρ k̂, u

E
d(x, y, z) –

Z

∂W(t)

〈p n, u〉 do .6)

The relationZ

∂W(t)

〈p n, u〉 do =
Z

∂W(t)

〈p u, n〉 do =
Z

W(t)

div(p u) d(x, y, z)

follows from Gauss’ divergence theorem, so that (1.3) leads to
Z

W(t)

n
∂tE + div(E · u) + div(p · u) –

D
ρ k̂, u

Eo
d(x, y, z) = 0 , ∀W(t) .

If k can be neglected because of the small weight of the gas, or if k̂ is the weight of
the fluid per unit mass7) and u is the velocity of flow parallel to the Earth’s surface,
we get

∂tE + div
„

E + p
ρ

q
«

= 0 . (1.7)

Explicitly written, and neglecting k, Eqs. (1.4), (1.5) and (1.7) become

∂tρ + ∂xq1 + ∂yq2 + ∂zq3 = 0

∂tq1 + ∂x

„
1
ρ

q1q1 + p
«

+ ∂y

„
1
ρ

q1q2

«
+ ∂z

„
1
ρ

q1q3

«
= 0

∂tq2 + ∂x

„
1
ρ

q2q1

«
+ ∂y

„
1
ρ

q2q2 + p
«

+ ∂z

„
1
ρ

q2q3

«
= 0

∂tq3 + ∂x

„
1
ρ

q3q1

«
+ ∂y

„
1
ρ

q3q2

«
+ ∂z

„
1
ρ

q3q3 + p
«

= 0

∂tE + ∂x

„
E + p

ρ
q1

«
+ ∂y

„
E + p

ρ
q2

«
+ ∂z

„
E + p

ρ
q3

«
= 0 .

(1.8)

Hence, we are concerned with a system of equations that can be used to determine
the functions ρ, q1, q2, q3, E. However, we must note that there is an additional
function that is sought, namely the pressure p.

In the case of constant density8) ρ, i.e., ∂tρ = 0 ∀ (x, y, z), only four conservation
variables have to be determined, so the five equations in (1.8) are sufficient. Oth-
erwise, particularly in the case of gas flow, a sixth equation is needed, namely an

6) Work = force ~ length = pressure ~ area ~
length ⇒ work

time = force ~ velocity = pressure ~
area ~ velocity

7) In other words, ‖k̂‖ = g where g is the Earth’s
gravitational acceleration.

8) The case of constant density is not necessarily
identical to the case of an incompressible

flow defined by div u = 0, because in this
case the continuity equation (1.4) is already
fulfilled if the pair (ρu) shows the property
∂tρ + 〈u∇ρ〉 = 0, which does not necessarily
imply ρ = const.
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equation of state. State variables of a gas are:

T = temperature , p = pressure , ρ = density , V = volume ,
ε = energy/mass , S = entropy/mass ,

and a theorem of thermodynamics says that each of these state variables can be
uniquely expressed in terms of two of the other state variables. Such relations be-
tween three state variables are called equations of state. Thus, p can be expressed by
ρ and ε (and hence by ρ, E, q); for inviscid so-called γ-gases, the relation is given by:

p = (γ – 1) ρε = (γ – 1)
„

E –
‖q‖2

2ρ

«
(1.9)

with γ = const > 1, such that only the functions ρ, q, E have to be determined.
Here, the adiabatic exponent γ is the ratio cp

cV
of the specific heats. In the case of

air, we have γ W 1.4.
Using vector-valued functions, systems of differential equations can also be de-

scribed by a single differential equation. In this way, and taking (1.9) into account
as an additional equation, (1.8) can be written as

∂t V + ∂x f1(V ) + ∂y f2(V ) + ∂z f3(V ) = 0 (1.10)

with

V = (ρ, q1, q2, q3, E)T

and with

f1(V ) =

0
BBBBBBBBBBBBBBB@

q1

1
ρ

q1q1 + p

1
ρ

q2q1

1
ρ

q3q1

E + p
ρ

q1

1
CCCCCCCCCCCCCCCA

, f2(V ) =

0
BBBBBBBBBBBBBBB@

q2

1
ρ

q2q1

1
ρ

q2q2 + p

1
ρ

q3q2

E + p
ρ

q2

1
CCCCCCCCCCCCCCCA

, f3(V ) =

0
BBBBBBBBBBBBBBB@

q3

1
ρ

q3q1

1
ρ

q3q2

1
ρ

q3q3 + p

E + p
ρ

q3

1
CCCCCCCCCCCCCCCA

.

The functions fj(V ) are called fluxes.
If J f1, J f2, J f3 are the Jacobians, (1.10) becomes

∂t V + J f1(V ) · ∂x V + J f2(V ) · ∂y V + J f3(V ) · ∂z V = 0 . (1.11)

Because of their particular meaning in physics, systems of differential equations
of type (1.10) are called systems of conservation laws, even if they do not arise from
physical aspects. Obviously, (1.11) is a quasilinear system of first-order partial dif-
ferential equations.

Such systems must be defined by initial conditions

V(x, 0) = V0(x) , (1.12)

where V0(x) is a prescribed initial state, and by boundary conditions.
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If the flow does not depend on time, it is called a stationary or steady-state flow,
and initial conditions do not occur. Otherwise, the flow is termed nonstationary.

As far as ideal fluids are concerned, it can be assumed that the fluid flow is
tangential along the surface of a solid body9) fixed in space or along the bank of
a river, etc. In this case,

〈u, n〉 = 0 (1.13)

is one of the boundary conditions, where n are the outward-directed normal unit
vectors along the surface of the body.

There are often symmetries with respect to space such that the number of un-
knowns can be reduced, e.g., in the case of rotational symmetry combined with
polar coordinates. If it is found that there is only one spatial coordinate, the prob-
lem is termed one-dimensional.10) If rectangular space variables are used and x is the
only one that remains, we end up with the system

∂t V + J f (V ) · ∂x V = 0 (1.14)

with

V =

0
B@

ρ
q
E

1
CA , f (V ) =

0
BBBBB@

q
1
ρ

q2 + p

E + p
ρ

q

1
CCCCCA

and with the equation of state

p = (γ – 1)
„

E –
q2

2ρ

«
.

Hence,

J f(V ) =

0
BBBBBBBB@

0 1 0

–
3 – γ

2
q2

ρ2 (3 – γ)
q
ρ

γ – 1

(γ – 1)
q3

ρ3 – γ
E q
ρ2 γ

E
ρ

–
3(γ – 1)

2
q2

ρ2 γ
q
ρ

1
CCCCCCCCA

.

As can easily be verified, λ1 = q
ρ is a solution of the characteristic equation of J f (V),

namely of

– λ3 + 3
q
ρ

λ2 –
j

(γ2 – γ + 6)
q2

2ρ2 – γ(γ – 1)
E
ρ

ff
λ

+
„

γ2

2
–

γ
2

+ 1
«

q3

ρ3 – γ(γ – 1)
E q
ρ2 = 0 .

9) For example, a wing
10) Two- or three-dimensional problems are

defined analogously.
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The other two eigenvalues of J f (V ) are then the roots of

λ2 –
2q
ρ

λ + (γ2 – γ + 2)
q2

2ρ2 – γ(γ – 1)
E
ρ

= 0:

λ2,3 =
q
ρ
±
s

q2

ρ2 + γ(γ – 1)
E
ρ

– (γ2 – γ + 2)
q2

2ρ2

=
q
ρ
±
s

γ(γ – 1)
E
ρ

– γ(γ – 1)
q2

2ρ2 (1.15)

=
q
ρ
±
s

γ(γ – 1)
ρ

»
E –

q2

2ρ

–
=

q
ρ
±
r

γ
p
ρ

.

Thus, these eigenvalues are real and different from each other (p > 0).

Definition

If all the eigenvalues of a matrix A(x, t, V ) are real and if the matrix can be dia-
gonalized, the system of equations

∂t V + A(x, t, V ) ∂x V = 0

is termed hyperbolic at (x, t, V). If the eigenvalues are real and different from each
other such that A can definitely be diagonalized, the system is said to be strictly
hyperbolic.

Obviously then, (1.14) is strictly hyperbolic for all (x, t, V) under consideration.

By the way, because q
ρ = u, the velocity of the flow, and because

q
γ p
ρ describes

the local sound velocity ĉ (cf. (1.66)), the eigenvalues are:

λ1 = u , λ2 = u + ĉ , λ3 = u – ĉ ,

and have equal signs in the case of supersonic flow, whereas the subsonic flow is
characterized by the fact that one eigenvalue has a different sign to the others.

Definition

Let u(x, t0) be the velocity field of the flow at instant t0 and let x0 be an arbitrary point
from the particular subset of R

3 which is occupied by the fluid at this particular
instant. If, at this moment, the system

ˆ
x′(s), u(x(s), t0)

˜
= 011)

of ordinary differential equations with the initial condition

x(0) = x0

has a unique solution x = x(s) for each of these points x0, each of the curves x = x(s)
is called a streamline at instant t0.
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Here, the streamlines may be parametrized by the arc length s with s = 0 at point
x0, such that

〈x′, x′〉 = 1 .

Thus, the set of streamlines at an instant t0 shows a snapshot of the flow at this
particular instant. It does not necessarily describe the trajectories along which the
fluid particles move over time. Only if the flow is a stationary one, i.e., if u, ρ, p, k̂
are independent of time, do the streamlines and trajectories coincide: a particle
moves along a fixed streamline over time.

1.2
Characteristics and Singularities

As an introductory example for a more general investigation of conservation laws,
let us consider the scalar Burgers’ equation12) without exterior forces:

∂tv + ∂x

„
1
2
v2
«

= 0 , (x, t) ∈ Ω , i.e., x ∈ R , t v 0 , (1.16)

which is often studied as a model problem from a theoretical point of view and also
as a test problem for numerical procedures.

Here, the flux is given by f (v) = 1
2 v2. If

v0(x) = 1 –
x
2

(1.16a)

is chosen as a particular example of an initial condition, the unique and smooth
solution13) turns out to be

v(x, t) =
2 – x
2 – t

,

but this solution only exists locally, namely for 0 u t < 2; as time increases it runs
into a singularity at t = 2.

As a matter of fact, classical existence and uniqueness theorems for quasilinear
first-order partial differential equations with smooth coefficients only ensure the
unique existence of a classical smooth solution in a certain neighborhood of the
initial manifold, provided that the initial condition is also sufficiently smooth.

The occurrence of discontinuities or singularities does not depend on the
smoothness of the fluxes: assume that v(x, t) is a smooth solution of the prob-
lem

∂tv + ∂xf(v) = 0 for x ∈ R , t v 0

v(x, 0) = v0(x)

11) Here, [·, ·] is the vector product in R
3.

12) J. Burgers: Nederl. Akad. van Wetenschappen
43 (1940) 2–12.

13) In other words, v is continuously
differentiable.
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t

vv

v v

Fig. 1.1 Formation of discontinuities.

in a certain neighborhood immediately above the x-axis. Obviously, this solution is
constant along the straight line

x(t) = x0 + t f ′(v0(x0)) (1.17)

that crosses the x-axis at x0, where x0 ∈ R is chosen arbitrarily. Its value along this
line is therefore v(x(t), t) = v0(x0). This can easily be verified by

d
dt

v(x(t), t) = ∂tv(x(t), t) + ∂xv(x(t), t) · x′(t)

= ∂tv(x, t) + ∂xv(x, t) · f ′(v0(x0))

= ∂tv(x, t) + ∂xv(x, t) · f ′(v(x, t)) = ∂tv + ∂xf(v) = 0 .

The straight lines of (1.17), each of which belong to a particular x0, are called the
characteristics of the given conservation law.

In the case of x0 < x1, but for example 0 < f ′(v0(x1)) < f ′(v0(x0)),14) the character-
istic through (x0, 0) intersects the characteristic through (x1, 0) at an instant t1 > 0,
so that at the point of intersection the solution v must have the value v0(x0) as well
as the value v0(x1) /= v0(x0). Therefore, a discontinuity will occur at the instant t1

or even earlier. With respect to fluid dynamics, one notable type of discontinuity is
shocks (discussed later).

When applied to Burgers’ equation (1.16) with an initial function of (1.16a), the
characteristic through a point x0 on the x-axis is given by

t = 2
x – x0

2 – x0
,

such that the discontinuity we found at t = 2 can also be immediately understood
via Fig. 1.2.

If systems of conservation laws are considered instead of the scalar case, i.e.,

V(x, t) ∈ R
m , m ∈ N , ∀ (x, t) ∈ Ω ,

and if only one spatial variable x occurs, a system of characteristics is defined as
follows:

14) Hence, v0(x0) /= v0(x1) too
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Definition

If V(x, t) is a solution of (1.10), in the case of only one space variable x, the one-
parameter set

x(i) = x(i)(t, �) (� ∈ R : set parameter)

of real curves defined by the ordinary differential equation

ẋ = λiV(x, t) (1.18)

for every fixed i (i = 1, . . . , m) is called the set of i-characteristics of the particular
system that belongs to V. Here, λiV ) (i = 1, · · · , m) are the eigenvalues of the
Jacobian J f (V ).

Obviously, this definition coincides in the case of m = 1 with the previously
presented definition of characteristics.

Let us finally – using an example – study the situation for a system of conserva-
tion laws if the system is linear with constant coefficients:

∂ tV + A ∂xV = 0 (1.19)

with a constant Jacobian (m, m)-matrix A. Moreover, let us assume the system to be
strictly hyperbolic.

From (1.18), the characteristics turn out to be the set of straight lines given by

x(i)(t) = λi t + x(i)(0) , (i = 1, . . . , m) ,

and are independent of V. Hence, for every fixed i, the characteristics belonging to
this set are parallel.

If S = (s1, s2, . . . , sm) is the matrix whose columns consist of the eigenvectors of
the Jacobian, and if Λ denotes the diagonal matrix consisting of the eigenvalues
of A,

A = SΛS–1 (1.20)

follows.

v

v
v

Fig. 1.2 Discontinuity of the solution
to Burgers’ equation.
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If new variables V̂ are introduced by

V̂ = S–1V ,

the system takes the form

∂ tV̂ + Λ ∂xV̂ = 0 , V̂0 = S–1V0 . (1.21)

This is a decoupled system:

∂tv̂i + λi ∂xv̂i = 0 , v̂i(x, 0) =
ˆ
S–1V0(x)

˜
i = v̂i0 (x) , (i = 1, . . . , m) .

Each of the equations of this system is an independent scalar equation called an
advection equation. The solution is

v̂i(x, t) = v̂i0 (x – λi t) (i = 1, . . . , m) . (1.22)

Hence, the state at instant t moves with velocity λi in the positive or negative
x-direction according to the sign of λi. This is called wave propagation, where the
velocity of propagation is described by λi.

Obviously,

V = (s1, . . . , sm)

0
BB@

v̂1
...

v̂m

1
CCA = v̂1s1 + v̂2s2 + . . . + v̂m sm .

Each of the vector-valued functions

V(i)(x, t) := v̂i(x, t) · si

solves the system of differential equations because of

∂tV(i) + SΛS–1 ∂xV(i) = ∂tv̂i si + ∂xv̂i λi si

= (∂tv̂i + λi ∂xv̂i) si = 0 .

V(i) (i = 1, . . . , m) is often called the solution belonging to the i-th set of characteristics
and to the given initial value v̂i0 (x). Obviously, the vector functions V(i) (i = 1, . . . , m)
are linearly independent.

s Remark

The fact that a sufficiently smooth solution of a nonlinear initial value problem
often only exists in the neighborhood of the initial manifold, while the correspond-
ing real-world process exists globally, means that this solution is not accepted by
the physicist or engineer. The mathematician is asked to find a global solution.
This forces the mathematician to create a more general definition of the solution
such that the real-world situation can be described in a satisfactory way. Suitable
definitions of weak solutions will be presented in Chapter 2.
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s Remark

As far as the scalar linear problem

∂tv + ∂x(a v) = 0 , a = const , (1.23)

is concerned, v often describes a concentration, and the flux is then simply given
by f(v) = a v.

Many physical processes include a further flux of the particular form

–ε ∂xv (ε > 0) ,

proportional to the drop in concentration. The transport phenomenon is then
mathematically modeled by

∂tv + ∂x (a v – ε ∂xv) = 0 , i.e., ∂tv + a ∂xv = ε ∂xxv . (1.24)

Because of the diffusion term on the right hand side, this equation is of parabolic
type. Parabolic equations yield smoother and smoother solutions as time t increas-
es. Therefore, shocks will be smeared out as soon as diffusion occurs.

This effect of parabolic equations can easily be demonstrated using examples
like the following one. The sum

v(x, t) = e
a
2 (x– a

2 t)
∞X

ν=1

(–1)ν+1 sin(νx)
ν

e–ν2 t

converges uniformly for t > 0 because of the factors e–ν2t. This also holds after
multiple termwise differentiations of this sum with respect to t as well as with
respect to x so that v is a sufficiently smooth function for all x ∈ R , t > 0. It
solves (1.24)15) according to the classical understanding, but leads for t = 0 to the
function

v0(x) = e
a
2 x · w(x)

where w(x) represents the Fourier expansion of the 2π-periodic discontinuous
function

w(x) =

( x
2 for –π < x < π

0 for x = ±π
.

The curve described by w(x) is sometimes called a saw blade curve.

1.3
Potential Flows and (Dynamic) Buoyancy

Let us now try to investigate the forces acting on solid bodies16) dipped into a fluid
flow at a fixed position. For convenience, we restrict ourselves to stationary flows of

15) In the case of ε = 1
16) For example, on the wings of an aircraft
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inviscid fluids. Moreover, it will be assumed that the magnitudes of the velocities
are such that the density can be regarded as a constant. Thus, the flow is incom-
pressible and the partial derivatives with respect to t occurring in (1.8) vanish. The
first equation in (1.8) – if written in primitive variables, i.e., the continuity equa-
tion (1.4) – then reduces to

div u = 0 , (1.25)

where17) u =
`
u1(x, y, z) , u2(x, y, z) , u3(x, y, z)

´T again denotes the velocity vector of
the flow at the space position x = (x, y, z)T.

The second, third, and fourth equations of (1.8) formulated by means of primitive
variables could be written as the vector-valued Euler equation (1.6), and they lead
in the case of a stationary flow to

〈u,∇〉 u +
1
ρ
∇p = k̂ . (1.26)

Let us also assume that the flow is irrotational; this means that the circulation

Z :=
I

C

u(x) dx (1.27)

vanishes for every closed contour C within every simply connected subdomain of
the flow area. Then u can be derived from a potential φ; i.e., there is a scalar func-
tion φ such that

u = ∇φ , (1.28)

and

curl u = 0 (1.29)

holds within this area.
By the way, the vector curl u is often called the vorticity vector or angular velocity

vector, and a trajectory of a field of vorticity vectors is called a vortex line.
Because of (1.28), a flow of this type is called a potential flow, and φ is the so-called

velocity potential.
The fifth equation in (1.8) can be omitted assuming that knowledge of the energy

density E is of no interest.
From (1.29), the relation 〈u,∇〉u = 1

2 ∇(‖u‖2) – [u, curl u] leads together with
(1.26) to

∇
„

1
2
‖u‖2 +

1
ρ

p
«

= k̂ . (1.30)

17) For the time being, z denotes the third space
variable; it will later denote the complex
variable x + i y, but we have taken care to
avoid any confusion.
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Formula (1.30) shows that a fluid flow of the particular type under consideration,
namely an approximately stationary, inviscid, incompressible, and irrotational flow
can only exist if the exterior forces are the gradient of a scalar function. In other
words, these forces must be conservative, i.e., there must be a potential Q with
k̂ = –∇Q such that (1.30) leads to

∇
„

1
2
‖u‖2 +

1
ρ

p + Q
«

= 0 .

i.e., to

1
2
‖u‖2 +

1
ρ

p + Q = const . (1.31)

Equation (1.31) is called the Bernoulli equation,18) and is none other than the en-
ergy conservation law for this particular type of flow. p is called the static pressure,
whereas the term ρ

2 ‖u‖2 , i.e., the kinetic energy per volume, is often called the
dynamic pressure.

As far as incompressible flow in a circular pipe is concerned, the velocity will
necessarily increase as soon as the diameter of the pipe decreases, and – because
of (1.31) – this will lead to decreasing pressure within the narrow part of the pipe.
This phenomenon is called the hydrodynamic paradox. Applications include carbu-
retors and jet streams.

s Remark

A necessary condition for the existence of irrotational flow was the conservative
character of the exterior forces. Let us now assume that these forces are conserva-
tive instead, i.e., k̂ = –∇Q. Moreover, let us allow the flow to be compressible, with
a particular dependence ρ = ρ(p), termed barotropic flow. Integration of (1.26) along
a streamline from a constant point P0 to a variable point P then leads to

PZ

P0

j
1
2
∇(‖u‖2) + [curl u, u] + ∇Θ + ∇Q

ff
ds = 0 ,

with

Θ :=
Z

dp
ρ(p)

,

hence

∇Θ =
1
ρ
∇p ,

18) Daniel Bernoulli (1700–1782); St. Petersburg,
Basel
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and with

ds =
1

‖u‖ u ds (s = arc length) .

Because P was arbitrary, and because of 〈[curl u, u], u〉 = 0, this result leads to the
generalized Bernoulli equation

1
2
‖u‖2 + Θ + Q = const ,

which in the case of constant density, i.e., Θ = p
ρ , seems to coincide completely

with (1.31). However, it should be noted that the constant on the right hand side
can now change from streamline to streamline. Additionally, we find

d
dt

Z =
d
dt

I

C

u(x) dx =
I

C

d
dt

fi
u,

dx
ds

fl
ds

=
I

C

du
dt

dx +
I

C

u du

=
I

C

du
dt

dx =
I

C

{〈u,∇〉 u} dx

= –
I

C

j
1
ρ
∇p + ∇Q

ff
dx

= –
I

C

∇
`
Θ + Q

´
dx = 0 .

This is Kelvin’s theorem,19) which says that the circulation along a closed curve in an
inviscid barotropic flow does not change over time.

If an irrotational flow with an arbitrary type of incompressibility is considered,
(1.28) leads together with (1.25) to

Δφ = 0 (1.32)

whereas, for a compressible fluid in the case of stationary flow, the continuity equa-
tion (1.4) is

div(ρu) = 0 .

Let us additionally assume the flow to be barotropic. Then, because of

div(ρu) = ρ div u +
dρ
dp

〈∇p, u〉

19) Lord Kelvin of Largs (1824–1907); Glasgow
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and because of

ĉ =

s
dp
dρ

(cf. (1.67)) ,

(1.26) leads to
„

1 –
“u1

ĉ

”2
«

∂xxφ +
„

1 –
“u2

ĉ

”2
«

∂yyφ +
„

1 –
“u3

ĉ

”2
«

∂zzφ

– 2
“u1 u2

ĉ2 · ∂yu1 +
u2 u3

ĉ2 · ∂zu2 +
u3 u1

ĉ2 · ∂xu3

”
= 0 , (1.33)

as far as the exterior forces vanish. In this situation, (1.33) generalizes (1.32).
Obviously, (1.33) is a quasilinear partial differential equation of second order

for φ, which is certainly elliptic if

M :=
‖u‖

ĉ
< 1 , (1.34)

i.e., in areas of subsonic flow.

Definition

M is called the Mach number.20)

In particular, if we consider a constant flow in the x-direction which is only dis-
turbed in the neighborhood of a slim airfoil21) with a small angle of attack, the
products of the values ui (i = 2, 3) with each other and with u1 can be neglect-
ed when compared with 1. This leads to ‖u‖2 = u2

1 and to a shortened version of
(1.33), namely to

„
1 –
“u1

ĉ

”2
«

∂xxφ + ∂yyφ + ∂zzφ = 0 . (1.35)

This equation is hyperbolic in areas of supersonic flow (M > 1), and the full equa-
tion (1.33) is also hyperbolic in this case.

Let us extend our idealizations by assuming that the flow under consideration
is a two-dimensional plane flow. This means that one of the components of the
velocity vector u in a rectangular coordinate system, e.g., the component in the
z-direction, vanishes for all (x, y) ∈ R

2 and for all t v 0:

u3 = 0 . (1.36)

In the case of a two-dimensional supersonic flow along a slim airfoil for which
(1.35) holds, Mach’s angle �, determined from

|sin �| =
1
M

< 1 ,

20) Ernst Mach (1838–1916); Graz, Praha, Vienna
21) A cross-section of a wing or another rigid

body in a plane parallel to the direction of the
flow
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Fig. 1.3 Flow around a wing if the angle of attack is small.

Fig. 1.4 Mach’s net in the case of a linearized supersonic flow (M = const > 1).

describes the angle between the characteristics of the wave equation

(1 – M2)∂xxφ + ∂yyφ = 0

and the flow direction given by the direction of the x-axis. The set of all of these
characteristics is called Mach’s net. This net plays an important role when so-called
methods of characteristics are used in order to establish efficient numerical proce-
dures.

The two-dimensional case of rotational symmetry, e.g., flow along a projectile,
leads correspondingly to Mach’s cone.

In the two-dimensional plane situation, (1.29) becomes

curl u =

0
B@

–∂zu2

∂zu1

∂xu2 – ∂yu1

1
CA = 0 .

Thus, u1 and u2 are independent of the third spatial variable z:

u =

0
B@

u1(x, y)
u2(x, y)

0

1
CA
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with

∂xu2 – ∂yu1 = 0 . (1.37)

After introducing the vector

v :=

0
B@

–u2(x, y)
u1(x, y)

0

1
CA (1.38)

and using the continuity equation (1.25), we obtain

curl v =

0
B@

0
0

∂xu1 + ∂yu2

1
CA =

0
B@

0
0

div u

1
CA = 0 ,

such that v can also be derived from the potential in simply connected parts of the
fluid area. In other words, there is a scalar function ψ = ψ(x, y) with

–u2 = ∂xψ , u1 = ∂yψ . (1.39)

ψ is called the stream function. (1.28) leads to

∂xφ = ∂yψ , ∂yφ = –∂xψ . (1.40)

Obviously, (1.40) can be interpreted as the system of Cauchy–Riemann equations
of the complex function

Ω(z) := φ(x, y) + i ψ(x, y) (1.41)

depending on the complex variable z = x + i y.
Ω is called the complex velocity potential of the plane potential flow under consid-

eration.

Fig. 1.5 Linearized supersonic flow around a slim rotatory cone.
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We are going to assume that the first partial derivatives of the functions φ and ψ
are continuous such that Ω is found to be a holomorphic function, and we intend
to study the forces acting on rigid bodies when dipped into such a fluid flow.

Because we reduced reality to a plane flow, the rigid body is assumed to be very
long with respect to the direction of the third spatial variable; more precisely, it
must be of infinite length from the point of view of mathematics. Therefore, the
flow around the contour of the cross-section of the body within the (x, y)-plane, e.g.,
around the contour of an airfoil of a long wing, is of interest.

We stated that the circulation Z =
H

C u dx vanishes as long as the closed con-
tour C is the boundary of a simply connected domain within the fluid area in the
case of a potential flow. Because of our plane model, C represents a simple closed
contour in the (x, y)-plane, i.e., in R

2.
Now, consider the situation where the boundary Γ of a rigid body is dipped into

the fluid, e.g., a wing. If its airfoil is part of the area surrounded by C, this interior
domain of C is no longer a simply connected domain of the fluid area. Hence, the
circulation Z around the airfoil does not necessarily vanish but is found to fulfill

I

C

u dx =
I

Γ

u dx .

In order to proof this relation, we take into account that Γ and C can, in a first
step, be connected by two auxiliary lines in such a way that two simply connected
domains G1 and G2, with contours C1 and C2, respectively, will occur. Because
of curl u = 0 in G1 as well as in G2, we see in a second step that

I

C1

u dx = 0 as well as
I

C2

u dx = 0

holds. This leads toI

C1

u dx +
I

C2

u dx = 0

(cf. Fig. 1.6).
We realize in a third step that the integrations back and forth along each of the

auxiliary lines extinguish each other such thatI

C1

u dx +
I

C2

u dx =
I

C

u dx +
I

–Γ

u dx

Fig. 1.6 Auxiliary step in the computation of the buoyancy generated by plane potential flows.
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results. Here, –Γ denotes the contour of the rigid body along the negative direction,
and this ends the proof.

s Remark

It should be noted that the proof given here is simplified because Γ not only passes
through the interior of the domain occupied by the fluid but is also part of its
boundary. As a matter of fact, one must first, roughly speaking, investigate the case
where Γ is replaced by a line Γε of distance ε from Γ that passes only through the
fluid, and in a next step one must study the limit situation ε → 0.

Let Γ now be parametrized by r = r(τ) , 0 u τ u T. Then

Z =

TZ

0

〈u(r(τ)), ṙ(τ)〉 dτ =

TZ

0

{u1 ẋ + u2 ẏ} dτ (1.42)

holds, and ṙ =

 
ẋ(τ)
ẏ(τ)

!
is a vector tangential to the curve Γ at the point (x(τ), y(τ))

such that

n :=
1p

ẋ2 + ẏ2

 
ẏ

–ẋ

!
(1.43)

is a normal unit vector of Γ at this point.
According to (1.13), we assume that the velocity of the flow at the surface of the

rigid body is tangential to this surface:

〈u, n〉 = 0 along Γ ,

i.e., u1 ẏ = u2 ẋ. From this, and with (1.42), the circulation becomes

Z =

TZ

0

(u1 – i u2) (ẋ + i ẏ) dτ ,

i.e.,

Z =
Z

Γ

w(z) dz , (1.44)

with

w(z) := u1(x, y) – i u2(x, y) . (1.45)

w(z) is a holomorphic function in the whole domain outside the airfoil be-
cause (1.39) yields

∂xu1 = ∂xyψ = ∂yxψ = ∂y(–u2) ,

and because (1.28) leads to

∂yu1 = ∂xyφ = ∂yxφ = –∂x(–u2) ,
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the Cauchy–Riemann equations for the function w(z) are fulfilled.
Hence, also with respect to the computation of the circulation, integration along

C instead of Γ is permitted:

Z =
Z

C

w(z) dz . (1.46)

Here, we choose C in such a way that it lies in the annulus between two con-
centric circles, where circle Kr of radius r surrounds the airfoil and KR is a circle
with a sufficiently great arbitrary radius R > r. Without any loss of generality, we
assume the center of each circle to be the origin of the former (x, y)-plane, which
now becomes the complex z-plane.

w(z) can be represented in the annulus (and therefore for every z ∈ C in particu-
lar) by a Laurent series22) around the center z0 = 0 (cf. Fig. 1.7):

w(z) =
+∞X

ν=–∞
aν zν .

Fig. 1.7 Annulus around an airfoil.

We know from experience that the fluid flow is often only influenced by the rigid
body within the neighborhood (which has a certain size) of the contour; the flow
around a ship that crosses a calm lake at a constant velocity provides an example of
this. From this point of view, we are going to assume that the velocity u = u(x, y) is
constant for |z| → ∞:

lim
|z|→∞

u(x, y) =

 
u1,∞
u2,∞

!
(1.47)

with constant components u1,∞ and u2,∞ such that

lim
|z|→∞

w(z) = u1,∞ – i u2,∞ .

22) Pierre Alphonse Laurent (1813–1854); Le Havre
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Because the coefficients aν (ν = 0,±1,±2, . . .) are constant numbers which do
not depend on R, and because R is allowed to tend to infinity, we find for |z| → ∞
that all the aν with positive indices must vanish.

Hence, the result

lim
|z|→∞

w(z) = a0 = u1,∞ – i u2,∞ (1.48)

follows.
On the other hand, Cauchy’s formula

a–1 =
1

2π i

I

C

w(�) d�

leads to

Z = 2π i a–1 . (1.49)

The (two-dimensional) force K to be calculated, which is caused by the flow and
acts on the rigid body, is found to be:

K =

 
K1

K2

!
= –

LZ

0

p n ds

 
[K] =

[force]ˆ
length

˜
!

, (1.50)

where n is the unit normal vector from (1.43), p denotes the pressure along the
surface of the body caused by the fluid, s measures the arc length along Γ beginning
at an arbitrary point on it, and where L is the total length of Γ . Let us study this
force separately from the other exterior forces acting on the body; i.e., let us assume
that the sum of these other forces vanishes. This leads to a constant potential Q in
Bernoulli’s equation (1.31) and therefore to a constant total pressure

p0 :=
ρ
2
‖u‖2 + p .

Because Γ is a closed contour,
R L

0 n ds = 0.23)

Therefore,

K = –

LZ

0

n
p0 –

ρ
2
‖u‖2

o
n ds =

ρ
2

LZ

0

‖u‖2 n ds ,

23) ds
dτ

=
p

ẋ2 + ẏ2 , hence

LZ

0

n ds =

TZ

0

1
p

ẋ2 + ẏ2

„
ẏ

–ẋ

«
ds
dτ

dτ =
„

y(T) – y(0)
–x(T) + x(0)

«
=

„
0
0

«
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i.e.,

K1 =
ρ
2

TZ

0

1p
ẋ2 + ẏ2

‖u‖2 ẏ
ds
dτ

dτ ,

K2 = –
ρ
2

TZ

0

1p
ẋ2 + ẏ2

‖u‖2 ẋ
ds
dτ

dτ .

The temporary introduction of the complex number

k = K2 + i K1 (1.51)

yields

k = –
ρ
2

TZ

0

1p
ẋ2 + ẏ2

‖u‖2 (ẋ – i ẏ)
ds
dτ

dτ = –
ρ
2

TZ

0

‖u‖2 (ẋ – i ẏ) dτ .

The complex number within the parentheses on the right hand side of

‖u‖2(ẋ – i ẏ) =
`
u2

1 + u2
2
´

(ẋ – i ẏ) = (u1 – i u2) (u1 + i u2) (ẋ – i ẏ)

= w(z) (u1 ẋ + u2 ẏ + i u2 ẋ – i u1 ẏ)

is not really complex because the imaginary part vanishes (cf. (1.13)). It can there-
fore be replaced by its conjugate complex number:

‖u‖2(ẋ – i ẏ) = w(z) (u1 ẋ + u2 ẏ – i u2 ẋ + i u1 ẏ)

= w(z) (u1 – i u2) (ẋ + i ẏ) = w2(z) ż .

This leads to

k = –
ρ
2

TZ

0

w2(z) ż dτ = –
ρ
2

Z

Γ

w2(z) dz .

Because w is holomorphic, w2 is also a holomorphic function. Hence,

k = –
ρ
2

Z

C

w2(z) dz . (1.52)

However, within the annulus we have

w2(z) =
“

a0 +
a–1

z
+

a–2

z2 + . . .
” “

a0 +
a–1

z
+

a–2

z2 + . . .
”

= a2
0 + 2

a0 a–1

z
+

A–2

z2 +
A–3

z3 + . . .

with certain coefficients Aν (ν = –2, –3, . . .).
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Cauchy’s residuum formula and (1.52) therefore lead to

k = –
ρ
2

2a0 a–1 · 2π i .

Thus, (1.48) and (1.49) yield

k = –ρ (u1,∞ – i u2,∞) Z ,

and because the circulation Z is real (cf. (1.27)), comparison of the real and imagi-
nary parts of (1.51) results in

K1 = ρ u2,∞ Z
K2 = –ρ u1,∞ Z .

(1.53)

In particular, if u2,∞ = 0 but u1,∞ =/ 0, i.e., if the undisturbed flow is parallel to
the x-axis, and if Z =/ 0, we obtain a lift K2 =/ 0, i.e., there is a force acting on the
rigid body perpendicular to the direction of the flow.

By using an appropriate wing construction, the airfoils can yield Z < 0, so that an
aircraft can lift its own weight, a hydrofoil can rise out of the water, etc. Of course,
Archimedes’ static buoyancy, as given by (1.4), must also be taken into account.

s Remark

The formulae (1.53) are called Kutta–Zhukovsky buoyancy formulae.24)

s Remark

Whereas the first equation in (1.53) describes the buoyancy at least qualitatively
in a correct manner, the result K1 = 0 contradicts reality. Also, in the case of an
incompressible irrotational stationary flow (as more or less realized by calmly flow-
ing streams), the flow will apply some force to the rigid body (e.g., a bridge pier)
parallel to the direction of flow. Of course, this contradiction results from one of
our idealizations: the assumption of an inviscid and therefore frictionless fluid.

In order to understand what really happens parallel to the flow, we must reduce
the amount of idealization. This will later be achieved by using the so-called Navier–
Stokes equations rather than the Euler equations, and the so-called no-slip condition
given below rather than (1.13).

u = 0 along Γ . (1.54)

Equation (1.54) expresses the idea that moving viscous fluids leave a monomolec-
ular stationary layer on impermeable walls of solid bodies because of adhesion.
Thus, friction along such surfaces does not mean friction between the fluid and
the solid material, but rather friction between fluid particles.

Of course, there are also other boundary conditions where partial slip occurs on
the surface, e.g., in rarefied gas flow, with porous walls, etc. The tangential compo-
nent of the flow is then proportional to the local shear stress.

24) Martin Wilhelm Kutta (1867–1927); Stuttgart;
Nikolai Jegorowitsch Zhukovsky (1847–1921);
Moscow
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If (1.33) is reduced to the case of an irrotational, stationary, plane flow (i.e., u3 = 0,
∂yu1 = ∂xu2), if there are no exterior forces, and if (u1, u2) is for convenience re-
placed with (u, v), we get:

„
1 –
“u

ĉ

”2
«

∂xu +
„

1 –
“v

ĉ

”2
«

∂yv –
u v

ĉ2 ·
`
∂yu + ∂xv

´
= 0 . (1.55)

The uv-plane is called the hodograph plane.
We assume the equations

u = u(x, y)

v = v(x, y)

to be invertible such that x and y can be expressed by u and v, i.e.,

D :=

˛̨
˛̨
˛
∂xu ∂yu
∂xv ∂yv

˛̨
˛̨
˛ /= 0 .

In other words, it will be assumed that the vectors ∂xu and ∂yu are linearly inde-
pendent.

This leads immediately to

∂xu = D ∂vy , ∂yu = –D ∂vx , ∂xv = –D ∂uy , ∂yv = D ∂ux .

The nonlinear equation (1.55) together with the equation ∂yu = ∂xv for the func-
tions u(x, y) and v(x, y) of the irrotational flow can therefore – after division by
D – be transformed into the linear equations

„
1 –

v2

ĉ2

«
∂ux +

„
1 –

u2

ĉ2

«
∂vy +

uv

ĉ2
(∂vx + ∂uy) = 0

∂vx – ∂uy = 0 (1.56)

for the functions x(u, v) and y(u, v).
The transition from the original equations to the linear equations (1.56) is called

the method of hodographs and corresponds to the Legendre transformation in the the-
ory of partial differential equations.

In simply connected domains, x(u) can be derived from a potential Θ (i.e.,
x = Θu, y = Θv), because of

curl x(u) = (0, 0, ∂uy – ∂vx)T = 0 .

Equation (1.56) therefore yields
„

1 –
v2

ĉ2

«
∂uuΘ +

„
1 –

u2

ĉ2

«
∂vvΘ + 2

uv

ĉ2 ∂uvΘ = 0 . (1.57)

If polar coordinates (w = ‖u‖ , α) are used in the hodograph plane, i.e.,

u = w cos α , v = w sin α ,

∂u = cos α ∂w –
1
w

sin α ∂α ,

∂v = sin α ∂w +
1
w

cos α ∂α ,
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Equation (1.57) becomes the so-called hodograph equation:

∂wwΘ +
1

w2

„
1 –

w2

ĉ2

«
∂ααΘ +

1
w

„
1 –

w2

ĉ2

«
∂wΘ = 0 (1.58)

which does not explicitly contain α.
If we try to solve (1.58) by the ansatz

Θ(w, α) = g(w) sin(mα) or Θ(w, α) = g(w) cos(mα) , (m ∈ R) , (1.59)

we obtain for the unknown function g(w) the ordinary differential equation

g′′(w) +
1
w

„
1 –

w2

ĉ2

«
g′(w) –

m2

w2

„
1 –

w2

ĉ2

«
g(w) = 0 . (1.60)

Solutions of the hodograph equation of type (1.59) are called Chapligin solutions.25)

Let gm(w) be a solution of (1.60) that belongs to a particular m and let Θm(w, α)
be the solution of (1.59) that corresponds to this solution.

Examples:
m = 0 leads to

g′′0
g′0

= –
1
w

+
w
ĉ2 ,

hence

g′0 =
c(0)

1

w
e

1
2

w2

ĉ2 .

The power series of e
1
2

w2

ĉ2 converges uniformly for all values of w. Integration can
therefore be performed term-by-term, yielding

g0(w) = c(0)
1

(
ln w +

∞X
ν=1

`w
ĉ

´2ν

2ν+1νν!

)
+ c(0)

2 .

Here, c(0)
1 and c(0)

2 are arbitrary constants.
Analogously for m = 1:

g1(w) = c(1)
1 w + c(1)

2

(
1

w2 +
w ln w

2ĉ2 +
∞X

ν=0

w2(ν+1)

2ν+2ĉ2(ν+2)

)
.

Because (1.58) is linear and homogeneous, all linear combinations of the partic-
ular Chapligin solutions also solve Eq. (1.58). The coefficients of the expansion as
well as the constants c(m)

1 and c(m)
2 must be chosen in such a way that the expansion

fits the given situation, at least approximately.

25) C.A. Chapligin: Sci. Ann. Univ. Moscow.
Math. Phys. 21 (1904) 1–121
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1.4
Motionless Fluids and Sound Propagation

Obviously, because viscosity only plays a role in moving fluids, the results of this
section are also valid for real fluids.

In a first step, let us consider the case for constant density ρ, which is approxi-
mately realized in liquids.

In this situation, (1.26) leads for motionless fluids (i.e., for u = 0) to the so-called
hydrostatic equation

k̂ = ∇
„

p
ρ

«
,

and (1.31) becomes

Q +
p
ρ

= const .

Let us assume that we do not yet know how the free surface of a motionless
liquid behaves if only the force of gravity and a constant exterior (e.g., atmospheric)
pressure p0 affects this liquid. Hence, the force per mass unit is given by

k̂ = (0, 0, –g)T (g = acceleration due to gravity) ,

such that Q = g z + const (i.e., ρ g z + p = const). In particular, if (x, y, z0) is a point
on the surface, ρ g z + p = ρ g z0 + p0 or

ρ g (z – z0) = –(p – p0) = –p̂ (1.61)

holds. Here, p̂ is the overpressure inside the liquid compared with the exterior
pressure.

Because of

z0 =
const – p0

ρ g
,

z0 is constant, and thus independent of (x, y). In other words, the surface of the
liquid is a plane, or more precisely it is parallel to the Earth’s surface. If h = z0 – z
is the height of an arbitrarily shaped liquid column, (1.61) gives

ρ g h q = p̂ q ,

where q is the base area of the column.
The force affecting this base is given by the right hand side of the equation and

does not depend on the form of the column, whereas the left hand side gives the
weight of a cylindrical column of the fluid with the same base area and the same
height.

This phenomenon is called the hydrostatic paradox.
We are now going to dip a solid body of volume V and surface F into a stationary

liquid.
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Fig. 1.8 Hydrostatic paradox.

Obviously, an overall force K affects the body, where

K = (K1, K2, K3)T = –
Z

F

p n do + G .

Here, p is the interior pressure of the liquid, G is the weight of the body, and n de-
notes the outward-directed normal unit vector at the points on the surface. Because
of G = (0 , 0 , –G)T, (1.61) yields

K1 = ρ g
Z

F

„
z – z0 –

p0

ρ g

«
n1 do = ρ g

Z

F

〈a, n〉 do

with a := (z – z0 –
p0

ρ g
, 0, 0)T. The divergence theorem therefore leads to

K1 = ρ g
Z

V

div a dV = ρ g
Z

V

∂(z – z0)
∂x

dV = 0 .

Analogously, K2 = 0. K3 is found to be given by

K3 = ρ g
Z

V

∂(z – z0)
∂z

dV – G = ρ g V – G ,

so that

K = (0, 0, ρ g V – G)T . (1.62)

ρ is the density of the liquid (!), so ρ g V is the weight of the particular part of the
liquid which is displaced by the solid body. Hence, the body is affected by a force di-
rected against the direction of action of its weight, and this (static) buoyancy equals
the weight of the displaced quantity of the liquid (Archimedes’ principle).26)

In order to study the propagation of sound in a fluid, we assume that the fluid
does not move from a macroscopic point of view. Moreover, we will only consider
the sound effects resulting from very small changes in the density and pressure

26) Archimedes (about 220 BC); Syracuse
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within the fluid. Therefore, we no longer assume the density to be constant, but we
assume only small variations in it.

Let ρ̂ and p̂ be the averages of the density and the pressure, respectively. Only
these averages are expected to be constant quantities.

The density disturbances will be expressed by

ρ = ρ̂
`
1 + σ(x, t)

´

where |σ| << 1 and the spatial derivatives of σ are small.27)

The continuity equation (1.4) then becomes

ρ̂ σt + ρ̂ div
`
(1 + σ)u

´
= 0 ,

and so, after dividing by ρ̂ and taking the assumptions for σ into account,

σt + div u = 0 . (1.63)

Experiments show that the propagation of sound waves occurs more or less adi-
abatically, i.e., without any gain or loss of heat. The equation of state to be taken
into account is therefore

ρ–γ p = const28) (1.64)

such that

p
p̂

=
„

ρ
ρ̂

«γ

= (1 + σ)γ .

Because σ is small,

(1 + σ)γ W 1 + γ σ .

Hence

p = p̂(1 + γ σ) ,

so that

1
ρ
∇p =

p̂ γ
(1 + σ) ρ̂

∇σ . (1.65)

In our model of small disturbances, the velocity of the fluid particles and its spatial
derivatives are so small that higher-order terms of these quantities can be neglected

27) Our results do not necessarily hold in the
case of the propagation of large variations in
the pressure or density, such as can occur in
the case of detonations.

28) γ from (1.9)
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compared with first-order terms. In other words, the convection term in (1.6) can
be neglected. Also, exterior forces do not play a role in our scenario.

If (1.65) is then put into (1.6), we find

ut = –
γ p̂
ρ̂

∇σ ,

where 1 + σ was approximated by 1.
Forming the divergence of this term, and then changing the sequence of the time

derivative and the spatial derivatives, we end up with

(div u)t = –
γ p̂
ρ̂

Δσ .

This result can be compared with (1.63) when differentiated with respect to t.
This comparisons yields

σtt =
γ p̂
ρ̂

Δ σ ,

a wave equation for σ. It shows that the sound waves propagate within the fluid
with the velocity

ĉ =

s
γ p̂
ρ̂

. (1.66)

Definition

ĉ is called the local speed of sound.

s Remark

Because of (1.64), ĉ can also be represented by

ĉ =

s
dp
dρ

. (1.67)




