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1
Dielectric, Ferroelectric, and 
Optical Properties

1 Introduction
Dielectric and ferroelectric materials historically have had and continue to have a strong
influence on the evolution of today’s electrical engineering, electronics, optics, and infor-
mation technology. In this chapter, we will predominantly discuss the material class of
crystalline oxides. In device applications, these materials are employed as bulk materials
and, in nanoelectronic typically as thin films.

The range of new applications for these materials in the field of information technol-
ogy is extremely wide. Low permittivity dielectrics are being developed as insulators on
advanced CMOS circuits in order to enhance the signal transfer rate across the chips
(Chap. 34). High permittivity dielectrics and ferroelectrics are being investigated for the
cell capacitors of future DRAM and non-volatile FeRAM devices, respectively
(Chap. 27). Very low losses and a specific temperature dependence of the dielectric prop-
erties are required for new microwave oscillator and filter applications (Chap. 36). A
variety of gate dielectrics for field-effect transistors are being studied for applications in
short-channel MOSFETs (Chap. 14), carbon-based FETs (Chap. 20), and ion-sensitive
FETs for electronic noses (Chap. 41). Even thinner dielectrics are used in tunnelling bar-
riers, for example, in Coulomb blockage devices (Chap. 16), some molecular electronic
test systems, as well as in Josephson junctions for super-conducting logic circuits
(Chap. 18) and in quantum computing systems (Chap. 25). Gradients of the refractive
index are used in optical wave guides (Chap. 35). The electrically switchable anisotropy
of the refractive index (i.e. the birefringence) is employed in LCDs (Chap. 43), as well
as in optical switches and modulators for data communication (Chap. 35). Holographic
memories (Chap. 32) are based on the photosensitivity (either photo refraction or photo
absorption) of an optical storage material. Pyroelectric materials are used in IR imaging
systems (Chap. 40) and piezoelectric films control the deflection of the cantilever in
MEMS devices, for example for dedicated micro-mirror displays (Chap. 46). 

The development and optimization of the materials themselves and the related pro-
cessing technologies has enabled the technical use of electronic phenomena at ever
higher electrical fields, smaller circuit dimensions, and for an increasing number of func-
tions. The future evolution of information technology will depend crucially on the possi-
bility, reproducibility, and perfection of the integration of these new oxide dielectrics
with semiconductor components.

The present chapter will introduce the basic concepts of the interaction of the elec-
tromagnetic field with matter, as this is one of the key issues in understanding the princi-
ples of the design and operation of the new electronic and photonic devices. The
description of dielectric, ferroelectric and optical properties given here mainly focuses on
the requirements of subsequent chapters. For further details or a broader view of the
topic, the reader is referred to comprehensive textbooks either on solid state physics in
general (e.g. [1]–[7]), electronic materials (e.g. [8]–[10]), or specifically on dielectric
(e.g. [11]–[14]), ferroelectric (e.g. [18]–[20]), and optical properties (e.g. [56]–[58]).

2 Polarization of Condensed Matter
Before we enter into the specific physical description, we will first provide definitions of
the following terms, which will be used throughout this chapter: 

Dielectrics are insulating materials that are used technically because of their prop-
erty of polarization to modify the dielectric function of a vacuum, for example to increase
the capacity (i.e. the ability to store charge) of capacitors. They do not conduct electricity
due to the very low density of free charge carriers. Here, the electrons are bound to micro-
scopic regions within the material, that is the atoms, molecules, or clusters.

Polarization is the separation of a positive and a negative charge barycenter of
bound charges. If this separation is induced by an applied electric field, it is called dielec-
tric polarization. If the separation is induced by an applied strain field, it is called piezo-
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electric polarization. Several dielectric crystals exhibit a spontaneous polarization below
a critical temperature which is related to a change in crystal symmetry. A spontaneous
polarization in the material leads to pyroelectric effects under temperature changes. Fer-
roelectricity is obtained when the orientation of polarization can be reoriented between
crystallographically equivalent configurations by an external field. 

Conductors such as metals conduct electric current because of the free mobility of
the electronic charge carriers within their lattice. Free here means the charges can enter
and leave a system in contrast to bound charges (or: polarization charges) which can only
be displaced to a lesser or greater extent within the system.

Optical properties are determined by free and bound charges. The limiting cases of
conductors (free conducting charges) and dielectrics (bound polarization charges) blend
in the case of fields of high frequencies because here the charges are accelerated in only
one direction during one half of a period of the alternating field and thus are unable to
travel long distances.

2.1 Electrostatic Equations with Dielectrics
According to the Poisson equation, each free charge acts as a source for the dielectric
displacement D

 (1)

where ρfree denotes the density of free (conducting) charges. Based on this relation, the
overall charge neutrality of matter in an external field is described by 

 (2)

The term ε0E describes the vacuum contribution to the displacement D caused by an
externally applied electric field E, and P represents the electrical polarization of the mat-
ter in the system. Figure 1 illustrates the insertion of matter into a parallel plate capacitor.
The effect on the dielectric displacement is independent of the cause of the polarization.
The polarization may exist spontaneously (pyroelectric/ferroelectric polarization), it may
be generated by mechanical stress (piezoelectric polarization), or it may be induced by an
external electric field (dielectric polarization). 

In the case of a dielectric polarization, the polarization of the matter is related to the
electric field by 

 (3)
which leads to

 (4)

where χe defines the electrical susceptibility and εr the relative permittivity of the mate-
rial. 

2.2 Microscopic Approach and the Local Field
We are now going to find a correlation between the macroscopic polarization P and the
microscopic properties of the material. The macroscopic polarization P is the vector sum
of the individual dipole moments p of the material, such as polarized atoms, molecules,
ions, etc.

 (5)
with Ndip being the density of dipoles.

In the case of dielectric polarization, the dipole moments are induced by the local
electric field Eloc at the site of the particle

 (6)

where α is the polarizability of an atomic dipole. 
In condensed matter, the density and therefore the electrostatic interaction between

the microscopic dipoles is quite high. Hence, the local field Eloc at the position of a par-
ticular dipole is given by the superposition of the applied field Ea and the field of all other
dipoles 

 (7)

freediv ρ=D

0ε= +D E P

0 eε χ=P E

( )0 e 0 r1ε χ ε ε= + =D E E

dipN= ⋅P p

locα= ⋅p E

loc a dipole= +∑E E E

Figure 1: 
(a) Empty parallel plate capacitor and 
(b) capacitor after inserting a dielectric 

material between the electrode plates 
at constant voltage and 

(c) at constant charge on the plates. 
Note: it is not necessary for the 
polarization P to be induced by the 
electric field E.
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The local field Eloc can be calculated by the method of Clausius and Mossotti (see

e.g. [6]). The calculation reveals a relation between the atomic polarizability α and the
macroscopic permittivity εr. For example, for cubic crystal structures

 (8)

is obtained. This is often referred to as the Clausius-Mossotti equation. It is important
to remember that Eq. (8) has been developed only for induced dipoles (ionic and elec-
tronic polarization).

2.3 Mechanisms of Polarization
So far we have considered the correlation between the macroscopically measurable rela-
tive permittivity εr and the microscopic atomic polarizability α in an ensemble of induced
dipoles. We will now extend our scope to both induced and permanent dipoles. In the fol-
lowing, the different physical mechanisms of polarization in the solid state will be out-
lined. Details can be found in textbooks such as reference [3]. 

In general, one can distinguish between four different types of polarization: 
Electronic polarization describes the displacement of the negatively charged elec-

tron shell in relation to the positively charged nucleus. The electronic polarizability αel
is approximately proportional to the volume of the electron shell. Thus, large atoms have
a large electronic polarizability. The temperature dependence of αel can be neglected.

Ionic polarization is observed in materials with ionic bonds (i.e. ionic crystals) and
describes the mutual displacement of the positive and negative sub-lattices under the
influence of an applied electric field. In general, the temperature dependence of the ionic
polarisability αI is weakly positive because of the thermal expansion of the lattice.

Orientation polarization describes the alignment of permanent dipoles. Many sub-
stances contain molecules – either regular constituents or impurities – which carry a (per-
manent) electric dipole moment. If these dipoles are mobile or, at least, are able to re-
orient themselves by rotation, they contribute to dielectric polarization by the so-called
orientation polarization. At ambient temperatures, usually all dipole moments are mutu-
ally compensated because of the orientation disorder. An electric field generates a pre-
ferred direction for the dipoles, while the thermal movement of the atoms perturbs the
alignment. The average degree of orientation therefore is a function of the applied field
and the temperature. The solution is given by the Langevin function [6]. For all techni-
cally applicable cases, the polarization is far from saturation and is proportional to the
applied field. In this case, the average polarisability originating from permanent dipole
moments p is given by

 (9)

where kB denotes the Boltzmann constant and T the absolute temperature measured in
Kelvin. The strong temperature dependence is a main characteristic of the orientation
polarisation.

Space-charge polarization describes a polarization effect in a dielectric material
which shows spatial inhomogeneities of charge carrier densities. Space-charge polariza-
tion effects are not only of importance in semiconductor field-effect devices (see refer-
ence [7]), they also occur in ceramics with electrically conducting grains and insulating
grain boundaries (so-called Maxwell-Wagner polarization, see reference [9]).

2.4 The Complex Dielectric Permittivity
We will now look at the behavior of dielectric material in alternating electric fields. Mov-
ing charges cause a frequency-dependent phase shift between applied field and charge
displacement. To express this mathematically, the relative dielectric permittivity is writ-
ten as a complex function

 (10)

The real part εr′ characterizes the displacement of the charges, and the imaginary part
εr′′ the dielectric losses. Analogously, the electrical susceptibility is also written as a com-
plex quantity

 (11)
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The loss tangent is defined as 

 (12)

In addition to the losses caused by dipole reorientation (tan δ)dipole, the residual leak-
age current (tan δ)cond of the non-perfect insulator is added, so that in general tan δ and
hence , respectively, become the sum of both contributions

 (13)

For microwave ceramics (see Chap. 36), a quality factor Q := tan−1 δ is frequently
quoted.

The total polarization of a dielectric material originates from the four contributions
discussed above. Each contribution stems from a short-range movement of charges
responding to an electric field on different time scales and, hence, through a Fourier trans-
form, in different frequency regimes. The resulting dispersion of the real and imaginary
part of the dielectric function is shown in Figure 2.

The space-charge polarization is caused by a drift of mobile ions or electrons which
are confined to outer or inner interfaces. Depending on the local conductivity, the space-
charge polarization may occur over a wide frequency range from mHz up to MHz. The
polarization due to the orientation of electric dipoles takes place in the frequency regime
from mHz in the case of the reorientation of polar ligands of polymers up to a few GHz
in liquids such as water. It is often possible to distinguish between space-charge and ori-
entation polarization because of the temperature dependence of 〈αor〉. In the infrared
region (1012–1013 Hz), we find the resonance of the molecular vibrations and ionic lat-
tices constituting the upper frequency limit of the ionic polarization. The resonance of the
electronic polarization is around 1015 Hz. It can be investigated by optical methods. As
can be seen from Figure 2, the different polarization mechanisms not only take place on
different time scales but they also exhibit different frequency dependences. Depending
on whether the oscillating masses experience a restoring force or not, we distinguish
between resonance effects and relaxation effects, respectively. Resonance effects are
observed for the ionic and electronic polarization, while relaxation effects are found for
orientation polarization and space-charge polarisation.

2.5 Spontaneous Polarization
The ability of a crystal to exhibit spontaneous polarization is related to its symmetry. Fol-
lowing Maxwell’s equations, spontaneous polarization is connected with surface charge
density

 (14)

where (Qs/A) is the density of surface charges.

2.5.1 Ferroelectricity
Ferroelectric materials exhibit a spontaneous polarization Ps which can be reoriented
between two crystallographically equivalent configurations by an external field. Thus, it
is not the existence of spontaneous polarization alone, but its reorientability by an exter-
nal field which defines a ferroelectric material. The graph in Figure 3 displays a charac-
teristic hysteresis loop occurring during the reversal of the polarization in a ferroelectric. 

In the case of an ideal single crystal, the polarization vs. field behavior, P-E, can be
explained by a simple superposition of two contributions: firstly, the dielectric, ionic and
electronic polarization and, secondly, the spontaneous polarization, which is reoriented
when the electric field E applied opposite to the polarization exceeds the coercive field
Ec leading to the unidirectional jumps in the P-E curve. In polydomain ferroelectric mate-
rials, especially in ceramics, initially there is a statistical distribution of domains before
the material is polarized for the first time. Starting with a polarization P = 0, P increases
with an increasing field until it reaches saturation. The saturation polarization Psat is
obtained by extrapolating the graph to E = 0. If after saturation, the electric field is
reduced again, then at E = 0, a remanent polarization Pr is found. Pr relates to the domain
structure in the material. In order to bring the polarization to zero, a negative electric field
of the magnitude of the coercive field Ec has to be applied. If the negative field is further
increased, then the hysteresis loop is followed in the reverse sense.

r

r
tan ε

δ
ε

′′
≡

′

rε′′

( ) ( )dipole condtan tan tanδ δ δ= +

s sP Q A=

Figure 2: Frequency dependence of real 
(top) and imaginary (bottom) part of the 
dielectric function.

Figure 3: Hysteresis of the polarization P as a 
function of the field E for ferroelectric materials:
(a) Single-domain single crystal recorded in the 

polar direction. The remanent polarization Pr 
and the spontaneous polarization Ps are 
identical. An electrical field amplitude 
E > Ec is needed to reverse the polarization.

(b) Polycrystalline sample. The line A-B gives 
the initial polarization curve. Extrapolation of 
the line B-C towards zero electric field gives 
the saturation polarization Psat at E = 0. The 
hysteresis curve cuts the P axis at E = 0 
giving the remanent polarization Pr. In order 
to reduce the polarization to zero, a coercive 
field (−Ec) is necessary.
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As an illustration of the types of properties demonstrated by many ferroelectric

materials, barium titanate, BaTiO3, will be considered. The elementary cell is depicted
in Figure 4. The phase transition in barium titanate is first order in character, and as a
result, there is a discontinuity in the spontaneous polarization, spontaneous strain, and
many other properties, as becomes clear in Figure 5. It is also obvious from Figure 5 that
there are three phase transitions in BaTiO3. In all cases, a small thermal hysteresis of the
transition temperature is obtained, which depends on many parameters such as the rate of
temperature change, mechanical stresses, crystal imperfections, etc. At the first transition
upon cooling from high temperatures, at 123 °C, the system transforms from a cubic to a
tetragonal structure with a spontaneous polarization in the [001] direction as shown in
Figure 5a. The abrupt change of the spontaneous polarization of ΔPs = 18 μC/cm2 at the
cubic-to-tetragonal transition temperature (see Figure 5c) clearly demonstrates a first-
order phase transition. The second phase transition, at 5 °C, transforms the tetragonal
structure to an orthorhombic structure. In this case, the polarization direction is in the
[101] direction of the prototype cubic cell. Finally, at −90 °C, a further phase transition
takes place which deforms the orthorhombic to a rhombohedral structure. There, the
polarization is in the [111] direction. From a crystal chemical perspective, this series of
phase transitions can be viewed as a consequence of the Ti4+ ion being somewhat too
small to occupy the interstice created by the Ba-O framework. As a result, the series of
phase transitions takes place to reduce the Ti cavity size [22]. 

Figure 5d displays the temperature dependence of the permittivity in barium titanate
over the full temperature range. We note that the optical properties of ferroelectric mate-
rials are characterized by birefringence. BaTiO3 is isotropic only in the cubic phase. The
tetragonal and the rhombohedral phases are uniaxially birefringent, while the orthorhom-
bic phase exhibits birefringent behavior with two axes.

Figure 4: Unit cell of cubic BaTiO3 (perovskite 
structure). The central Ti4+ ion is surrounded by 
six O2− ions in octahedral configuration. The arrow 
schematically indicates one of the possible 
displacements of the central Ti4+ ion at the 
transition to the tetragonal ferroelectric structure 
that leads to a spontaneous polarization and, hence, 
to the ferroelectricity of tetragonal BaTiO3 [21]. In 
reality, all ions are displaced against each other.

Figure 5: Various properties of BaTiO3 
as a function of temperature. 
Anisotropic properties are shown with 
respect to the lattice direction. 
(a) Structure
(b) Lattice constants
(c) Spontaneous polarization Ps
(d) Relative permittivity εr
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2.5.2 Antiferroelectricity
As in the case of magnetism, the electric dipole moments orient themselves in a parallel
or antiparallel fashion. Figure 6 displays schematically two different polarization pat-
terns. In Figure 6a, positively and negatively charged ions are displaced alternately in the
downward and upward direction. The associated dipoles create an antiferroelectric order.
Functionally, a material is referred to as antiferroelectric if it can be field-forced to a fer-
roelectric state (i.e. the free energies of the ferroelectric and antiferroelectric states must
be similar). In contrast to this case, Figure 6b displays the behavior of the displacements
close to a domain wall of a ferroelectric phase. Whether a given structure forms a ferro-
electric or antiferroelectric order depends on the overall lattice forces and dipolar inter-
actions [23].

Figure 7 displays the polarization dependence on the electric field in an antiferro-
electric crystal. With a low electric field, a weak polarization is exhibited. Only if a crit-
ical field Ec, which breaks the antiferroelectric order is surpassed, will a major
polarization occur. Around this critical field, hysteresis effects are observed in a similar
way to those that occur in ferroelectric materials around E = 0 (see Figure 3), although
in this case, the hysteresis is due to the field forcing a phase transition from the antiferro-
electric to a ferroelectric phase. An example of an antiferroelectric is the material lead
zirconate (PbZrO3).

2.5.3 Pyroelectricity
The polarization charges of the surface of polar materials are usually screened by free
charges causing residual currents (since no material has infinite resistivity) or charges
captured from the ambient if the polar sample has been resting at a given temperature for
some time.

However, since the spontaneous polarization, Ps, is temperature-dependent, any tem-
perature change ΔT at a rate larger than the reciprocal time constant of the screening pro-
cess will lead to uncompensated polarization charges

 (15)

where ppy denotes the pyroelectric coefficient.
These temporal changes in the surface charge ΔQs = ΔP ⋅ A can be electrically

detected as a current, Ι, in an external circuit if electrodes (of area A) are attached to the
polar material (see Figure 8). Some infrared detector arrays operating at room tempera-
ture are based on integrated pyroelectric materials (see Chap. 40). 

2.5.4 Piezoelectricity
All polar crystals show piezoelectricity, since any mechanical stress Τ will result in a
strain S because of the elastic properties of the material. The strain will affect the polar-
ization since the polarization is caused by a displacement of the charge centres of the
anions and cations. For small changes of the stress Τ, the relation

 (16)
is called the direct piezoelectric effect, where d denotes the tensor of the piezoelectric
coefficients. The piezoelectric property of polar materials also leads to a converse effect:
if an external electrical field, E, is applied, a strain

 (17)
is observed where the superior “t” denotes the transposed matrix. Note that the piezoelec-
tric coefficients for the direct and the converse piezoelectric effect are thermodynami-
cally identical. The strain response on an applied field shows the characteristic “butterfly
loop” which is depicted in Figure 9 (see also [18]). 

The direct piezoelectric effect is employed for mechanical sensors, while the con-
verse effect is used for mechanical actuators. In general, P and E are vectors, and S and
Τ are second-rank tensors, resulting in third-rank tensors for the piezoelectric coefficients
d. The huge number of components of this tensor is significantly reduced for simple sym-
metries. For a material with a symmetry of infinity m, for example of poled ferroelectric
ceramics, only three different d components remain. These are depicted in Figure 10:
• the parallel component d33 (Figure 10a) for a polarization if a stress is applied in the 

same direction or for a strain if the electric field is acting in the same direction;
• the perpendicular component d31 (Figure 10b) for a polarization if a stress is applied 

in perpendicular direction or for a strain if the electric field is acting in perpendicular 
direction.

pyP p T= ⋅Δ Δ

= ⋅P d T

t= ⋅S d E

Figure 6: Sketch of perovskite structures. The red 
circles present the O2− lattice, the grey dots the sub-
lattices with positive charges. 
(a) antiferroelectric structure, 
(b) two oppositely polarized ferroelectric domains.

Figure 7: Antiferroelectric hysteresis loop. For 
⏐Eext| > Ec the system transforms into a 
ferroelectric state.

Figure 8: Slab of a pyroelectric crystal with the 
polarization vector and electrodes shown. A 
temperature change will lead to a current Ι.

Figure 9: Schematic of the converse piezoelectric 
effect: characteristic “butterfly loop” of the strain S 
in dependence on the applied field E (the 
polarization P dependence is depicted in Figure 3)
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• the shear component d15 (Figure 10c) for a dielectric displacement (polarization) if a 

shear stress is applied or for a shear strain if the electric field is acting. 
The matrix notation for the d coefficients is described in detail in [24]. Both the parallel
and the shear effect are employed in the piezoresponse mode of the AFM technique (see
Chap. 31).

3 Polarization Waves in Ionic Crystals
Having covered polarization phenomena at low frequencies, we will now look at the
properties of polar dielectrics at higher frequencies.

The properties of dielectrics at frequencies from the microwave regime to the tera-
hertz region (∼ 1 GHz to ∼ 10 THz) are particularly dependent on the ionic polarization,
whereas the optical properties ( f ≥ 1014 Hz) are determined by electronic polarization.
In Sec. 2.3, we described how electric fields displace the ionic sub-lattices and the elec-
tronic shell, thus creating induced polarization. In this section, we focus on the nature of
these lattice oscillations and, after the introduction of some basic concepts, we will dis-
cuss the characteristic oscillations of technically relevant perovskites, such as strontium
titanate or barium titanate.

3.1 Acoustic and Optical Phonons
Waves that can propagate in a crystal lattice are characterized by wave vectors q, which
can be reduced to the first Brillouin zone of the reciprocal lattice [16]. Therefore q has a
value between zero and π/a (a: lattice constant).

In a three-dimensional primitive lattice, every q-vector fits three lattice vibrations
with different frequencies belonging to two transverse and one longitudinal branch of
the acoustic phonons (see Figure 11). In the limiting case of long wavelengths, the
acoustic phonons represent the macroscopic sound waves in the crystal. The dispersion
of these waves is described by the sound velocity vs: ω = vs ⋅ q. For low frequency sound,
the group velocity (dω/dq) is equal to the phase velocity (ω/q). Acoustic waves in the
lattice cannot be excited directly by an electromagnetic wave. The reason is that the
sound velocity is much lower than the velocity of light (vs � c0), and thus for a given
angular frequency ω, one cannot find a sound wave with the same value of q as the peri-
odicity of the electromagnetic wave. An indirect coupling of these waves is possible,
however, for example in piezoelectric crystals [10].

In non-primitive lattices, the different atoms of the elementary cell can vibrate
against each other, thus allowing frequencies ω ≠ 0, also in the case of q = 0. These are
the characteristic vibrations, which are also called optical phonons. The opposite move-
ment of neighboring atoms generates strong electric dipoles as soon as the atoms have
non-equal electronegativities, that is their chemical bonds show some polar character.
These phonons are described quantitatively by an effective charge Q*, which defines the
dipole moment p = Q* ⋅ u. This permits a strong coupling to electromagnetic waves (see
Sec. 3.2).

For a basic understanding of the acoustic and optical phonons, we will discuss a sim-
ple model. A fundamental discussion of the properties of phonons can be found in the lit-
erature (e.g. [13]–[15]). In the limiting case of long wavelengths, a lattice with two kinds
of atoms can be simplified by a linear chain of periodically arranged atoms A and B
(compare Figure 12). The atoms are connected to their neighbors by small springs repre-

Figure 10: Three different configurations for 
determination of the tensor elements of the 
piezoelectric coefficient for a material with 
symmetry infinity m, for example a poled 
ferroelectric ceramic. The piezoelectric sample 
deforms under an applied electric field as a 
consequence of the converse piezoelectric effect. 
The tensor elements represent the directions of the 
applied electric field and measured strain response: 
(a) parallel component d33, 
(b) perpendicular component d31, and 
(c) shear component d15.

Figure 11: Different types of 
elastic waves in condensed matter:
(a) transverse wave and 
(b) longitudinal wave. 
The equilibrium positions of the 
atoms are marked by small circles.
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senting the linear restoring force due to the chemical bond within the lattice. In this
model, an oscillation of a single atom can spread over the whole crystal due to the con-
necting springs. This represents a system of coupled harmonic oscillators. The two
types of atoms have masses of mA and mB, and at equilibrium they are separated by a dis-
tance  along the x-axis. The crystal is periodic with a lattice constant of a. To calculate
the deflection of the atoms, we set up a system of coupled differential equations that can
be solved with the ansatz of plane waves.

The solution yields a dispersion equation, that is a relation between the angular fre-
quency ω and the wave number q with two different values ω+ and ω− belonging to every q, as

 (18)

where k denotes the force constant of the connecting springs, and μ = (mAmB)/
(mA + mB), the reduced mass of the vibrating system.

The two solutions ω± (q) are plotted in Figure 13. They belong to different types of
oscillations that show fundamentally different dispersion curves. The optical branch
(ω+ (q)) shows only a weak dependence of q and has its maximum frequency at q = 0.
In contrast to this, at q = 0 the acoustic branch (ω−(q)) has the frequency ω−(0) = 0.
The underlying oscillations are shown in Figure 12. Consecutive atoms are deflected in
the same direction in the acoustic mode and in opposite directions in the case of optical
oscillation.

In general, a lattice consisting of N atoms in the elementary cell can vibrate with 3N
characteristic oscillations in three-dimensional space. Three of the vibrations are simple
displacements of the elementary cell as a whole corresponding to the acoustic phonons.
The remaining 3(N−1) vibrations belong to the optical phonons.

Two types of phonons can be distinguished differing with respect to the direction of
the deflection u relative to the propagation vector q. These are 
• the longitudinal phonons characterized by u & q, and 
• the transverse phonons described by u ⊥ q. 
In the case of the pure elastic forces considered here, the longitudinal optical and the
transverse optical oscillations are degenerated. This degeneracy is removed in most cases
since the local field Eloc caused by the neighboring atoms interacts with the polarization.

3.2 Polaritons
We will now deal with the optical oscillations in an ionic crystal with a cubic structure.
In the ionic crystal, the different atoms in the elementary cell carry different charges. In
a cubic structure, the charges compensate each other so that the elementary cell does not
show a macroscopic polarization. However, in the case of lattice vibrations, the opposite
movement of vicinal atoms with complementary charge generates a strong electric dipole
moment (see Figure 12). This causes a strong interaction of the optical phonons with
electromagnetic waves. The electric dipole moment also acts on the valence electrons,
thus generating a retardation of the propagating wave within the system. 

Possible microscopic excitations in a material, which are accompanied by macro-
scopic electromagnetic fields, are called polaritons. These are obtained from self-consis-
tent solutions for the combination of field and constitutive equations adapted to the
material. 

In the following, we discuss possible excitations for the case of plane waves:
E(r,t) = E0 ⋅ exp[i(qr − ωt)], where E represents the complex field quantity under study.
With this, we obtain the following for the wave equation of a non-magnetic dielectric
medium without free charges

 (19)

For the further discussion of equation (19), all field vectors are separated into a trans-
verse (T) and a longitudinal (L) component with respect to the propagation direction q

 (20)
With this separation, we find for the longitudinal E-waves

 (21)

which means that the displacement current and the conduction current have to compen-
sate each other. The longitudinal E-wave is therefore not accompanied by a magnetic
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Figure 12: Transverse optical and transverse 
acoustic waves of a linear chain consisting of 
two different types of atoms, illustrated by the 
deflection of the atoms for two oscillations of 
the same wavelength.
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field and is not able to interact with transverse light waves. In the isotropic case, where
the electrical susceptibility  and the conductivity σ are scalar quantities, the complex
dielectric function εr of the material must have a zero point at the frequency ωLO of the
longitudinal E-wave

 (22)

For every frequency that corresponds to a zero point in εr, any q-value is allowed.
For transverse E-waves, we find from equation (19)

 (23)

with the complex refractive index n2 = q2/q0
2 which relates the wave numbers q, q0 of a

wave in matter and in vacuum, respectively, we obtain the dispersion relation for trans-
verse E-waves for the isotropic case

 (24)

Here c0 is the velocity of light in vacuum. The dispersion curve of a polariton in a dielec-
tric medium, which is shown in Figure 14, depends on the dielectric properties of the
material given by the relation P = P(E).

We will now discuss the propagation of an electromagnetic wave in an ionic crystal.
This is described by a strong interaction of a photon with an optical phonon, called pho-
non-polariton [17]. We must distinguish between the local electric field Eloc and the
external applied field Ea. For a cubic crystal structure, we find from the Clausius-Moss-
otti equation (Eq. (8))

 (25)

Here, P denotes the total polarization with contributions from both the distorted lat-
tice and the dislocation of the valence electrons, which is proportional to the polarisabil-
ity of the base molecule α (see Eq. (6)). The contributions are called the phononic and
the electronic polarization, respectively. According to this, the electrical susceptibility

 defined by the medium equation (3) can be divided into two parts

 (26)

the first one originates from the lattice vibrations and the second from the valence elec-
trons. For frequencies much lower than the electron resonance, the contribution of the
valence electrons has a real and constant value, which is often abbreviated by χVE ≡ χ∞.

Solving the set of differential equations assuming a classical damped oscillator dis-
persion model for the phononic contribution and considering the retardation yields for the
total susceptibility

 (27)
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Figure 13: Optical and acoustic phonon 
branch of the dispersion relation of a 
linear chain consisting of two different 
types of atoms.

Figure 14: Dispersion curve for a 
phonon-polariton. The plotted part 
of the q-values (wave vector) is 
small in comparison to a reciprocal 
lattice vector. The lattice dispersion 
can therefore be neglected.
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where γTO denotes the damping frequency of the transverse optical phonon, ω0 the reso-
nance frequency of the optical phonon, ωp the plasma frequency of the ions, Na the con-
centration, and α the polarisability.

At the limit of very high frequencies (ω → ∞), we obtain from Eq. (27)

 (28)

which is exactly the contribution of the valence electrons to the susceptibility. 
It should be noted that the phononic contribution is not only given by the distortion

of the lattice but is also influenced by the displacement of the valence electrons, given by
(Na ⋅ α).

With the characteristic quantities

 (29)

we can rewrite equation (27) in the form of a classical damped oscillator dispersion rela-
tion

 (30)

where ε∞ = 1 + χ∞ = n2 is the high frequency optical permittivity, which takes into
account the contributions of the vibrations of the valence electrons, and ωTO and γTO
denote the eigenfrequency and damping of the transverse optical phonon mode, respec-
tively. The term (ωp*2/ω2

TO) equals the strength of the transverse phonon mode.
Thus, the frequency of the transverse polariton (ωTO) is given by the result of equa-

tion (29) and the frequency of the longitudinal polariton (ωLO) is obtained from the zero
point of the dielectric function (22). Insertion of  leads to

 (31)

In the oscillator model, we have taken damping into account by the parameter γ. This
is predominantly caused by a decay of the polariton mode in other lattice vibrations due
to an anharmonicity of lattice forces. The properties of the transverse polaritons are stud-
ied by measurements of the reflection and transmission of a sample in the infrared spec-
tral region. The excitation of a sample with an electromagnetic wave generates polaritons
in the crystal, which propagate with a defined degree of damping depending on the crys-
tal’s properties.

3.3 Consequences of the Concept of Polaritons
For the static limit (ω → 0), we obtain from equation (30) the static susceptibility
χs ≡ χe'(0), and with this the static limit of the dielectric function

 (32)

Insertion of the characteristic quantities (29) and of the resonance frequency of the
longitudinal polaritons (31) results in the Lyddane-Sachs-Teller (LST) relation

 (33)

In 1941, Lyddane, Sachs, and Teller developed this formula for the dependence of
the phonon-polariton frequencies and the dielectric properties in the case of ionic polari-
sation. It defines a correlation between the ratio of the square of the longitudinal (ωLO)
and transverse (ωTO) optical mode frequencies at q = 0, and the ratio of the values of the
real part of the relative dielectric permittivity at frequencies much lower (εs) and higher
(ε∞) than the resonance frequency of the ionic relaxation. Again, ε∞ = 1 + χ∞ = n2 is
the high frequency optical permittivity, which takes into account the contributions of the
vibrations of the valence electrons.

The LST relation shows that a large value of the permittivity in ionic crystals is con-
nected with a wide gap (stop band) between the eigenfrequencies ωLO and ωTO of the
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polaritons, especially with a low value of the resonance frequency of the transverse opti-
cal phonon ωTO.

As a further consequence of the retardation (Eloc ≠ Ea) in ionic crystals, it follows
that the polarization fields act in different ways on the longitudinal and transverse modes
of the vibrating system. Even for the simplest case of rigid ions (χ∞ = 0), we find from
equations (29) and (31) a softening (mode softening) of the low frequency transverse
mode and a hardening of the longitudinal modes, respectively

 (34)

The low-frequency transverse optical mode is characterized by a partial compensa-
tion of short-range lattice forces and long-range electrical fields; the mode becomes soft.
Under certain temperature and pressure conditions the restoring forces for the transverse
optical mode are very weak and a phase transition is induced (see Sec. 4.2).

3.4 Characteristic Oscillations in Perovskite-type Oxides
In the previous sections, we described the lattice vibrations of an ionic crystal with a
cubic structure and two atoms per elementary cell. The electric properties of these crys-
tals in the infrared frequency range are derived from the dispersion of the optical phonon
modes. We learned that the low-frequency tail of the imaginary part of the susceptibility
caused by ionic polarization is responsible for an inherent contribution to the dielectric
losses in the frequency range between 1 GHz and 100 GHz, thus the ionic polarization
losses limit the quality factor of microwave dielectrics. This is important for the selection
of dielectric materials for microwave applications, as explained further in Chap. 36.

In the following, some basic properties of the technically important alkaline earth
titanates are outlined which can be explained by the model of optical phonons. The alka-
line earth titanates exhibit a perovskite crystal structure (see Figure 4). The temperature
of the phase transition from the cubic to the distorted or tetragonal structure is approxi-
mately 105 K for SrTiO3 and 396 K for BaTiO3, respectively. The latter shows a distor-
tion in the tetragonal lattice cell by a displacement of cations and anions which gives rise
to the ferroelectricity of the material (see Sec. 2.5.1).

In this chapter, we consider the dielectric properties of titanates in the high-temper-
ature cubic phase, which permits three different infrared active modes. Here, infrared
active means that the crystal exhibits a dipole moment induced by the displacement of
the ions which can interact with the light wave. The characteristic oscillations of SrTiO3,
are depicted as an example in Figure 15. At the highest frequency (540 cm−1), an oscil-
lation of the linear O2−-Ti4+-O2− chain against the remaining sub-lattice occurs
(Figure 15a). As a second oscillation (180 cm−1), the O2− octahedron together with the
Ti4+ ion move against the Sr2+ sub-lattice as shown in Figure 15b. At the excitation with
the lowest frequency (87 cm−1), that is the soft mode, the O2− octahedron oscillates
against the Ti4+ and Sr2+ ions, respectively, so that all negative ions are displaced against
all positive ions (Figure 15c).

The frequency dependence of the real and imaginary parts of the complex dielectric
function of single crystalline SrTiO3 in the infrared region measured at room temperature
is shown in Figure 16. The soft mode at 87 cm−1 exhibits the greatest strength of oscilla-
tion and the lowest damping compared with the other transverse optical phonons at
180 cm−1 and 540 cm−1. The softening of the 87 cm−1 TO mode describes the fact that
the mode’s frequency ωTO decreases with decreasing temperature when approaching the

2 2 2 2 2 2
p pTO 0 LO 0

1 2and
3 3

ω ω ω ω ω ω= − = +

Figure 15: Characteristic oscillations in 
Strontium titanate: 
(a) the linear O2−-Ti4+-O2− chain against 

the remaining lattice at about 540 cm−1; 
(b) the Ti4+ and O2− ions against the Sr2+ 

sub-lattice at about 180 cm−1; 
(c) the oxygen octahedron against the sub-

lattice constituted by the Sr2+ and Ti4+ 
ions. This oscillation takes place at 
about 87 cm−1 and is called the soft 
mode.

Figure 16: Dielectric function of SrTiO3 
in the infrared spectral region with real 
(outlined) and imaginary part (dotted line).
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phase transition temperature coming from high temperatures. For ωTO = 0 the phase
becomes unstable due to the vanishing restoring force and a displacive phase transition
occurs (see Sec. 4.2).

The temperature dependence of the low-frequency dielectric permittivity  of
the perovskite-type material in the cubic phase obeys the empirical Curie-Weiss law

 (35)

where C is the Curie constant and Θ is the Curie temperature, which in general is equal
to or smaller than the temperature TC of the phase transition: Θ ≤ TC. 

According to the Lyddane-Sachs-Teller relation (33), the Curie-Weiss law, that is the
increase in the static dielectric constant with decreasing temperature (in the cubic phase),
is caused by the decreasing frequency of the transverse optical phonon, which obeys a
square root dependence as long as ωLO can be assumed to be independent of the temper-
ature

 (36)

The correlation between the temperature dependencies of the relative permittivity
(Eq. (35)) and the frequency of the soft-phonon mode (Eq. (36)) has been confirmed for
SrTiO3, as will be shown in Sec. 4.2.

In Sec. 3.1, we discussed an idealized ionic lattice built from harmonic oscillators. A
harmonic potential means that the restoring force is a linear function of the displacement.
In the case of a real ionic lattice, the local field generated by the neighboring atoms leads
to an anharmonic potential for each ion, and thus to a non-linear restoring force. The con-
sequence of this is that the linear dependence between the dielectric displacement D and
the electric field E (see Eq. (4)) no longer holds. Instead, we have to introduce a field-
dependent permittivity εr(E). The effect of this non-linearity becomes significant at high
electric fields. Hence, the effect is more frequently observed in thin films than in bulk
dielectrics because high electric fields are more easily reached at moderate voltages. In
addition, for a given electric field the effect is more pronounced for higher permittivities.
A high permittivity corresponds to a smaller restoring force between the ions of the lattice
and a large atomic displacement at a given field. An example of field-dependent permit-
tivity is shown in Figure 17. The non-linear electrical permittivity εr(E) is exploited for
voltage tunable microwave devices (see Chap. 36).

4 Ferroelectrics
Having introduced the concept of polaritons to describe the properties of materials in the
dielectric state, we will now turn our attention to dielectric crystals in the ferroelectric
state, where the material exhibits a spontaneous electric polarization and in which the
direction of the polarization can be reoriented between crystallographically defined states
by an external electric field. Phase transitions will be described in terms of a mean-field
or Ginzburg-Landau theory as a consequence of the long-range Coulomb interaction. In
the microscopic description by phonon-polaritons, the displacive phase transition will be
understood as a polarization catastrophe. The properties of some prominent ferroelectric
materials will be given as examples. Finally, we will deal with typical static domain con-
figurations, the motion of domain walls and the basics of ferroelectric switching.

4.1 Ginzburg-Landau Theory
In this Section, we describe the thermodynamics of the ferroelectric phase transitions in
terms of a Ginzburg–Landau theory. This theory is equivalent to a mean field theory,
where the thermodynamic entity is considered in the mean field of all the others. Such a
theory is a good approximation if the dipole interacts with many other dipoles. As a con-
sequence of the long-range Coulomb interaction, this condition is generally fulfilled for
the ferroelectric phase transitions.

The Ginzburg–Landau theory introduces an order parameter P – here the polariza-
tion – which for a second-order phase transition diminishes continuously to zero at the
phase transition temperature TC. Close to the phase transition, therefore, the free energy
may be written as a function of powers of the order parameter
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Figure 17: Non-linearity of permittivity of 
a (Ba0.7Sr0.3)TiO3 thin film prepared by 
MOCVD [25].
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 (37)

In this expansion, the odd powers of P do not occur because of symmetry reasons.
We shall see that by including powers up to the sixth order, we will also be able to
describe first-order phase transitions. The gradient term (∇P)2 in Eq. (37) penalizes spa-
tial inhomogeneities. It will become important when we consider ferroelectric domains.
At present, we will neglect this term and replace the functional of Eq. (37) with a poly-
nomial representing the free energy density

 (38)

The coefficient g6 needs to be larger than zero because otherwise the free energy
would approach minus infinity for large P. All coefficients depend on the temperature
and in particular the coefficient g2 may be approximated by

 (39)

Eq. (39) is a result of a temperature expansion around Θ whereas the Curie temper-
ature Θ is equal to or less than the phase transition temperature TC. The Ginzburg–
Landau theory leads to power law expressions for the thermodynamic quantities close to
the phase transition. The so-called critical exponents are characteristics of phase transi-
tions in general. Depending on the universality class of the statistical mechanical ensem-
ble, they assume values independent of the particular system.

In the following, we will consider the thermodynamic states with the conjugated
field E = 0. Stable states are characterized by minima of the free energy density

 (40)

Eqs. (40) are the necessary and sufficient conditions for a minimum of F. They are
solved by P = 0, the condition of the paraelectric phase. Further solutions exist for
Ps > 0; these are the ferroelectric phases.

4.1.1 Paraelectric Phase
In this case we have P = 0. Inserting Eq. (39) into Eq. (40), we immediately see that
above TC the coefficient g2 needs to be larger than zero in order to obtain stable solutions.
A comparison of Eqs. (39) and (40) shows that g2 is expressed by the susceptibility χe,
for which a Curie-Weiss law is found

 (41)

In the language of the critical exponents close to TC, the susceptibility follows a power
law in (T − Θ). For the critical exponent γ, the Ginzburg-Landau theory gives γ = 1. In
this derivation, it is assumed that the temperature dependencies of g4 and g6 are compar-
atively small close to TC.

4.1.2 Ferroelectric Phases – Second-Order Phase Transition
We will now consider the second-order phase transition to the ferroelectric state (com-
pare Sec. 2.5.1 and Figure 5). In this case, we have to take g4 > 0 and neglect the coeffi-
cient g6. It follows that

 (42)

with the solutions

 (43)

For T < Θ, a spontaneous polarization exists. The Curie temperature Θ is equal to
the phase transition temperature TC 
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 (44)

The order parameter, namely the spontaneous polarization, depends with a square
root law on the distance from the phase transition. In the language of the critical expo-
nents, the Ginzburg-Landau theory predicts a power law for the order parameter. The
critical exponent β takes the value ½.

Figure 18 schematically displays the free energy density close to the second-order
phase transition for different temperatures as a function of the order parameter P. For
T > TC, a minimum is found for P= 0. At T ≤ TC, this minimum shifts continuously to
final values of the polarization. 

Inserting Eq. (44) into Eq. (40), we obtain the temperature dependence of the suscep-
tibility below the phase transition temperature

 (45)

Comparing Eq. (45) with Eq. (41) reveals that the susceptibility prefactor changes at
a phase transition by a factor of two. It is important to note here that the susceptibilities
calculated in this manner are isothermal susceptibilities [18], while typical measurements
of the susceptibility using a capacitance bridge under small alternating currents are adia-
batic measurements. As a result, the predicted ratio in slopes is not always observed
experimentally.

4.1.3 Ferroelectric Phases – First-Order Transition
We will now discuss first-order transitions in ferroelectric systems. For this purpose in
the free energy equation (Eq. (37)), we have to choose g4 < 0 and g6 > 0. The stable
states are once again defined by Eq. (40) with solutions P = 0 or

 (46)

The positive sign and the bracket are required in order to obtain a stable solution. We
will now consider the temperature behavior of the free energy density at the value of the
spontaneous polarization:
1) for P = 0 we have F = 0.
2) for Ps from Eq. (46), we obtain the following after insertion into Eq. (37)

 (47)

The free energy density becomes zero for 

 (48)

Figure 19 schematically displays the free energy density as a function of polarization
for some relevant temperatures. Above a temperature TC, the free energy assumes a par-
abolic shape with a minimum corresponding to a stable paraelectric phase. During cool-
ing, secondary minima at finite polarizations become visible. Their energy level at the
beginning, however, is higher than that at P = 0. In this regime, the paraelectric phase is
stable and the ferroelectric phase meta-stable. Lowering the temperature further, at
T = TC we reach the situation where all three minima of the free energy are at the same
level. For the temperatures below TC, F becomes negative and favours a finite spontane-
ous polarization. In the temperature regime between TC and Θ, the paraelectric phase
coexists with the ferroelectric phase with the paraelectric phase being meta-stable. Some-
where during cooling through this regime, the first-order phase transition to the ferroelec-
tric state will occur with a corresponding jump in the spontaneous polarization from zero
to a finite value.

We will now consider the susceptibility. Following Eq. (40) for T > TC, a Curie-
Weiss law is again found with an apparent critical temperature Θ that does not coincide
with the first-order phase transition temperature TC. The ratio of the susceptibilities
below and above TC now takes a value of four. Figure 20 schematically displays the sus-
ceptibilities calculated in terms of the Ginzburg–Landau theory close to the phase transi-
tion. A comparison of the susceptibilities for barium titanate (see Figure 5) reveals good
qualitative agreement. 
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Figure 18: Free energy density as a function of the 
polarization for a ferroelectric with a second-order 
phase transition as a function of temperature. 
Below TC, the minimum of the free energies 
continuously shifts towards finite values of Ps.

Figure 19: Free energy density as a function of 
polarization for a ferroelectric with a first-order 
phase transition as a function of temperature.

Figure 20:  Schematic presentation of the 
prediction from the Ginzburg-Landau theory for 
the reciprocal susceptibility or the dielectric 
constant of a system with a first-order phase 
transition.
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4.2 Soft Mode Approach of Displacive Phase Transition
The existence of the local electric field in ionic crystals leads to a splitting of the optical
vibration modes (see Sec. 3.2). It was shown that the polarization fields act in different
ways on the longitudinal and transverse modes of the vibrating system. The longitudinal
mode frequency is shifted to higher frequencies while the transverse mode is softened
(see Eq. (34)). If we look at the zone centre, we realize the large splitting of the longitu-
dinal and transverse optic modes. In the case of the longitudinal optical mode, the polar-
ization field enhances the mechanical restoring force. The mode softening of the
transverse modes originates from a partial compensation of the short-range lattice (elas-
tic) forces on the one hand and the long-range electric fields on the other hand. This effect
is strongest at the zone centre. We will now look at the consequences of this for the tran-
sition into the ferroelectric phase.

If the compensation effect between the elastic and the electric forces is complete,
then the transverse optic mode frequency, Eq. (34) becomes zero, caused by a decrease
of temperature,

 (49)

and the soft phonon condenses out so that a phase transition to a state with spontaneous
polarization takes place. In the case of the softening of the TO mode, the transverse fre-
quency becomes zero and no vibration exists anymore (“frozen in”). 

This soft-mode phase transition can be studied by neutron scattering, where the
phonon dispersion can be studied as a function of reciprocal lattice vector q. Figure 21
displays results for the phonon dispersion of the transverse modes in SrTiO3 for differ-
ent temperatures and along two directions [27]. For small reciprocal lattice vectors q, the
transverse optical phonon softens significantly at the zone centre. Furthermore, such a
softening is also observed for the transverse acoustic mode at the zone boundary in (111)
direction. 

Figure 22 displays (ωTO)2 at the zone centre as a function of temperature for stron-
tium titanate. A linear relation is found, suggesting that the temperature dependence of
the optical mode frequency relates to the phase transition. In accordance with the Lyd-
dane–Sachs–Teller relation (see Sec. 3.3), (ωTO)2 relates directly to the dielectric con-
stant. From the extrapolation according to Eq. (41), a phase transition close to Θ = 50 K
would be expected. This phase transition, however, does not really take place in SrTiO3.
It is dominated by a competing displacive phase transition at the zone boundary. The soft-
ening of the acoustic zone boundary phonon can be read off from the dispersion relations
in the (111) direction. 

4.3 Ferroelectric Materials
A comprehensive list of ferroelectric crystals is given in the Landolt and Börnstein mono-
graphs [27], [28]. Among the class of ionic crystals, perovskites are the commercial
most important group. Ferroelectric materials are widely used in applications such as
capacitors (e.g. BaTiO3, where the high dielectric constant is utilized), electromechanical
transducers (e.g. Pb(Zr1−xTix)O3, which is attractive because of its high piezoelectric
coefficients), pyroelectrics (e.g. modified PbTiO3, (Sr, Ba)Nb2O6), electro-optic compo-
nents (e.g. LiNbO3), and in non-volatile ferroelectric capacitors for memory applications
(e.g. Pb(Zr1−xTix)O3).

One of the most important ferroelectric and piezoelectric materials is the PbZrO3-
PbTiO3 (PZT) solid solution. Over the entire solid solution range, PZT adopts distorted
versions of the perovskite structure, as shown in Figure 23. At the so-called morphotro-
pic phase boundary (MPB), the tetragonal phase and the rhombohedral phase are both
observed. This leads to the presence of 14 polarization directions (6 along the <001>
family from tetragonal phase, and 8 along <111> for the rhombohedral polytype) which
are equivalent, or nearly equivalent, in free energy. The result is that the morphotropic
phase boundary corresponds to a highly polarizable state. Thus, it is reasonable that the
dielectric and piezoelectric properties show strong maxima near this composition.
Recently, it has been suggested that at low temperatures, a monoclinic phase is stabilized
near the MPB [29]. It is unknown whether such a phase also contributes to the enhanced
polarisability near the MPB. Whatever the source, the high piezoelectric coefficients (i.e.
d33 values of ∼ 250 to 400 pC/N, depending on the doping), coupled with a high transi-
tion temperature are the main reasons that PZT ceramics are so widely used as piezoelec-
tric sensors and actuators. 
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Figure 21: Phonon dispersion relations for the 
transverse modes for strontium titanate. 
(a) (100) direction 
(b) (111) direction. Phonons soften not only at 

the zone center but also at the zone boundary 
for the (111) direction.

Figure 22: Square of the frequency of the 
transverse optic zone centre mode for SrTiO3 as 
a function of temperature (solid line) derived 
from neutron scattering experiments [3]. The 
dashed line shows the Curie-Weiss behavior of 
the reciprocal of the relative permittivity.
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It is important to realize that thin films may differ in substantially from bulk ceram-

ics or single crystals of the same composition. One of these differences is the substantial
in-plane stresses that thin films are typically under, ranging from MPa to GPa [30]. As
many ferroelectric materials are also ferroelastic, imposed stresses can markedly affect
the stability of the ferroelectric phase, as well as the ease with which polarization can be
reoriented in some directions. Figure 24 shows an example of this, where the phase dia-
gram for tetragonal BaTiO3 is re-calculated for the case of a thin film without misfit dis-
locations [31], [32]. It is clear that the phase diagram is considerably complicated by the
presence of a dissimilar substrate.

4.4 Ferroelectric Domains
Ferroelectric materials form domain structures. A domain is a region with a uniform
direction of spontaneous polarization. In the case of tetragonal BaTiO3, when the material
undergoes ferroelectric transition, the Ti4+ ion displaces towards one of the neighboring
oxygen ions. Due to the fact that the Ti4+ is octahedrally coordinated, there are six pos-
sible directions in which Ti4+ can move. Consequently, there are six possible domain
states for tetragonal BaTiO3. Similarly, in other systems, the permissible domain states
are governed by the crystallography of the system and by the symmetry elements lost on
transforming from the prototype state.

The boundaries between domains are referred to as domain walls. Domain walls in
ferroelectrics are typically quite thin (∼ 1–10 lattice parameters across) and can therefore
be regarded as abrupt changes in the polarization direction. Domain walls are character-
ized by the angle between the polarization directions on either side of the wall. Thus a
180° domain wall demarks a boundary between anti-parallel domains, while a 90° wall
in tetragonal BaTiO3 would be formed at the boundary between domains pointed “up”
and “left”, for example. The allowed angles for domain walls depend on the orientations
of the spontaneous polarization allowed by symmetry. Thus, in rhombohedrally distorted
perovskites, there are no 90° domain walls, but instead 71° and 109° walls. A more com-
plete picture of the way the polarization changes as a domain wall is crossed is given by
Cao and Cross [33].

Domain walls typically appear along specific crystallographic planes that corre-
spond to conditions of mechanical compatibility [34]. For example, in tetragonal BaTiO3,
the {101} family of domain walls corresponds to cutting the unit cell along a face diag-
onal, and then reassembling the crystal after rotating one piece ∼ 90°. A second con-
straint on the angles between domains corresponds to the fact that in a highly insulating
material, it is not energetically favorable to arrange domains in a head-to-head configu-
ration [33]. Such a configuration can be stabilized, however, by the accumulation of a
compensating charge at such a domain wall.

For a fully compensated ferroelectric single crystal (i.e. one that has picked up suf-
ficient surface charges from electrodes or some other source to compensate the polariza-
tion) of a suitable orientation, a single-domain state is the lowest free energy. However,
in most other cases, domain formation will be driven by either the electrical or mechani-

Figure 23: Phase diagram for PZT 
showing the morphotropic phase 
boundary between rhombohedral and 
tetragonal phases after [23].

Figure 24: Phase diagram for a (001) 
BaTiO3 epitaxial film as a function of 
misfit strain [31]. The notations refer to 
the polarization direction preferred by a 
single domain film. The r phase has 
components of the polarization in all 
three directions.
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cal boundary conditions. For instance, at the surface of an uncompensated ferroelectric,
the divergence of the polarization results in the appearance of a depolarizing electric
field [20]. The energy associated with this can electrically drive domain formation (see
Figure 25). Similarly, in ferroelectrics which are ferroelastic as well, mechanical stresses
can also affect the equilibrium domain formation. It should be noted, however, that it is
energetically costly to put a domain wall into a system, since the domain wall, like any
other surface, has an associated surface free energy. As a result, the material will not con-
tinue to subdivide into smaller and smaller domains. Instead, a balance is reached
between the energy required to create the wall and the energy gain from the reduction in
total energy. This energy balance will also depend on the grain size of the system [35], so
the equilibrium domain size typically drops as the grain size is reduced. 

4.4.1 Static Domain Configurations
It is interesting to consider first how domain configurations are determined in bulk fer-
roelectrics, and then to see how these are modulated in thin films.

In general, domain structures in equilibrium are formed to minimize the total energy
in the crystal [36], including electric and mechanical strain fields 

 (50)
where WM denotes the elastic, WE the electric, WDW the domain wall and WS the surface
energy. 

Thus, the equilibrium domain structure of a ferroelectric should depend on both the
electrical and mechanical boundary conditions imposed. For uncompensated domains,
electrostatic considerations can drive the formation of anti-parallel domains in many fer-
roelectrics. It is also important to recall that ferroelectric materials typically develop a
spontaneous strain (deformation) as a result of the appearance of spontaneous polarisa-
tion. For example, each barium titanate unit cell deforms from a cubic to a tetragonal
shape on cooling below the Curie temperature. Figure 26 displays the tetragonal distor-
tion of the barium titanate crystal at the transition. 

If the material is completely clamped, then compressive stresses T3 and tensile
stresses T1 would be necessary in order to keep the material in its original shape. These
clamping stresses may be calculated on the basis of the strain tensor S0, describing the
tetragonal distortion. The clamping stresses follow from Hooke’s law

 (51)

where cij are the elastic constants. 
The stresses have to be chosen so that they minimize the elastic energy. With the

elastic constants and the tetragonal distortions for BaTiO3, WM = 2.08 ⋅ 106 J/m3

evolves. For the tensile and compressive stresses, we find T1 = 190 f11 MPa and
T3 = −380 f31 MPa, respectively, where the coefficients f11 and f31 account for possible
elastic depolarisation effects.

Another possible way of reshaping the tetragonally distorted cube is a shear in the
(110) direction combined with a longitudinal deformation in the (100) direction. In gen-
eral, a grain can reduce its energy by twinning, as shown in Figure 27.

Given the electrical and mechanical driving forces for forming domains, it is clear
that there is an overall reduction in the free energy of many ferroelectric samples as
domain formation proceeds. However, there is also an energy cost associated with form-
ing the domain wall. Thus, the system will typically drive to an equilibrium domain
width. It can be shown that the thickness of the twin should be proportional to the square
root of the size of the grain. The situation becomes even more complicated for a polycrys-
talline ensemble. Here, each region of the material is not free to deform, but is con-
strained by the material around it. Any deformation will cause high internal stresses. To
minimize this, complicated domain patterns form.

As the equilibrium domain configuration depends explicitly on the mechanical and
electrical boundary conditions for the ferroelectric, it is not surprising that domain con-
figurations (and even the thermodynamic stability of the ferroelectric phase) can change
as we move from a bulk to a thin film sample [37], [38]. A good example of this is given
in the work of Pertsev et al. where revised phase diagrams for BaTiO3 and PbTiO3 epi-
taxial films were derived (see Figure 24) as a function of the misfit strain between the
substrate and the film [31]. Among the consequences were changes in the order of the
phase transition (from 1st to 2nd order), stabilization of the rhombohedral phase to
unusually high temperatures, and constraints on the allowed domains. Many of these
same ideas are also observed in polycrystalline films. 

tot M E DW S minW W W W W= + + + =

i ij jT c S= ∑

Figure 25: Domain formation driven by 
reducing the electrical depolarisation energy.

Figure 26: Spontaneous tetragonal 
deformation of a cubic grain. The cube edges 
correspond to the crystallographic axis.

Figure 27: The spontaneous deformation is 
reduced by twinning. Serration appears at the 
grain boundary. Homogeneous stresses T as 
indicated can restore the gross cubic shape.
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Thus, PZT and BaTiO3 films, which are under considerable tensile stress on cooling
through the phase transition temperature, typically have the polarization tilted substan-
tially into the film plane, while films under compressive stress show large out-of-plane
polarizations [39]. In Figure 28, possible domain patterns of different textures of tetrag-
onal films of PbZr0.52Ti0.48O3 are depicted. In the case of compressive stress, predomi-
nantly (001) orientation, 90° as well as 180° domains are expected [40]. Under the
influence of an electric field, the number of 180° domains is decreased. The resulting pat-
tern predominantly consists of 90° domains. In the case of tensile stress, predominatly
(100) orientation, the change of the domain structure by poling is similar to the (001) ori-
entation, but the a-axis orientation is still preferred [41]. In standard systems for ferro-
electric thin films, the orientation of the crystallographic axes of PZT is in the (111)
direction. Tuttle et al. have shown that for many thin films the ferroelastic domain struc-
ture developed on cooling from the prototype phase is largely retained at lower tempera-
tures, so that switching on non-180° domains is limited [42]. 

The three-dimensional piezoresponse force microscope (PFM) enables the visual-
ization of the domains in thin films and their polarization directions. In epitaxial PZT thin
films grown on a (001) single crystalline SrTiO3 substrate coated with La0.5Sr0.5CoO3
oxide layer, a self-polarization mechanism was found. Detailed investigations show that
the out-of-plane polarization in c domains points preferentially towards the bottom elec-
trode and a resulting remanent polarization exists without applying an external field [43].
The domain configuration is always of the “head-to-tail” type.

The influence of clamping in thin ferroelectric films becomes clear when dense
films are compared with single separated grains. Applying the PFM technique to lead
titanate (PTO) films, it was found that the PTO grains in dense films contain laminar 90°
domain walls, whereas separated PTO grains show more complicated structures of
mainly 180° domain walls. For grains smaller than 20 nm, no piezoresponse signal was
observed (Figure 29). When the thickness of a dense epitaxial thin film is reduced, the
piezoelectric activity is observed down to 4 nm [45]. The one-dimensional shrinking (as
in dense films) leads to different stresses and to varying stabilities of the ferroelectric
phase compared with the three-dimensional phase (as in single grains). 

4.4.2 Reversible and Irreversible Polarization Contributions
Under sufficiently small electric fields, all dielectrics follow a linear relation, described
by D = ε E. This dielectric small signal response is caused by reversible contributions
of the electronic and ionic polarization processes (intrinsic), as shown in Sec. 2.3. In fer-
roelectric polycrystalline materials, additional extrinsic mechanisms exist due to the
movement of domain walls and the alignment of defects

 (52)

It has been shown that especially the electromechanically active, non-180° domain
walls – that is 90° domain walls in tetragonal structures, 71° and 109° domain walls in
rhombohedral structures and so on – are responsible for a considerable contribution to the
dielectric coefficient as well as to the piezoelectric and the elastic coefficients. The shift
of the wall is clearly displayed in Figure 30, whereby favorably oriented domains with
respect to the applied field grow at the expense of unfavorably oriented domains. This
leads to a change in the electric and the elastic dipole moment (Δp and Δv) and, there-
fore, to contributions to the dielectric and piezoelectric response. A separation of the
intrinsic polarization process from that of the non-180° domain wall is possible by dielec-
tric high frequency measurements in the GHz range. There, these kinds of domain walls
do not contribute to εtot. The mechanism is caused by the fact that a vibrating non-180°
wall acts as an emitter of elastic shear waves (see Figure 30) propagating at the shear
wave velocity cSh through the crystallite. When the frequency of the applied electric field

tot intrinsic extrinsicε ε ε= +

Figure 28: Domain structures 
of tetragonal PZT with different 
orientations (see text).

Figure 29: The topographic image 
(a) shows eleven PTO grains of sizes from 100 nm 

down to 20 nm indicated by the circles. In the 
line scan over the grain denoted by an arrow, 
shown at the bottom, the size of the grains can 
be determined. 

In the PFM images, the 
(b) in-plane and 
(c) out-of-plane piezoresponse of the 20 nm grain 

is not visible, leading to the assumption that 
these grains do not have any permanent 
polarization [44].

Figure 30: Shift of a 90° domain wall Δl 
changes the electrical and the elastic dipole 
moments causing a shear of the domain twin.
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corresponds to cSh, the vibration of the domain wall is suppressed and a strong dielectric
relaxation is observed. In ferroelectric thin films, the relaxation step is not found. This is
further evidence that non-180° domain wall processes in ferroelectric thin films are
strongly limited. However, ferroelastic non-180° domain walls can move when the
clamping effect is significantly reduced by patterning the film into discrete islands [46]. 

When the electric field is increased, the dielectric behavior of ferroelectric material
changes from linear to non-linear and hysteretic. The ferroelectric hysteresis is caused by
the existence of irreversible polarization processes as explained by the Ginzburg–Lan-
dau theory (see Sec. 4.1). However, the exact interplay between the polarization reversal
of a ferroelectric lattice cell, domain walls, defects and the overall appearance of the fer-
roelectric hysteresis is still not precisely known. In addition, the above-mentioned revers-
ible processes in ferroelectrics have to be taken into account. The separation of the total
polarization into reversible and irreversible contributions that has long been appreciated
in the study of ferromagnetic materials [47] might facilitate the understanding of ferro-
electric polarization mechanisms.

Two major mechanisms could cause irreversible processes: first, lattice defects that
interact with a domain wall and prevent it from returning into its initial position after
removing the electric field that initiated the domain wall motion (“pinning”) [48]; sec-
ond, nucleation and growth of new domains which do not disappear after the field is
removed again. In ferroelectric materials, the matter is further complicated by defect
dipoles and free charges that not only contribute to the measured polarization but can also
interact with domain walls [49]. 

The motion of a domain wall under an external electric field takes place in a statis-
tical potential generated by their interaction with the lattice, point defects, dislocations,
and neighboring walls. Reversible movement of the wall is regarded as a small displace-
ment around a local minimum. When the driving field is high enough, irreversible jumps
above a potential barrier into a neighboring local minimum occur (see Figure 31). Based
on these assumptions the measurement of the large signal ferroelectric hysteresis with
additional measurements of the small signal capacitance at different bias voltages are
interpreted in terms of reversible and irreversible parts of the polarization. As shown in
Figure 32, the separation is done by subtracting the reversible part from the total polar-
ization, that is the integrated C(V) curve [50] 

 (53)

Typical hysteresis loops are dynamically recorded at certain frequencies. If slow
reversible polarization mechanisms also contribute to the total polarization Ptot, the shape
of the hysteresis loop, especially the coercive field, becomes frequency-dependent. To
overcome this influence, measurements should be performed with the lowest frequency
possible, that is quasi-statically [51].

4.4.3 Switching for Ferroelectric Domains
Since many applications of ferroelectric materials require either that the material be poled
once, as in a piezoelectric device, or that it be switched repeatedly, as in a memory, it is
interesting to consider how domain reversal occurs. As described by Merz [52], switch-
ing takes place by processes of domain nucleation and domain wall motion. Apparent
sideways motion of domain walls typically occurs by nucleating a step on the domain
wall. This protrusion then rapidly grows along the length of the wall, effectively increas-
ing the size of the more favorably oriented domain. 

One way to monitor the switching process is to measure the current flow through
the ferroelectric as a function of time. When an electric field of the same polarity is
applied to a fully poled single crystal, there is an initial current flow that corresponds to
charging the capacitor. If an opposite polarity field is now applied, in addition to the
charging current, additional current flows as a consequence of domain reorientation. Sub-
tracting these two signals enables the current flow associated with the switching process
itself to be isolated. 

Under conditions where the electric field is constant during the reversal process, then
the maximum displacement current, Imax, and the switching time, ts, are given by

 (54)
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Figure 31: Motion of a domain wall 
in the statistical potential (top) and 
correlated hysteresis loop (bottom).

Figure 32: Total, reversible and 
irreversible contribution to the 
polarization of a ferroelectric thin film.
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where I0 and t0 are constants, E is the applied electric field, and ξ can be regarded as the
activation field for switching (see Figure 33). At very high electric fields, the switching
time is better described by

 (55)

where n ranges from 1 to 7 for a variety of materials [53]. As expected, the constants that
describe the switching process (i.e. ξ and n) depend on temperature. This makes sense
since domain wall motion is thermally activated, and poling and switching will be
enhanced as the transition temperature is approached. It is also important to mention that
ferroelectrics typically do not have well-defined switching fields, so that the amount of
polarization switched depends both on the field amplitude, and the length of time the field
is applied. 

An alternative method of measuring switching is to monitor the current flow as sinu-
soidal or triangular waveforms are applied. Fundamentally, this measures switching dur-
ing the traversing of the full hysteresis loop. When the field dependence of the switching
is properly accounted for, it is possible to model the data by treating the domain reorien-
tation process as a phase transformation problem, following Kolmogorov and Avrami.
Ishibashi included the field dependence of the polarization switching and modelled the
D-E hysteresis loops in relation to the excitation frequency [54]. While the mathematics
here is more complicated, the result can provide considerable insight into the switching
kinetics. Ishibashi has found good agreement of Eq. (55) with experimental data on tri-
glycine sulfate (TGS) single crystals especially the pronounced frequency dependence of
the coercive field

 (56)

This has also been observed for perovskite-type single crystals as shown in
Figure 34. A microscopic description of the motional process of ferroelectric domains
yields similarities with nucleation phenomena. The switching time for a domain of given
size exhibits distinctly different field dependencies in low and high field regimes.

5 Optical Properties
Having covered the dielectric and ferroelectric properties of polar dielectrics at low and
medium frequencies, in the final section we will now deal with some selected optical
properties of polar materials which are important for microwave (see Chap. 36) and pho-
tonic (see Chaps. 35) devices. For a deeper insight into the optical properties of matter,
the reader is referred to the textbooks [56]–[59].

5.1 Propagation of Electromagnetic Waves in Condensed 
Matter

The interaction between polar matter and an electromagnetic field results in a retarda-
tion of the exciting signal. The time delay results in frequency-dependent material prop-
erties, while the spatial delay leads to wave-number-dependent (k = 2π/λ) properties,
which require a description by an action at a distance theory.

In the following, we will discuss the simplest case where the response of the medium
only depends on the fields at neighboring sites. For this case, we derive a wave equation
in which the phase velocity c depends on the local material properties. Thus, the fre-
quency ω and the wave number k are not fully independent, but follow from the wave
equation as ω/k = c.

We start with Maxwell’s equations in a medium with free electric charges and currents

 (57)

where D denotes the electric displacement, B the magnetic flux density, E the electric
field, and H the magnetic field, j the current density, and ρfree the density of free charges;
∇⋅ and ∇× are the divergence and the curl operations, and the “dot” denotes the time
derivative (∂/∂t).
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Figure 33: Polarization switching current 
of TGS single crystal at different electrical 
fields.

Figure 34: Hysteresis loops at different 
frequencies of a [001]c-oriented 95.5 % 
Pb(Zn1/3 Nb2/3)O3-4.5 % PbTiO3 single 
crystal measured at 10 kV/cm after 
10 cycles [55].
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The relation between the field quantities and the flux densities, which depend on the

material properties, is given by the constitutive equations

 (58)

where P is the polarization density and M the magnetization density. The constants ε0 and
μ0 are the electric permittivity and the magnetic permeability of free space, respectively.

In order to derive the wave equation for the components of the fields E and H, we
must first consider the properties of the medium itself which are reflected in the consti-
tutive equations (58). For reasons of simplicity, we will restrict ourselves to non-mag-
netic media, which means M = 0 and B = μ0 H. The nature of a dielectric medium is
exhibited in the relation between the polarization density P and the electric field E, where
generally P = P(r,t) and E = E(r,t) are functions of position and time. 

For the simplest case of a dielectric medium, which is linear, non-dispersive, homo-
geneous, and isotropic, the relation is given by

 (59)

where the electrical susceptibility  is a scalar constant and the vectors P and E are par-
allel and proportional at any position and time.

A necessary condition for E and H to satisfy Maxwell’s equations (57) is that each
component satisfies the wave equation, which reads for E

 (60)

In this case, the phase velocity of the electromagnetic wave in the material is given
by

 (61)

Here, c0 defines the speed of light in free space, and n the refractive index of the material.
For inhomogeneous dielectric media (as for example a graded index medium), the

proportionality equation (59) still remains valid, but the material properties are functions
of the position: χ′e = χ′e (r), εr′ = εr′(r), and n = n(r). As long as εr′(r) varies in space at a
much slower rate than the field E(r,t), the wave equation (60) remains applicable.

In anisotropic media, the relation between polarization and electric field depends
on the direction of the vector E; in particular P and E are not necessarily parallel. In the
mathematical formulation, the dielectric properties of the medium are described by a
matrix {χ′e,ij} of 3 × 3 elements known as the susceptibility tensor. Correspondingly, εr′
and n also change into tensors with elements {ε′r,ij} and {nij}. As waves with different
polarization directions travel at different velocities and undergo different phase shifts, the
total polarization vector is changed as the wave propagates through the material. There-
fore, anisotropic materials provide useful components of optical devices (see Sec. 5.3.1).

In dispersive media, the relation between P(t) and E(t) is governed by a dynamic
linear system described by an impulse-response function corresponding to a frequency-
dependent susceptibility χe = χe(ω). Consequently, the characteristic quantities εr and n
become complex. Analogously to the complex permittivity (see Eq. (10)) the complex
refractive index n is divided into the real refractive index n and the absorption index κ

 (62)
For non-magnetic media, where , we find for the real and imaginary part of the
relative permittivity

 (63)

These important equations enable the dielectric function to be determined from
experimental investigations of the propagation behavior of electromagnetic waves in the
material.

In a non-linear dielectric medium, the polarization is some non-linear function of
the electric field P = F(E), as for example given by the most general Taylor expansion
P = a1E + a2E2 + a3E3, where a1, a2, a3 are constants. The wave equation (60) is not
applicable to electromagnetic waves in non-linear media. Instead, Maxwell’s equations
have to be solved to derive a non-linear partial differential equation for these waves. For
non-linear systems the principle of superposition is no longer applicable and optical
waves interact with each other.
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5.2 Transmission of Electromagnetic Waves
We will first introduce the most important example of a monochromatic electromagnetic
wave – the plane wave. Spherical waves and Gaussian beams are other common wave
types (see [58]). The medium is assumed to be linear, homogeneous, isotropic, non-dis-
persive, and non-magnetic according to Sec. 5.1.

We will now consider a monochromatic electromagnetic wave, whose electric and
magnetic field components are plane waves of wave vector q as described by
E = E0 ⋅ exp[i(qr − ωt)]. Substituting the corresponding equations for E and H into Max-
well’s equations (57), we obtain

 (64)

It follows that E, H, and q are mutually orthogonal. The wave is called a transverse
electromagnetic (TEM) wave. From a comparison of the two equations in (64), we find
the equality q = ω/c = n ω/c0 = n q0, which is the condition that satisfies the wave
equation (60).

The ratio between the amplitudes of the electric and magnetic fields 

 (65)

is therefore defined as the impedance of the medium.
The flow of the electromagnetic power which is governed by the complex Poynting

vector 

 (66)

is parallel to the wave vector q (compare with Figure 35; ∗ denotes the complex conju-
gate). The magnitude of the time-averaged Poynting vector equals the optical intensity of
the TEM wave, which is therefore proportional to the squared absolute value of the com-
plex envelope of the electric field

 (67)

5.2.1 Resonator and Waveguide Modes
In microwave and optical devices (see Chaps. 35 and 36), we have to deal with electro-
magnetic waves that are amplified in resonator systems or guided by means of wave
guides. As the simplest example, we will briefly discuss the case of a TEM plane wave
inside a resonator consisting of two plane-parallel mirrors, as shown in Figure 36. If the
diameter d of the mirrors is large compared to their distance l, the resonator is identical
to a Fabry-Perot interferometer (see [57]). For the frequencies fξ = ξ ⋅ c/2l (ξ = 1, 2,
3…) standing waves are obtained between the mirrors. The frequency difference
between successive standing waves Δf = fξ + 1 − fξ = c/2l is also called the basic fre-
quency since it is identical to the lowest eigenfrequency of the resonator (ξ = 1). The
transmission of the interferometer for a plane, perpendicular incident beam of intensity
Iin, is a function of the frequency f

 (68)

For the resonance frequencies fξ = ξ ⋅ c/2l, the transmission has a maximum value.
The standing waves of resonance frequency fξ are also called longitudinal or axial cav-
ity modes, because the standing waves are set up along the cavity or z-axis, and the res-
onance frequency only depends on the corresponding number of nodes.

In contrast to the ideal Fabry-Perot interferometer, in practical cavities the assump-
tion of infinitely large mirrors (d � l) is not valid. In fact, we find the opposite case,
namely that the diameter of the front planes (or mirrors) is small compared to the distance
(d � l). The limited dimensions of the mirrors cause a collimation of the ray inside the
resonator, thus resulting in diffraction of the wave. This diffraction leads to transverse
modes which are sustained in the resonator. Since the fields are almost normal to the
z-axis they are known as TEMmn modes (transverse electric and magnetic). The m and n
subscripts are the integer number of transverse nodal lines in the x- and y-directions
across the emerging beam. The form of the different TEMmn modes depends on the shape
of mirror (plane or confocal) as well as on the form of its cross section (rectangular or
circular). Examples of typical TEMmn mode configurations are shown in Figure 37.
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Figure 35: Planes of oscillation of the 
electrical and magnetic field vectors of 
linearly polarized light generated by 
reflection.

Figure 36: Standing wave inside 
an optical resonator.
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5.2.2 Polarization
The polarization of light is determined by the direction of the electric field vector E(r,t).
For transverse electromagnetic waves (TEM waves), the electric field vector lies in a
plane perpendicular to the propagation direction. Generally, the wave is said to be ellip-
tically polarized. When the ellipse degenerates into a straight line or a circle, the wave
is said to be linearly or circularly polarized, respectively. Figure 35 shows, as an exam-
ple, the planes of oscillation of the electrical and magnetic field vectors of linearly polar-
ized light generated by reflection.

Polarization plays an important role in the interaction of light with matter, because it
is mainly the electrical field vector E that interacts with matter (Sec. 3.2). In the context
of optical applications, some important examples are listed below:
• The polarization of the incident beam determines the amount of light reflected at the 

boundary between two materials.
• Light scattering from matter is polarization-sensitive.
• The refractive index of anisotropic media, and thus the phase velocity and the phase 

shift of the wave, depend on the polarisation.
• Optically active materials have the ability to rotate the plane of polarization of polar-

ized light.
• The absorption constants of certain materials are polarization-dependent.

5.2.3 Reflection and Refraction
The polarization-dependent reflection and refraction of light at a boundary between two
dielectric media is of fundamental importance for the functionality of optical devices.
The phenomenon of total reflection is the basic principle of light pipes (see Chap. 35).

Here, we will examine the reflection and refraction of a monochromatic plane wave
of arbitrary polarization incident at a planar boundary between two dielectric media with
refractive indices n1 and n2 as depicted in Figure 38. The media are again assumed to be
linear, homogeneous, isotropic, non-dispersive, and non-magnetic. Considering the
angles of the different beams with respect to the axis of incidence, the following relations
hold (see [57]):
• the angle of reflection equals the angle of incidence: θ3 = θ1;
• the angles of refraction and incidence satisfy Snell’s law: n1 sin θ1 = n2 sin θ2.
To calculate the reflection and transmission coefficients, one has to relate the ampli-
tudes and the polarizations of the three waves, taking into account the boundary condi-
tions required by the electromagnetic theory (tangential components of E and H and
normal components of D and B are continuous at the boundary; see also [6]). The calcu-
lations result in a dependence of the coefficients on the polarization of the incident beam.
Therefore, we have to distinguish between a transverse electric (TE) field or s-polariza-
tion, for which the electric fields are orthogonal to the plane of incidence, and a trans-
verse magnetic (TM) field or p-polarization, where the electric fields are parallel to the
plane of incidence.

The resulting expressions for the reflection and transmission coefficients, the
Fresnel equations, read for s-polarisation

 (69)

and for p-polarisation

 (70)

From (70), it follows that the reflection coefficient for a p-polarized beam vanishes
at a certain angle θ1 = θB, the so-called Brewster angle, which is given by

 (71)

The property that p-polarized light is not reflected at the Brewster angle is used for
the design of polarizers, so called Brewster windows, see Figure 35.

The reflection and transmission coefficients r and t are ratios of the complex ampli-
tudes. The power reflectance R and transmittance T are defined as the ratios of the power
flow of the reflected and transmitted wave to that of the incident wave. Thus, we obtain

 (72)
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Figure 37: Mode configurations of 
a confocal optical resonator with 
rectangular symmetry (after [57]).

Figure 38: Incident, reflected and 
refracted beam at the boundary 
between two dielectric media.
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5.3 Interaction of Light with Matter
In optical devices various effects are used for guiding and modulating electromagnetic
waves. In general, the light wave interacts with the electrons that are bound elastically in
the material.

5.3.1 Birefringence
We now deal with the refraction of a plane wave at the boundary between an isotropic
medium, as for example air (n1 = 1), and an anisotropic medium. For example, BaTiO3
in the tetragonal and the rhombohedral phases is uniaxially birefringent, while the orthor-
hombic phase exhibits birefringent behavior with two axes. Due to its optical anisotropy,
the medium supports two modes of distinctly different phase velocities. Therefore, each
incident wave gives two refracted waves with two different directions and different polar-
izations (see Figure 39). The effect is called birefringence.

As a simple example, we take a uniaxial crystal and a plane of incidence parallel to
the optical axis (for further discussions see [58]). The two refracted waves which satisfy
the phase-matching condition at the boundary are:
• an ordinary wave of orthogonal (s-) polarization at an angle θ = θo;
• an extraordinary wave of parallel (p-) polarization at an angle θ = θe.
With respect to optical device applications, anisotropic crystal plates serve as polarizing
beam splitters, creating two laterally separated rays with orthogonal polarisations.

5.3.2 Absorption
When we discuss the interaction of electromagnetic waves with matter, we also have to
consider the absorption of electromagnetic waves in the dielectric medium which is
strongly related to the dielectric properties described by the complex permittivity εr. In
absorbing media, the wave equation (60) remains applicable, but a complex wave number
is used to account for the losses

 (73)

In terms of the complex refractive index (Eq. (62)),  reads

 (74)

For a monochromatic plane wave travelling in −z-direction through an absorbing
medium

 (75)

we find a phase velocity of c = c0/n and an exponentially decaying amplitude.
For the intensity of the transmitted wave we derive the Lambert-Beer’s law

 (76)

where a is the absorption constant. For weakly absorbing media, we find

 (77)

Eq. (77) is a particularly simple relation between the empirical absorption constant
and the dielectric response function of a system.

5.3.3 The Pockels and Kerr Effects
In certain materials, such as ionic crystals, the positions of the ions and the shapes of the
electronic orbitals are distorted when the material is subjected to an electric field (see Sec.
3.2). The electro-optical effect is the change in the refractive index (caused by a change
in the dielectric properties) due to the application of a dc or low-frequency electric field. 

The dependence of the refractive index on the applied electric field takes two forms:
• the refractive index changes in proportion to the applied field: n ∝ E. 

This is called the linear electro-optical or the Pockels effect. This effect is observed 
for ferroelectric materials with a preferential axis (see Sec. 4.3).
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• the refractive index changes in proportion to the square of the applied field: n ∝ E2.

This is known as the quadratic electro-optical or the Kerr effect. This effect is 
observed for dielectrics (see Sec. 2.3).

The Pockels effect, in particular, is used for many electro-optical devices, for example,
phase modulators, switches, spatial intensity modulators, and the Pockels readout optical
modulator (PROM) [58].

5.3.4 Photorefractive Materials
Photorefractive materials combine photoconductive and electro-optical behavior. They
are thus able to detect and store spatial optical intensity distributions in the form of spatial
patterns of altered refractive index. Photo-induced charges create a space-charge distri-
bution that produces an internal electric field, which, in turn, alters the refractive index
due to the electro-optical effect. Photorefractive devices therefore permit light to control
light [59].

In photoconductors, free charge carriers are generated under illumination due to the
absorption of photons, and the conductivity increases. In the dark, the electron-hole pairs
recombine and the conductivity decreases. 

When a photorefractive material is exposed to light, free charge carriers are gen-
erated by excitation from impurity energy levels to the conduction band, at a rate propor-
tional to the optical power. Carriers diffuse into areas of low intensity where they are
trapped by other ionized impurities. The result is an inhomogeneous space-charge distri-
bution generated by a light intensity pattern. The charge distribution creates an internal
electric field that modulates the refractive index by the Pockels effect. The image may be
accessed optically by monitoring the spatial index pattern with a probe optical wave. The
pattern can be erased by illumination or heating of the photorefractive material. Impor-
tant material candidates are barium titanate (BaTiO3), bismuth silicon oxide, lithium nio-
bate, and also gallium arsenide. The photorefractive effect is the basis for modern
holographic storage devices. This is the topic of Chap. 32.

6 Closing Remarks
This chapter presented a short review of the basic concepts of the interactions between
electromagnetic fields and condensed matter. The polarization of the material which
interacts with the electric field of the signal wave may be either induced by the electric
field, as is the case in dielectrics, or it may be an intrinsic property of the material, as is
the case in pyro- and ferroelectric materials. The ability of a crystal to exhibit spontane-
ous electrical polarization is related to the point group describing the structure and
requires a symmetry group with a polar axis.

Among the different dielectrics and ferroelectrics, the perovskites are the most
important. Multiple distortions of the cubic perovskite prototype are known, leading to
the possibility of multiple phase transitions as a function of temperature, as in barium
titanate, or multiple phases as the composition is changed, as in PZT. When morphotropic
phase boundaries are present, peaks in the dielectric and piezoelectric properties are typ-
ically observed. 

The entire spectrum from the dc response to the optical frequencies was covered. The
dc response is important for capacitors and electronic devices, permitting the design of
capacitors with increased or variable capacitance. The dc and the low-frequency ac
response are dominated by displacing charged ions within the material. As a conse-
quence, lattice distortions, vibrations and phonon dynamics play an important role, and
sound waves are easily coupled to alternating electrical fields. In ferroelectrics, optical
lattice vibrations exist where the differently charged sub-lattices vibrate against each
other. In particular for the transverse optical mode at the zone center, the restoring forces
for these modes are such that electric Coulomb forces and elastic lattice forces work
against each other. As a consequence the transverse optical zone center modes soften. If
this compensation effect is complete and Coulomb and elastic forces cancel each other
out, then the corresponding phonon condenses out and a ferroelectric displacive phase
transition takes place. The underlying lattice vibrations may only be accessed by inelastic
neutron spectroscopy, whereas the phonon dispersion relations can be directly measured. 

Figure 39: Birefringence through an anisotropic, 
uniaxial medium.
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Domains in ferroelectrics are formed in order to minimize the total energy. Thus, the

static domain patterns depend on both the electrical and elastic boundary conditions for
the system. For any material, the allowed domain variants are controlled by the crystal-
lography of the ferroelectric phase. Domain walls mark the boundaries between domains,
and are characterized by the angle between the polarization vectors on either side of the
wall. The motion of domain walls is strongly influenced by pinning effects.

At optical frequencies, only the electrons are able to follow the rapid changes of the
electrical field, and the ionic lattice provides the background of a periodic static charge
distribution. Within a transparent polarizable material, it is the interplay between the
asymmetric built-in lattice charge distribution and an intrinsic polarization with the elec-
tric field of the propagating electromagnetic wave which acts on the valence electrons of
the crystal in a complex and very interesting way, leading to electro-optic effects,
acousto-optic devices, nonlinear optics, frequency conversion, and even to holographic
storage applications.
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