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Abstract

A role for the ubiquitin—proteasome system in the removal of misfolded and ab-
normal proteins is well established. Nevertheless, very little is known about how
abnormal proteins are recognized for degradation by the proteasome. Recent ad-
vances suggest that substrate recognition and processing require a close coopera-
tion of the ubiquitin—proteasome system with molecular chaperones. Chaperones
are defined by their ability to recognize nonnative conformations of other proteins
and are therefore ideally suited to distinguish between native and abnormal pro-
teins during substrate selection. Here we discuss molecular mechanisms that
underlie the cooperation of molecular chaperones with the ubiquitin—proteasome
system. Advancing our knowledge about such mechanisms may open up opportu-
nities to modulate chaperone—proteasome cooperation in human diseases.

1.1
Introduction

The biological activity of a protein is defined by its unique three-dimensional struc-
ture. Attaining this structure, however, is a delicate process. A recent study sug-
gests that up to 30% of all newly synthesized proteins never reach their native state
[1]. As protein misfolding poses a major threat to cell function and viability, mo-
lecular mechanisms must have evolved to prevent the accumulation of misfolded
proteins and thus aggregate formation. Two protective strategies appear to be fol-
lowed. Molecular chaperones are employed to stabilize nonnative protein confor-
mations and to promote folding to the native state whenever possible. Alterna-
tively, misfolded proteins are removed by degradation, involving, for example, the
ubiquitin—proteasome system. For a long time molecular chaperones and cellular
degradation systems were therefore viewed as opposing forces. However, recent
evidence suggests that certain chaperones (in particular members of the 70- and
90-kDa heat shock protein families) are able to cooperate with the ubiquitin—
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proteasome system. Protein fate thus appears to be determined by a tight interplay
of cellular protein-folding and protein-degradation systems.

1.2
A Biomedical Perspective

The aggregation and accumulation of misfolded proteins is now recognized as
a common characteristic of a number of degenerative disorders, many of which
have neurological manifestations [2, 3]. These diseases include prionopathies, Alz-
heimer’s and Parkinson’s diseases, and polyglutamine expansion diseases such as
Huntington’s disease and spinocerebellar ataxia. At the cellular level, these dis-
eases are characterized by the accumulation of aberrant proteins either intracellu-
larly or extracellularly in specific groups of cells that subsequently undergo death.
The precise association between protein accumulation and cell death remains in-
completely understood and may vary from disease to disease. In some cases, mis-
folded protein accumulations may themselves be toxic or exert spatial constraints
on cells that affect their ability to function normally. In other cases, the sequester-
ing of proteins in aggregates may itself be a protective mechanism, and it is the
overwhelming of pathways that consolidate aberrant proteins that is the toxic
event. In either case, lessons learned from genetically determined neurodegenera-
tive diseases have helped us to understand the inciting events of protein aggrega-
tion that ultimately lead to degenerative diseases.

Mutations resulting in neurodegenerative diseases fall into two broad classes.
The first class comprises mutations that affect proteins, irrespective of their native
function, and cause them to misfold. The classic example of this is Huntington’s
disease [4, 5]. The protein encoded by the huntingtin gene contains a stretch of
glutamine residues (or polyglutamine repeat), and the genomic DNA sequence
that codes for this polyglutamine repeat is subject to misreading and expansion.
When the length of the polyglutamine repeat in huntingtin reaches a critical
threshold of approximately 35 residues, the protein becomes prone to misfolding
and aggregation [6]. This appears to be the proximate cause of neurotoxicity in
this invariably fatal disease [7, 8]. A number of other neurodegenerative diseases
are caused by polyglutamine expansions [9, 10]. For example, spinocerebellar
ataxia is caused by polyglutamine expansions in the protein ataxin-1 [11]. In other
diseases, protein misfolding occurs due to other mutations that induce misfolding
and aggregation; for example, mutations in superoxide dismutase-1 lead to aggre-
gation and neurotoxicity in amyotrophic lateral sclerosis [12, 13].

Other mutations that result in neurodegenerative diseases are instructive in that
they directly implicate the ubiquitin—proteasome system in the pathogenesis of
these diseases [14]. For example, mutations in the gene encoding the protein par-
kin are associated with juvenile-onset Parkinson’s disease [15, 16]. Parkin is a
RING finger-containing ubiquitin ligase, and mutations in this ubiquitin ligase
cause accumulation of target proteins that ultimately result in the neurotoxicity
and motor dysfunction associated with Parkinson’s disease [17-20].
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Repressor screens of neurodegeneration phenotypes in animal models have also
linked the molecular chaperone machinery to neurodegeneration [21-24]. Taken
together, the pathophysiology of neurodegenerative diseases provides a compelling
demonstration of the importance of the regulated metabolism of misfolded pro-
teins and provides direct evidence of the role of both molecular chaperones and
the ubiquitin—proteasome system in guarding against protein misfolding and its
consequent toxicity.

13
Molecular Chaperones: Mode of Action and Cellular Functions

Molecular chaperones are defined by their ability to bind and stabilize nonnative
conformations of other proteins [25, 26]. Although they are an amazingly diverse
group of conserved and ubiquitous proteins, they are also among the most abun-
dant intracellular proteins. The classical function of chaperones is to facilitate
protein folding, inhibit misfolding, and prevent aggregation. These folding events
are regulated by interactions between chaperones and ancillary proteins, the co-
chaperones, which in general assist in cycling unfolded substrate proteins on and
off the active chaperone complex [25, 27, 28|. In agreement with their essential
function under normal growth conditions, chaperones are ubiquitously expressed
and are found in all cellular compartments of the eukaryotic cell (except for perox-
isomes). In addition, cells greatly increase chaperone concentration as a response
to diverse stresses, when proteins become unfolded and require protection and sta-
bilization [29]. Accordingly, many chaperones are heat shock proteins (Hsps). Four
main families of cytoplasmic chaperones can be distinguished: the Hsp70 family,
the Hsp90 family, the small heat shock proteins, and the chaperonins.

1.3.1
The Hsp70 Family

The Hsp70 proteins bind to misfolded proteins promiscuously during translation
or after stress-mediated protein damage [26, 30]. Members of this family are highly
conserved throughout evolution and are found throughout the prokaryotic and eu-
karyotic phylogeny. It is common for a single cell to contain multiple homologues,
even within a single cellular compartment; for example, mammalian cells express
two inducible homologues (Hsp70.1 and Hsp70.3) and a constitutive homologue
(Hsc70) in the cytoplasm. These homologues have overlapping but not totally re-
dundant cellular functions. Members of this family are typically in the range of 70
kDa in size and contain three functional domains: an amino-terminal ATPase do-
main, a central peptide-binding cleft, and a carboxyl terminus that seems to form a
lid over the peptide-binding cleft [28] (Figure 1.1). The chaperones recognize short
segments of the protein substrate, which are composed of clusters of hydrophobic
amino acids flanked by basic residues [31]. Such binding motifs occur frequently
within protein sequences and are found exposed on nonnative proteins. In fact,
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mammalian Hsp70 binds to a wide range of nascent and newly synthesized pro-
teins, comprising about 15-20% of total protein [32]. This percentage is most
likely further increased under stress conditions. Hsp70 proteins apparently prevent
protein aggregation and promote proper folding by shielding hydrophobic seg-
ments of the protein substrate. The hydrophobic segments are recognized by the
central peptide-binding domain of Hsp70 proteins (Figure 1.1). The domain is
composed of two sheets of § strands that together with connecting loops form a
cleft to accommodate extended peptides of about seven amino acids in length, as
revealed in crystallographic studies of bacterial Hsp70 [33]. In the obtained crystal
structure, the adjacent carboxyl-terminal domain of Hsp70 folds back over the f
sandwich, suggesting that the domain may function as a lid in permitting entry
and release of protein substrates (Figure 1.1). According to this model, ATP bind-
ing and hydrolysis by the amino-terminal ATPase domain of Hsp70 induce confor-
mational changes of the carboxyl terminus, which lead to lid opening and closure
[28]. In the ATP-bound conformation of Hsp70, the peptide-binding pocket is
open, resulting in rapid binding and release of the substrate and consequently in
a low binding affinity (Figure 1.1). Stable holding of the protein substrate requires
closing of the binding pocket, which is induced upon ATP hydrolysis and conver-
sion of Hsp70 to the ADP-bound conformation. The dynamic association of Hsp70
with nonnative polypeptide substrates thus depends on ongoing cycles of ATP
binding, hydrolysis, and nucleotide exchange. Importantly, ancillary co-chaperones
are employed to regulate the ATPase cycle [27, 30]. Co-chaperones of the Hsp40
family (also termed | proteins due to their founding member bacterial Dna]) stim-
ulate the ATP hydrolysis step within the Hsp70 reaction cycle and in this way pro-
mote substrate binding [34] (Figure 1.1). In contrast, the carboxyl terminus of
Hsp70-interacting protein CHIP attenuates ATP hydrolysis [35]. Similarly, nucleo-
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tide exchange on Hsp70 is under the control of stimulating and inhibiting co-
chaperones. The Hsp70-interacting protein Hip slows down nucleotide exchange
by stabilizing the ADP-bound conformation of the chaperone [36], whereas nucleo-
tide exchange is stimulated by the co-chaperone BAG-1 (Bcl-2-associated athano-
gene 1), which assists substrate unloading from Hsp70 [37-39]. By altering the AT-
Pase cycle, the co-chaperones directly modulate the folding activity of Hsp70. In
addition to chaperone-recognition motifs, co-chaperones often possess other func-
tional domains and therefore link chaperone activity to distinct cellular processes
[27, 40] (Figure 1.2). Indeed, as discussed below, the co-chaperones BAG-1 and
CHIP apparently modulate Hsp70 function during protein degradation.

13.2
The Hsp90 Family

The 90-kDa cytoplasmic chaperones are members of the Hsp90 family, and in
mammals two isoforms exist: Hsp90« and Hsp90p. The Hsp70 and Hsp90 families
exhibit several common features: both possess ATPase activity and are regulated
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by ATP binding and hydrolysis, and both are further regulated by ancillary co-
chaperones [41-48]. Unlike Hsp70, however, cytoplasmic Hsp90 is not generally
involved in the folding of newly synthesized polypeptide chains. Instead it plays a
key role in the regulation of signal transduction networks, as most of the known
substrates of Hsp90 are signaling proteins, the classical examples being steroid
hormone receptors and signaling kinases. On a molecular level, Hsp90 binds to
substrates at a late stage of the folding pathway, when the substrate is poised for
activation by ligand binding or associations with other factors. Consequently,
Hsp90 accepts partially folded conformations from Hsp70 for further processing.
In the case of the chaperone-assisted activation of the glucocorticoid hormone
receptor and also of the progesterone receptor, the sequence of events leading to
attaining an active conformation is fairly well understood [49-53]. It appears that
the receptors are initially recognized by Hsp40 and are then delivered to Hsp70
[54] (Figure 1.3). Subsequent transfer onto Hsp90 requires the Hsp70/Hsp90-
organizing protein Hop, which possesses non-overlapping binding sites for Hsp70
and Hsp90 and therefore acts as a coupling factor between the two chaperones
[S5]. In conjunction with p23 and different cyclophilins, Hsp90 eventually medi-
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Fig. 1.3. Cooperation of Hsp70 and Hsp90 associates with p23 and diverse cyclophilins

during the regulation of signal transduction
pathways. The inactive signaling protein, e.g., a
steroid hormone receptor, is initially recognized
by Hsp40 and delivered to Hsp70. Subsequently,
a multi-chaperone complex assembles that
contains the Hsp70 co-chaperone Hip and the
Hsp70/Hsp90-organizing protein Hop. Hop
stimulates recruitment of an Hsp90 dimer that
accepts the substrate from Hsp70. At the final
stage of the chaperone pathway, Hsp90

(cycloph.) to mediate conformational changes
of the signaling protein necessary to reach

an activatable state. Upon activation, i.e.,
hormone binding in the case of the steroid
receptor, the signaling protein is released
from Hsp90. In the absence of an activating
stimulus, the signaling protein folds back to
the inactive state when released and enters a
new cycle of chaperone binding.
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ates conformational changes that enable the receptor to reach a high-affinity state
for ligand binding. On other signaling pathways Hsp90 serves as a scaffolding fac-
tor to permit interactions between kinases and their substrates, as is the case for
Akt kinase and endothelial nitric oxide synthase [56]. Since many of the Hsp90
substrate proteins are involved in regulating cell proliferation and cell death, it is
not surprising that the chaperone recently emerged as a drug target in tumor ther-
apy [57-59]. The antibiotics geldanamycin and radicicol specifically bind to Hsp90
in mammalian cells and inhibit the function of the chaperone by occupying its
ATP-binding pocket [60-63]. Drugs based on these compounds are now being de-
veloped as anticancer agents, as they potentially inactivate multiple signaling path-
ways that drive carcinogenesis. Remarkably, drug-induced inhibition of Hsp90
blocks the chaperone-assisted activation of signaling proteins and leads to their
rapid degradation via the ubiquitin—proteasome pathway [64—69] (Figure 1.4).
Hsp90 inhibitors therefore have emerged as helpful tools to study chaperone—
proteasome cooperation.

1.3.3
The Small Heat Shock Proteins

The precise functions of small heat shock proteins (sHsps) including Hsp27 and
the eye-lens protein oB-crystallin are incompletely understood. However, they
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Fig. 1.4. Alteration of chaperone action
during signal transduction induced by Hsp90
inhibitors such as geldanamycin and radicicol.
In the presence of the inhibitors the activation
pathway is blocked, and signaling proteins are

—  degraded
-—~ = protein

targeted to the proteasome for degradation in
a process that involves the co-chaperone CHIP
and other E3 ubiquitin ligases that remain to
be identified.
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seem to play a major role in preventing protein aggregation under conditions of
cellular stress [70-73]. All members investigated so far form large oligomeric com-
plexes of spherical or cylindrical appearance [74, 75]. Complex formation is inde-
pendent of ATP binding and hydrolysis, but appears to be regulated by tempera-
ture and phosphorylation. The structural analysis of wheat Hsp16.9 suggested
that the oligomeric complex acts as a storage form rather than an enclosure for
substrates, as the active chaperone appears to be a dimer [75]. In agreement with
this notion, dissociation of the oligomeric complex formed by yeast Hsp26 was
found to be a prerequisite for efficient chaperone activity [76]. Subsequent refold-
ing may occur spontaneously or may involve cooperation with other chaperones
such as Hsp70 [77].

134
Chaperonins

The chaperone proteins best understood with regard to their mode of action are
certainly the so-called chaperonins, which are defined by a barrel-shaped, double-
ring structure [25, 28]. Members include bacterial GroEL, Hsp60 of mitochondria
and chloroplasts, and the TriC—CCT complex localized in the eukaryotic cytoplasm.
Based on their characteristic ring structure, a central cavity is formed, which ac-
commodates nonnative proteins via hydrophobic interactions. Conformational
changes of the chaperonin subunits induced through ATP hydrolysis change the
inner lining of the cavity from a hydrophobic to a hydrophilic character [78-80].
As a consequence the unfolded polypeptide is released into the central chamber
and can proceed on its folding pathway in a protected environment [81]. The chap-
eronins are therefore capable of folding proteins such as actin that cannot be prop-
erly folded via other mechanisms [82].

1.4
Chaperones: Central Players During Protein Quality Control

Due to their ability to recognize nonnative conformations of other proteins, molec-
ular chaperones are of central importance during protein quality control. This was
elegantly revealed in studies on the influence of the Hsp70 chaperone system on
polyglutamine diseases using the fruit fly Drosophila melanogaster as a model or-
ganism (reviewed in Refs. [23] and [83]). Hallmarks of the polyglutamine disease
spinocerebellar ataxia type 3 (SCA3), for example, were recapitulated in transgenic
flies that expressed a pathological polyQ tract of the ataxin-3 protein in the eye disc
[84]. Transgene expression caused formation of abnormal protein inclusions and
progressive neuronal degeneration. Intriguingly, co-expression of human cytoplas-
mic Hsp70 suppressed polyQ-induced neurotoxicity. In a similar experimental
approach, Hsp40 family members protected neuronal cells against toxic polyQ ex-
pression [22]. Enhancing the activity of the Hsp70/Hsp40 chaperone system appar-
ently mitigates cytotoxicity caused by the accumulation of aggregation-prone pro-



1.5 Chaperones and Protein Degradation

teins. These findings obtained in Drosophila were confirmed in a mouse model
of spinocerebellar ataxia type 1 (SCA1) [85, 86]. Unexpectedly, however, the Hsp70
chaperone system was unable to prevent the formation of protein aggregates in
these models of polyglutamine diseases and upon polyQ expression in yeast and
mammalian cells [84, 85, 87-89]. Elevating the cellular levels of Hsp70 and of
some Hsp40 family members affected the number of protein aggregates and their
biochemical properties, but did not inhibit the formation of polyQ aggregates. No-
tably, Hsp70 and Hsp40 profoundly modulated the aggregation process of polyQ
tracts in biochemical experiments; this led to the formation of amorphous, SDS-
soluble aggregates, instead of the ordered, SDS-insoluble amyloid fibrils that form
in the absence of the chaperone system [88]. These biochemical data were con-
firmed in yeast and mammalian cells [88, 90]. Although unable to prevent the for-
mation of protein aggregates, the Hsp70 chaperone system apparently prevents the
ordered oligomerization and fibril growth that is characteristic of the disease pro-
cess. In an alternate but not mutually exclusive model to explain their protective
role, the chaperones may cover potentially dangerous surfaces exposed by polyQ-
containing proteins during the oligomerization process or by the final oligomers.
Intriguingly, elevated expression of Hsp70 also suppresses the toxicity of the non-
polyQ-containing protein o-synuclein in a Drosophila model of Parkinson’s disease
without inhibiting aggregate formation [24]. Hsp70 may thus exert a rather general
function in protecting cells against toxic protein aggregation. This raises the excit-
ing possibility that treatment of diverse forms of human neurodegenerative dis-
eases may be achieved through upregulation of Hsp70 activity.

The mentioned examples illustrate that one does not have to evoke the refolding
of an aberrant protein to the native state in order to explain the protective activity
of Hsp70 observed in models of amyloid diseases. In some cases it might be suffi-
cient for Hsp70 to modulate the aggregation process or to shield interaction sur-
faces of the misfolded protein to decrease cytotoxic effects. Another option may in-
volve presentation of the misfolded protein to the ubiquitin—proteasome system for
degradation.

1.5
Chaperones and Protein Degradation

Hsp70 and Hsp90 family members as well as small heat shock proteins have all
been implicated to participate in protein degradation. For example, the small heat
shock protein Hsp27 was recently shown to stimulate the degradation of phos-
phorylated IxBa via the ubiquitin—proteasome pathway, which may account for
the antiapoptotic function of Hsp27 [91]. Similarly, Hsp27 facilitates the proteaso-
mal degradation of phosphorylated tau, a microtubule-binding protein and compo-
nent of protein deposits in Alzheimer’s disease [92]. Hsp70 participates in the deg-
radation of apolipoprotein B100 (apoB), which is essential for the assembly and
secretion of very low-density lipoproteins from the liver [93]. Under conditions of
limited availability of core lipids, apoB translocation across the ER membrane is

9
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attenuated, resulting in the exposure of some domains of the protein into the cyto-
plasm and their recognition by Hsp70. This is followed by the degradation of apoB
via the ubiquitin—proteasome pathway. Elevating cellular Hsp70 levels stimulated
the degradation of the membrane protein, suggesting that the chaperone facilitates
sorting to the proteasome. Genetic studies in yeast indicate that cytoplasmic Hsp70
may fulfill a rather general role in the degradation of ER-membrane proteins that
display large domains into the cytoplasm [94]. In agreement with this notion,
Hsp70 also takes part in the degradation of immaturely glycosylated and aberrantly
folded forms of the cystic fibrosis transmembrane conductance regulator (CFTR)
[95-98]. CFTR is an ion channel localized at the apical surface of epithelial cells.
Its functional absence causes cystic fibrosis, the most common fatal genetic dis-
ease in Caucasians [99, 100]. The disease-causing allele, AF508, which is expressed
in more than 70% of all patients, drastically interferes with the protein’s ability to
fold, essentially barring it from functional expression in the plasma membrane.
However, wild-type CFTR also folds very inefficiently, and less than 30% of the pro-
tein reaches the plasma membrane [99]. While trafficking from the endoplasmic
reticulum (ER) to the Golgi apparatus, immature forms of CFTR are recognized
by quality-control systems and are eventually directed to the proteasome for degra-
dation [101-104]. A critical step during CFTR biogenesis is the inefficient folding
of the first of two cytoplasmically exposed nucleotide-binding domains (NBD1) of
the membrane protein [105, 106]. The disease-causing AF508 mutation localizes
to NBD1 and further decreases the folding propensity of this domain. During the
co-translational insertion of CFTR into the ER membrane, cytoplasmic Hsp70 and
its co-chaperone Hdj-2 bind to NBD1 and facilitate intramolecular interactions
between the domain and another cytoplasmic region of CFTR, the regulatory R-
domain [96, 107]. However, Hsp70 is also able to present CFIR to the ubiquitin—
proteasome system [97], and heterologous expression of CFTR in yeast revealed an
essential role of cytoplasmic Hsp70 in CFTR turnover [98]. Hsp70 is thus a key
player in the cellular surveillance system that monitors the folded state of CFTR
at the ER membrane.

Interestingly, CFTR and the disease form AF508 are deposited in distinct peri-
centriolar structures, termed aggresomes, upon overexpression or proteasome inhi-
bition [108]. Subsequent studies established that aggresomes are induced upon ec-
topic expression of many different aggregation-prone proteins (reviewed in Refs.
[109] and [110]). Aggresomes form near the microtubule-organizing center in a
manner dependent on the microtubule-associated motor protein dynein, and are
surrounded by a “cage” of filamentous vimentin [108, 111]. Aggresome formation
is apparently a specific and active cellular response when production of misfolded
proteins exceeds the capacity of the ubiquitin—proteasome system to tag and re-
move these proteins. They likely serve to protect the cell from toxic “gain-of-
function” activities acquired by misfolded proteins. Aggresomes are also of clinical
relevance as they share remarkable biochemical and structural features, for exam-
ple, with Lewy bodies, the cytoplasmic inclusion bodies found in neurons affected
by Parkinson’s disease [112]. The pathways that regulate aggresome assembly are
only now being explicated. Histone deacetylase 6 (HDACG6) appears to be a key reg-
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ulator of aggresome assembly [113]. HDACG is a microtubule-associated deacety-
lase that has the capacity to bind both multi-ubiquitinated proteins and dynein mo-
tors and is believed to recruit misfolded proteins to the pericentriolar region for
aggresome assembly. Deletion of HDACG6 prevents aggresome formation and sen-
sitizes cells to the toxic effects of misfolded proteins, which supports the hypothe-
sis that aggresomes sequester misfolded proteins to protect against their toxic ac-
tivities. Components of the ubiquitin—proteasome system and chaperones such as
Hsp70 are abundantly present in and are actively recruited to aggresomes [114—
116]. Furthermore, elevating cellular Hsp70 levels can reduce aggresome forma-
tion by stimulating proteasomal degradation [117]. It appears that these subcellular
structures are major sites of chaperone—proteasome cooperation to mediate the
metabolism of misfolded proteins.

The formation of aggresome-like structures is also observed in dendritic cells
that present foreign antigens to other immune cells [118]. Immature dendritic
cells are located in tissues throughout the body, including skin and gut. When
they encounter invading microbes, the pathogens are endocytosed and processed
in a manner that involves the generation of antigenic peptides by the ubiquitin—
proteasome system. Upon induction of dendritic cell maturation, ubiquitinated
proteins transiently accumulate in large cytosolic structures that resemble aggre-
somes and were therefore termed DALIS (dendritic cell aggresome-like induced
structures). It was speculated that DALIS formation may enable dendritic cells
to regulate antigen processing and presentation. DALIS contain components of
the ubiquitin—proteasome machinery as well as Hsp70 and the co-chaperone
CHIP [118, 119]. Again, an interplay of molecular chaperones and the ubiquitin—
proteasome system during regulated protein turnover is suggested.

The cellular function of molecular chaperones is apparently not restricted to me-
diating protein folding; instead, chaperones emerge also as vital components on
protein-degradation pathways. Remarkably, the balance between folding and degra-
dation activities of chaperones can be manipulated. In cells treated with Hsp90
inhibitors, for example, with geldanamycin (see above), the chaperone-assisted acti-
vation of signaling proteins is abrogated and chaperone substrates such as the pro-
tein kinases Raf-1 and ErbB2 are rapidly degraded by the ubiquitin—proteasome
system [64-69, 120]. This appears to be due, in part, to transfer of the sub-
strates back to Hsp70 and progression toward the ubiquitin-dependent degradation
pathway.

Substrate interactions with chaperones — and consequently their commitment
either toward the folding pathway or to their degradation via the ubiquitin-
proteasome machinery — apparently serve as an essential post-translational protein
quality-control mechanism within eukaryotic cells. The partitioning of proteins to
either one of these mutually exclusive pathways is referred to as “protein triage”
[121]. Although some misfolded proteins may be directly recognized by the protea-
some [122], specific pathways within the ubiquitin—proteasome system are proba-
bly relied on for the degradation of most misfolded and damaged proteins. For ex-
ample, E2 enzymes of the Ubc4/5 family selectively mediate the ubiquitylation of
abnormal proteins as revealed in genetic studies in Saccharomyces cerevisiae [123].

1
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Chaperones and the degradation machinery Through an association with certain compo-
(i-e., ubiquitylation systems) compete with nents of the ubiquitin conjugation machinery
each other in the recognition of folding (degrading partner), the chaperones participate

intermediates. Interaction with the chaperones in the targeting of protein substrates to the
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a folded conformation, the chaperones chaperone action and the fate of the protein
maintain the folding intermediate in a soluble  substrate.

state that can be recognized by the

It is well accepted that chaperones play a central role in the triage decision; how-
ever, less well understood are the events that lead to the cessation of efforts to fold
a substrate, and the diversion of the substrate to the terminal degradative pathway.
It is possible that chaperones and components of the ubiquitin—proteasome path-
way exist in a state of competition for these substrates and that repeated cycling of
a substrate on and off a chaperone maintains the substrate in a soluble state and
increases, in a stochastic fashion, its likelihood of interactions with the ubiquitin
machinery (Figure 1.5A). However, some data argue for a more direct role of the
chaperones in the degradation process. Hsp70 plays an active and necessary role
in the ubiquitylation of some substrates [124]; this activity of Hsp70 requires its
chaperone function, indicating that conformational changes within substrates
may facilitate recognition by the ubiquitylation machinery. Plausible hypotheses
to explain these observations include direct associations between the chaperone
and ubiquitin—proteasome machinery to facilitate transfer of a substrate from one
pathway to the other, or conversion of the chaperone itself to a ubiquitylation com-
plex (Figure 1.5B). It is also entirely possible that several quality-control pathways
may exist and that the endogenous triage decision may involve aspects of each of
these hypotheses.
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1.6
The CHIP Ubiquitin Ligase: A Link Between Folding and Degradation Systems

Major insights into molecular mechanisms that underlie the cooperation of molec-
ular chaperones with the ubiquitin—proteasome system were obtained through the
functional characterization of the co-chaperone CHIP (reviewed in Ref. [40]).
CHIP was initially identified in a screen for proteins containing tetratricopeptide
repeat (TPR) domains, which are found in several co-chaperones — including Hip,
Hop, and the cyclophilins — as chaperone-binding domains [27, 55] (Figure 1.2).
CHIP contains three TPR domains at its amino terminus, which are used for bind-
ing to Hsp70 and Hsp90 [35, 125]. Besides the TPR domains, CHIP possesses a U-
box domain at its carboxyl terminus [35] (Figure 1.2). U-box domains are similar to
RING finger domains, but they lack the metal-chelating residues and instead are
structured by intramolecular interactions [126]. The predicted structural similarity
suggests that U boxes, like RING fingers, may also play a role in targeting proteins
for ubiquitylation and subsequent proteasome-dependent degradation, and this
possibility is borne out in functional analyses of U box—containing proteins [127,
128]. The TPR and U-box domains in CHIP are separated by a central domain
rich in charged residues. The charged domain of CHIP is necessary for TPR-
dependent interactions with Hsp70 [35] and is also required for homodimerization
of CHIP [129].

The tissue distribution of CHIP supports the notion that it participates in pro-
tein folding and degradation decisions, as it is most highly expressed in tissues
with high metabolic activity and protein turnover: skeletal muscle, heart, and brain.
Although it is also present in all other organs, including pancreas, lung, liver, pla-
centa, and kidney, the expression levels are much lower. CHIP is also detectable in
most cultured cells, and is particularly abundant in muscle and neuronal cells and
in tumor-derived cell lines [35]. Intracellularly, CHIP is primarily localized to the
cytoplasm under quiescent conditions [35], although a fraction of CHIP is present
in the nucleus [97]. In addition, cytoplasmic CHIP traffics into the nucleus in re-
sponse to environmental challenge in cultured cells, which may serve as a protec-
tive mechanism or to regulate transcriptional responses in the setting of stress
[130].

CHIP is distinguished among co-chaperones in that it is a bona fide interaction
partner with both of the major cytoplasmic chaperones Hsp90 and Hsp70, based
on their interactions with CHIP in the yeast two-hybrid system and in vivo binding
assays [35, 125]. CHIP interacts with the terminal-terminal EEVD motifs of Hsp70
and Hsp90, similar to other TPR domain—containing co-chaperones such as Hop
[55, 131, 132]. When bound to Hsp70, CHIP inhibits ATP hydrolysis and therefore
attenuates substrate binding and refolding, resulting in inhibition of the “forward”
Hsp70 substrate folding/refolding pathway, at least in in vitro assays [35]. The cel-
lular consequences of this “anti-chaperone” function are not yet clear, and in fact
CHIP may actually facilitate protein folding under conditions of stress, perhaps by
slowing the Hsc70 reaction cycle [130, 133]. CHIP interacts with Hsp90 with ap-
proximately equivalent affinity to its interaction with Hsp70 [125]. This interaction
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results in remodeling of Hsp90 chaperone complexes, such that the co-chaperone
p23, which is required for the appropriate activation of many, if not all, Hsp90 cli-
ent proteins, is excluded. The mechanism for this activity is unclear — p23 and
CHIP bind Hsp90 through different sites — yet the consequence of this action is
predictable: CHIP should inhibit the function of proteins that require Hsp90 for
conformational activation. The glucocorticoid receptor is an Hsp90 client that
undergoes activation through a well-described sequence of events that depend on
interactions of the glucocorticoid receptor with Hsp90 and various Hsp90 co-
chaperones, including p23, making it an excellent model to test this prediction.
Indeed, CHIP inhibits glucocorticoid receptor substrate binding and steroid-
dependent transactivation ability [125]. Surprisingly, this effect of CHIP is accom-
panied by decreased steady-state levels of glucocorticoid receptor, and CHIP in-
duces ubiquitylation of the glucocorticoid receptor in vivo and in vitro, as well as
subsequent proteasome-dependent degradation. This effect is both U-box- and
TPR-domain-dependent, suggesting that CHIP’s effects on GR require direct inter-
action with Hsp90 and direct ubiquitylation of GR and delivery to the proteasome.

These observations are not limited to the glucocorticoid receptor. ExbB2, another
Hsp90 client, is also degraded by CHIP in a proteasome-dependent fashion [120].
Nor are they limited to Hsp90 clients. For example, CHIP cooperates with Hsp70
during the degradation of immature forms of the CFTR protein at the ER mem-
brane and during the ubiquitylation of phosphorylated forms of the microtubule-
binding protein tau, which is of clinical importance due to its role in the pathology
of Alzheimer’s disease [97, 134]. The effects of CHIP are dependent on both the
TPR domain, indicating a necessity for interactions with molecular chaperones,
and the U box, which suggests that the U box is most likely the “business end”
with respect to ubiquitylation. The means by which CHIP-dependent ubiquityla-
tion occurs is not clear. In the case of ErbB2, ubiquitylation depends on a transfer
of the client protein from Hsp90 to Hsp70 [120], indicating that the final ubiquity-
lation complex consists of CHIP, Hsp70 (but not Hsp90), and the client protein.
In any event, the studies are consistent in supporting a role for CHIP as a key com-
ponent of the chaperone-dependent quality-control mechanism. CHIP efficiently
targets client proteins, particularly when they are partially unfolded (as is the
case for most Hsp90 clients when bound to the chaperone) or frankly misfolded
(as is the case for most proteins binding to Hsp70 through exposed hydrophobic
residues).

Once the ubiquitylation activity of CHIP was recognized, it was logical to specu-
late that its U box might function in a manner analogous to that of RING fingers,
which have recently been appreciated as key components of the largest family of
ubiquitin ligases. If CHIP is a ubiquitin ligase, then its ability to ubiquitylate a
substrate should be reconstituted in vitro when a substrate is added in the presence
of CHIP, E1, an E2, and ubiquitin. Indeed, this is the case [135-137] (Figure 1.6).
CHIP is thus the first described chaperone-associated E3 ligase. The ubiquitin li-
gase activity of CHIP depends on functional and physical interactions with a spe-
cific family of E2 enzymes, the Ubc4/Ubc5 family, which in humans comprises the
E2s UbcH5a, UbcHS5b, and UbcH5c. Of interest is the fact that the Ubc4/Ubc5 E2s
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chaperone-associated ubiquitin ligase. Purified by immunoblotting using a specific anti-Raf-1
CHIP, UbcH5b, the ubiquitin-activating antibody. Efficient ubiquitylation of Raf-1
enzyme E1, ubiquitin, and the Hsp70-Hsp40  through the CHIP conjugation machinery
chaperone system were incubated with the depends on the recognition of the chaperone

bacterially expressed protein kinase Raf-1 (for ~ substrate by Hsp70, which presents the kinase
details, see Ref. [137]). Raf-1 and ubiquitylated to the conjugation machinery.

are stress-activated, ubiquitin-conjugating enzymes [123]. CHIP can therefore be
seen as a co-chaperone that, in addition to inhibiting traditional chaperone activity,
converts chaperone complexes into chaperone-dependent ubiquitin ligases. Indeed,
the chaperones themselves seem to act as the main substrate-recognition compo-
nents of these ubiquitin ligase complexes, as efficient ubiquitylation of chaperone
substrates by CHIP depends on the presence of Hsp70 or Hsp90 in reconstituted
systems [136, 137] (Figure 1.6). The chaperones apparently function in a manner
analogous to F-box proteins, which are required as substrate recognition modules
in many RING finger—containing ubiquitin ligase complexes [138-140].

Recently, another surprising function for CHIP has been identified, that of acti-
vation of the stress-responsive transcription factor heat shock factor-1 (HSF1)
[130]. Through this association, CHIP regulates the expression of chaperones
such as Hsp70 independently of its ability to modify their function through direct
interactions. The mechanisms through which CHIP activates HSF1 are not en-
tirely clear, but they are dependent in part on the induction of HSF1 trimerization,
which is required for nuclear import and DNA binding. In addition, activation of
HSF1 by CHIP seems to be independent of CHIP’s ubiquitin ligase activity. The
consequences of this activation are important for the response to stress, in that
cells lacking CHIP are prone to stress-dependent apoptosis and mice deficient in
CHIP (through homologous recombination) succumb rapidly to thermal chal-
lenge. These data indicate that CHIP plays a heretofore unsuspected role in coordi-
nating the response to stress, not only by serving as a rate-limiting step in the deg-
radation of damaged proteins but also by increasing the buffering capacity of the
chaperone system to guard against stress-dependent proteotoxicity.
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1.7
Other Proteins That May Influence the Balance Between Chaperone-assisted Folding
and Degradation

CHIP is ideally suited to mediate chaperone-proteasome cooperation, as it
combines a chaperone-binding motif and a domain that functions in ubiquitin-
dependent degradation within its protein structure (Figure 1.2). Some other co-
chaperones display a similar structural arrangement [40]. For example, BAG-1
contacts Hsp70 through a BAG-domain located at its carboxyl terminus and, in
addition, possesses a central ubiquitin-like domain that is used for binding to the
proteasome [141] (Figure 1.2). The co-chaperone thus belongs to a family of ubig-
uitin domain proteins (UDPs), many of which were shown to be associated with
the proteasome [142]. This domain architecture enables BAG-1 to provide a physi-
cal link between Hsp70 and the proteasome, and elevating the cellular levels of
BAG-1 results in a recruitment of the chaperone to the proteolytic complex. Nota-
bly, BAG-1 and CHIP occupy distinct domains on Hsp70 (Figure 1.7). Whereas
BAG-1 associates with the amino-terminal ATPase domain, CHIP binds to the
carboxyl-terminal EEVD motif of Hsp70 [35, 37]. Ternary complexes that comprise
both co-chaperones associated with Hsp70 can be isolated from mammalian cells,
suggesting a cooperation of BAG-1 and CHIP in the regulation of Hsp70 activity
on certain degradation pathways. In fact, BAG-1 is able to stimulate the CHIP-
induced degradation of the glucocorticoid hormone receptor [137]. A cooperation
of diverse co-chaperones apparently provides additional levels of regulation to alter
chaperone-assisted folding and degradation pathways.

Interestingly, BAG-1 and also Hsp70 and Hsp90 are themselves substrates of the
CHIP ubiquitin ligase [135, 143] (J.H. unpublished). Yet, CHIP-mediated ubiquity-
lation of the chaperones and the co-chaperone does not induce their proteasomal
degradation. Instead, it seems to provide additional means to regulate the associa-
tion of the chaperone systems with the proteasome. In the case of BAG-1, ubiqui-
tylation mediated by CHIP indeed stimulates the binding of the co-chaperone to
the proteasome [143]. It remains to be elucidated, however, why Hsp70 and BAG-
1 are not degraded when sorted to the proteasome through CHIP-induced ubiqui-

Fig. 1.7. Schematic presentation of the BAG-  proteasome via its ubiquitin-like domain (ubl),
1-Hsp70-CHIP complex. BAG-1 associates whereas CHIP acts in conjunction with Ubc4/5
with the ATPase domain of Hsp70, while CHIP  as a chaperone-associated ubiquitin ligase to
is bound to the carboxyl terminus. BAG-1 mediate the attachment of a polyubiquitin
mediates an association of Hsp70 with the chain to the chaperone substrate.
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tylation, in contrast to chaperone substrates such as the glucocorticoid hormone re-
ceptor. Possibly, the folded state of the proteins may serve to distinguish targeting
factors and substrates doomed for degradation.

Efficient ubiquitylation of BAG-1 mediated by CHIP is dependent on the forma-
tion of the ternary BAG-1-Hsp70—CHIP complex [143]. The formed chaperone
complex would thus expose multiple signals for sorting to the proteasome, e.g.,
the integrated ubiquitin-like domain of BAG-1 and polyubiquitin chains attached
to BAG-1, Hsp70, and the bound protein substrate. Such a redundancy of sorting
information might be considered unnecessary. Intriguingly, however, several sub-
units of the regulatory 19S particle of the proteasome are currently thought to act
as receptors for polyubiquitin chains and integrated ubiquitin-like domains, in-
cluding Rpnl, Rpn2, Rpt5, and Rpnl0. The Rpnl0 subunit was initially identi-
fied as a polyubiquitin chain receptor and was later shown to also bind integrated
ubiquitin-like domains presented by UDPs [144-146]. Rpnl0 possesses two dis-
tinct ubiquitin-binding domains, of which only one is used for UDP recognition
[145-147]. However, conflicting data exist as to whether the subunit acts as a ubiq-
uitin receptor in the context of the assembled 19S complex [148, 149]. More re-
cently, Rpnl was identified as a receptor for integrated ubiquitin-like domains
[149], and a similar function may be fulfilled by the Rpnl-related subunit Rpn2
[150]. Polyubiquitin chains seem to be recognized by the Rpt5 subunit, one of the
AAA ATPases present in the ring-like base of the regulatory 19S complex [151]. Its
receptor function was revealed when tetraubiquitin was cross-linked to intact pro-
teasomes [148]. Multiple docking sites for ubiquitin-like domains and polyubiqui-
tin chains are apparently displayed by the regulatory particle of the proteasome.
This may provide a structural basis for the recognition of multiple sorting signals
exposed by the CHIP-chaperone complex (Figure 1.8). A similar mechanism in-
volving multiple-site binding at the proteasome was recently proposed based on
the observation that two unrelated yeast ubiquitin ligases associate with specific
subunits of the 19S regulatory complex [152]. In these cases substrate delivery in-
volves interactions of proteasomal subunits with the substrate-bound ubiquitin
ligase, with the polyubiquitin chain attached to the substrate, and with the sub-
strate itself. Multiple-site binding may function to slow down dissociation of the
substrate from the proteasome and to facilitate transfer into the central proteolytic
chamber through ATP-dependent movements of the subunits of the 19S particle.

Human cells contain several BAG-1-related proteins: BAG-2, BAG-3 (CAIR-1;
Bis), BAG-4 (SODD), BAG-5, and BAG-6 (Scythe, BAT3) [153] (Figure 1.2). It ap-
pears that BAG proteins act as nucleotide-exchange factors to induce substrate
unloading from Hsp70 on diverse protein folding, assembly, and degradation path-
ways. Notably, BAG-6 is another likely candidate for a co-chaperone that regulates
protein degradation via the ubiquitin—proteasome pathway. Similar to BAG-1,
BAG-6 contains a ubiquitin-like domain that is possibly used for proteasome bind-
ing [154]. However, experimental data verifying a role of BAG-6 in protein degra-
dation remain elusive so far.

The cooperation of diverse co-chaperones not only may allow promotion of
chaperone-associated degradation but also may provide the means to confine the
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BAG-1 is displaced by binding of HspBP1 to pathways. At the same time, Hop displaces
the ATPase domain of Hsp70, the ubiquitin CHIP from the carboxyl terminus of Hsp70 and
ligase activity of CHIP is attenuated in the recruits Hsp90 to the chaperone complex.
formed complex, enabling CHIP to modulate

destructive activity of CHIP. The Hsp70-binding protein 1 (HspBP1) seems to ful-
fill such a regulatory function [155]. HspBP1 was initially identified in a screen for
proteins that associate with the ATPase domain of Hsp70 and was shown to stim-
ulate nucleotide release from the chaperone [156, 157]. Notably, association of
HspBP1 with the ATPase domain blocks binding of BAG-1 to Hsp70 and at the
same time promotes an interaction of CHIP with Hsp70’s carboxyl terminus. In
the formed ternary HspBP1-Hsp70-CHIP complex, the ubiquitin ligase activity
of CHIP is attenuated and Hsp70 as well as a chaperone substrate are no longer
efficiently ubiquitylated [155]. By interfering with CHIP-mediated ubiquitylation,
HspBP1 stimulates the maturation of CFTR and promotes the sorting of the mem-
brane protein to the cell surface. HspBP1 apparently functions as an antagonist of
the CHIP ubiquitin ligase to regulate Hsp70-assisted folding and degradation path-
ways (Figure 1.8).

The HspBP1-mediated inhibition of the ubiquitin ligase activity may enable
CHIP to modulate the Hsp70 ATPase cycle without inducing degradation. In fact,
degradation-independent functions of CHIP have recently emerged [130, 133, 158,
159]. CHIP was shown to regulate the chaperone-assisted folding and sorting of
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the androgen receptor and of endothelial nitric oxide synthase without inducing
degradation [158, 159]. Moreover, CHIP fulfills an essential role in the chaperone-
mediated regulation of the heat shock transcription factor, independent of its
degradation-inducing activity [130]. It remains to be seen, however, whether
HspBP1 cooperates with CHIP in these instances, as HspBP1 displayed a certain
specificity with regard to chaperone substrates. The co-chaperone interfered with
the degradation of CFTR, but did not influence the CHIP-mediated turnover of
the glucocorticoid hormone receptor. Such a client specificity may arise in part
from the fact that HspBP1 inhibits the ubiquitin ligase activity of CHIP in a com-
plex with Hsc70, but leaves Hsp90-associated ubiquitylation unaffected [155]. In
addition, direct interactions between HspBP1 and a subset of chaperone substrates
may contribute to substrate selection. In any case, the cooperation of CHIP with
other co-chaperones apparently provides a means to regulate chaperone-assisted
protein degradation.

It is likely that there are multiple degradation pathways for misfolded proteins in
the eukaryotic cytoplasm. Although CHIP participates in the degradation of chap-
erone substrates induced by applying Hsp90 inhibitors to cell cultures (see above),
drug-induced degradation is not abrogated in cells that lack the CHIP ubiquitin
ligase [120]. Furthermore, CHIP cooperates with Hsp70 in the ER-associated deg-
radation of CFTR, but the Hsp70-assisted degradation of apoB at the cytoplasmic
face of the ER membrane does not involve CHIP [97]. Taken together, these data
strongly argue for the existence of other, yet to be identified, ubiquitin ligases that
are able to target chaperone substrates to the proteasome. A likely candidate in this
regard is Parkin, a RING finger ubiquitin ligase, whose activity is impaired in juve-
nile forms of Parkinson’s disease [17]. Hsp70 and CHIP were found to be associ-
ated with Parkin in neuronal cells, suggesting an involvement of Parkin in the pro-
teasomal degradation of chaperone substrates [160]. Interestingly, o-synuclein, the
main component of protein deposits observed in dopaminergic neurons of Parkin-
son patients, and synphilin, a protein that binds a-synuclein and induces deposit
formation, both associate with yet other ubiquitin ligases: Siah-1 and Siah-2 [161,
162]. In the case of Siah-1, a link to cytoplasmic chaperone systems is suggested by
the finding that the Hsp70 co-chaperone BAG-1 is a binding partner of the ubiqui-
tin ligase and suppresses some of the cellular activities of Siah-1 [163]. Taken to-
gether, it is tempting to speculate about a role of Parkin and Siah on chaperone-
assisted degradation pathways; yet, this remains to be explored in detail.

1.8
Further Considerations

Although the appreciation of interplay between molecular chaperones and
ubiquitin-dependent proteolysis has greatly expanded over the past decade, a num-
Dber of critical issues remain to be resolved. It is not entirely clear what determines
whether a misfolded protein will undergo repeated attempts at misfolding versus
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diversion to the ubiquitin—proteasome pathway. Recruitment of CHIP into chaper-
one complexes appears to be a critical component of this reaction, which therefore
begs the question as to what regulates this step. Since this step in protein quality
control must be both rapidly activated and easily reversible, it is likely that regula-
tion occurs at the post-translational level rather than through changes in steady-
state protein levels. The precise sorting mechanisms for ubiquitinated proteins
are also unclear. BAG-1 is a player, and it is also likely that overlap exists to some
extent for sorting of the cytoplasmic and endoplasmic reticulum quality-control
pathways. Nevertheless, much remains to be learned about these steps.

From a broader perspective, it is now also imperative to understand the
pathophysiological roles of cytoplasmic quality-control mechanisms regulated by
chaperone-proteasome interactions. As mentioned previously, there is a strong as-
sociation between chaperone dysfunction and accumulations of misfolded proteins
that characterizes genetic neurodegenerative diseases. An imbalance between pro-
tein folding and degradation may also contribute to some features of senescence
and organismal aging. The link between chaperone systems and aging is based
on increasing appreciation that modified, misfolded, and aggregated proteins accu-
mulate with age [164]. Dysregulation of chaperone expression has been observed
with aging and is therefore implicated in aging-related changes [165]; in general,
it is accepted that induction of the major chaperones is impaired with aging, a
fact confirmed by recent gene-profiling experiments in vivo [166], although given
the diversity of chaperones it is probably not surprising that age-related changes
in expression are fairly complicated [167]. The mechanism underlying this dys-
regulation is not entirely clear, but seems to be due in part to impaired activation
of the stress-responsive transcription factor HSF1. Overexpression of heat shock
proteins in yeast, C. elegans, and Drosophila leads to increased longevity [168-170].
More recently, conclusive genetic evidence from C. elegans indicates that mutation
of HSF1 causes a dramatic and significant reduction in lifespan [170, 171], further
implicating the accumulation of misfolded proteins in age-related phenotypes.

1.9
Conclusions

The associations between molecular chaperones and the ubiquitin—proteasome
system represent a critical step in the response to proteotoxic damage. Whether at-
tempts should be made to refold damaged proteins (thus conserving cellular re-
sources) or degrade them instead (to prevent the possibility of protein aggregation
and concomitant toxicity) requires a consideration of cellular economy. Defects in
the quality-control mechanisms may have enormous consequences even if only
slight imbalances occur between protein folding and degradation, as these im-
balances can cause accumulated toxicity over time. The relationship between
chaperone-proteasome interactions and pathophysiological events is only now be-
ing unraveled. Modulation of this system may provide a unique therapeutic target
for degenerative diseases and pathologies associated with aging.
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