
1

1
Electronic Structure andMagnetic Properties of Lanthanide
Molecular Complexes
Lorenzo Sorace and Dante Gatteschi

1.1
Introduction

The first studies on the magnetic and electronic properties of compounds
containing lanthanide ions date back to the beginning of the twentieth century
[1]. However, detailed investigation on these systems only began in the 50s2
and helped set up an appropriate theoretical framework for the analysis of their
properties [2–5]. Most of the studies reported in the early literature, which
involved optical spectroscopy, magnetism, or electron paramagnetic resonance
(EPR), were however concerned with inorganic systems in which the lanthanide
occupied high symmetry sites, and paramagnetic ions were often doped in
diamagnetic host lattices [6, 7].
On the other hand, the number of molecular complexes (which usually show

a low point symmetry at the lanthanide site) whose magnetic properties had
been well characterized remained quite small even in 1993, when Kahn [8]
wrote his landmark book entitled Molecular Magnetism. The field of lanthanide
molecular magnetism has indeed really boomed only in the last 15 years, when
the availability of powerful theoretical and experimental techniques allowed
deep insight into these systems. As a result, some more specific applications of
the theory that was developed for inorganic systems to the molecular magnets
case were needed. The purpose of this chapter is to describe the fundamental
factors affecting the electronic structure of lanthanide complexes, with some
specific focus on the symmetry, and the way this is related to their static mag-
netic properties (dynamic magnetic properties being the focus of a subsequent
chapter).
Lanthanide atoms in the electronic ground state are characterized by the pro-

gressive filling of 4f shells, with the general configuration [Xe]4fn6s2 (with the
exception of La, Ce, Gd, Lu, for which the ground configuration is [Xe]4fn5d16s2).
For this reason, the most stable lanthanide ions are the tripositive ones, obtained
by loss of the 5d and 6s electrons (notable exceptions are Eu2+, Ce4+ and Tb4+,
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2 1 Electronic Structure and Magnetic Properties of Lanthanide Molecular Complexes

which have stable electronic configurations). In the following, we discuss the para-
magnetic properties of rare earth compounds arising from the unpaired 4f elec-
trons: since these are effectively shielded by the completely filled 5s and 5p orbitals,
their behaviour is much less affected by the coordination environment of the ion
compared to the 3d transition metal series. Consequently, optical spectra con-
sist of very sharp, weak lines due to formally forbidden 4f–4f transitions, while
the magnetic properties can, to a first approximation, be expressed as those of a
free Ln3+ ion. This means that rare earth ions present an essentially unquenched
orbital momentum, since the core-like character of 4f orbitals (compared, e.g.
to 3d ones) prevents the crystal field (CF) from quenching the orbital momen-
tum.1) For this reason, in the early days of magnetochemistry, lanthanides were
studied as a model of free ions, much more accessible than the paramagnetic
gases [9].
The first attempts to rationalize the magnetic properties of rare earth com-

pounds date back to Hund [10], who analysed the magnetic moment observed at
room temperature in the framework of the ‘old’ quantum theory, finding a remark-
able agreementwith predictions, except for Eu3+ and Sm3+ compounds.The inclu-
sion by Laporte [11] of the contribution of excitedmultiplets for these ions did not
provide the correct estimate of the magnetic properties at room temperature, and
it was not until Van Vleck [12] introduced second-order effects that agreement
could be obtained also for these two ions.
The effect of the coordinating ligands over the magnetic properties of

lanthanides becomes important in lowering the temperature, as the ground
multiplets are split by an amount comparable to thermal energy: as a conse-
quence, depopulation of the sublevels occurs, and deviation from the Curie law
is observed. This, in turn, complicates the interpretation of magnetic properties
of systems in which the lanthanide(III) ion interacts with another paramagnetic
species. Indeed, effects due to the magnetic exchange are very small – because
the unpaired electrons are in the well-shielded f orbitals – and may be hidden by
ligand field effects at low temperature. It is, then, of paramount importance to
appropriately determine the split components of the lowest lying multiplet and
to understand the factors on which this depends.
In the following sections, we start by discussing in some detail the electronic

structure of the free ion, following the classic treatment of Wybourne [3], and
we successively analyse the effect of the ligand field. The relation between the
Stevens’ formalism [2], to which the molecular magnetism community is more
used, and Wybourne’s notation is presented. Indeed, the latter takes more eas-
ily into account the effect of the excited multiplets, and its use might facilitate
interchange and data comparison with results from luminescence and absorption
spectroscopy. The resulting magnetic properties and EPR spectra are discussed,

1) Exceptions to this behaviour are Eu2+ and Gd3+, which – as a consequence of their 4f7 electronic
configuration – present an orbitally non-degenerate ground state.
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with some examples frommore recent literature. Finally, we briefly discuss theway
exchange coupling effects are treated inmolecular systems containing anisotropic
lanthanides.

1.2
Free Ion Electronic Structure

We start our description of the electronic structure of complexes of lanthanides by
the analysis of the free ion energy structure. The relevant Hamiltonian is written
as

Ĥ =
n∑

k=1

{
1
2m

p2
k −

Ze2
rk

}
+

n∑
k=1

𝜁(rk)lk ⋅ sk +
n∑

k<𝜆

e2
rk𝜆

(1.1)

In Equation 1.1, the first term is the sum of hydrogen-like terms for single elec-
trons and the second one is the sum of the single-electron spin–orbit interaction,
while the third term contains the interelectronic repulsion. By applying the cen-
tral field approximation [13], each single electron can be considered as moving in
an average, spherically symmetric field due to the nucleus and to the remaining
electrons:

Ĥ0 =
n∑

k=1

{ 1
2m

p2
k + U

(
rk
)}

(1.2)

This allows separation of the corresponding Schrödinger equation in n indepen-
dent equations, one for each electron, so that the solution of Equation 1.2 will be
a product of functions of the type:

Ψ(k) = r−1Rnl (r)Y m
l (𝜃, 𝜑) (1.3)

In Equation 1.3, the radial function Rnl (r) is defined by the quantum numbers n
and l and the spherical harmonics Y m

l depend on the quantum numbers l and
ml. When the spin of the electron is taken into account, the normalized antisym-
metric function is written as a Slater determinant.The corresponding eigenvalues
depend only on n and l of each single electron, which determine the electronic
configuration of the system.
The difference Ĥ1 between the Hamiltonians (1.1) and (1.2):

Ĥ1 =
n∑

k=1

{
−Ze2

rk
− U

(
rk
)}

+
n∑

k=1
𝜁(rk)lk ⋅ sk+

n∑
k<𝜆

e2
rk𝜆

(1.4)

can now be treated as a perturbation, the first term of which only causes a global
shift of the energies without affecting the relative differences. Both the second and
the third terms split each configuration into separate multiplets, since their effect
is different for different states of the same configuration.
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Within this framework it is assumed that the energy differences between each
configuration aremuch higher than the splitting induced through Equation 1.4, so
that each configuration is treated separately.The calculation of thematrix element
of Ĥ1 is obtained after defining a set of basis states in a specified angular momenta
coupling scheme: this corresponds to assigning a different relative importance
to the second and third terms of Equation 1.4, that is, respectively the spin–orbit
and the interelectronic repulsion interactions. If the former dominates over the
latter, the j–j coupling scheme is applied, in which the spin si and the angular
momenta li of each electron are first coupled to provide a global momentum ji.
This is done following the rules of angular momentum addition, so that |li − si| <
ji < li + si. After this, the ji values of each electron are coupled to obtain a global J .
The former scheme is usually applied to heavy atoms, while for rare-earth ions

the LS coupling scheme (also known as Russell–Saunders coupling) is normally
used. In this approach, interelectronic repulsion is considered to be dominant
over spin–orbit coupling. As a consequence, the spins of all the electrons are
first coupled together to obtain a global spin S =

∑
isi, and the same is done with

angular momenta L =
∑

ili. The corresponding matrix elements of the interelec-
tronic repulsion Hamiltonian are then diagonal with respect to S, L, MS, ML and
are independent of the latter, providing a [(2S + 1)(2L + 1)]-fold degenerate set
of states. This set of states is called a term, and is characterized by n, l, S and L
quantum numbers (where the first two values are fixed to 4 and 3 for 4f electrons),
and the term is indicated by a 2S+1L symbol, with S, P, D, F ,… etc. corresponding
to L = 0, 1, 2, 3,… etc. However, terms characterized by the same |S, L,MS,ML⟩
may appear more than once in a given configuration, so that this set of quantum
numbers is not always sufficient to characterize the term unambiguously. For this
purpose, Racah introduced the irreducible representations of the groups R7 and
G2, indicated by W and U , respectively [14].
The interelectronic repulsion Hamiltonian also commutes with J = S + L, so

that its matrices are diagonal also with respect to J and MJ , the corresponding
eigenvalues being independent of MJ . Since states of |J ,MJ⟩ are linear combina-
tions of |S, L,MS,ML⟩ states with the same S, L in the scheme |S, L, J⟩ the energy
is also independent of J . There then exist two sets of functions depending on the
quantum numbers (|S, L,MS,ML⟩ and |S, L, J ,MJ⟩) in which the interelectronic
repulsion is diagonal, whose energies depend only on S and L.
The labelling of terms as |S, L, J ,MJ⟩ is preferable when one takes into account

the effect of spin–orbit coupling, since J and MJ remain good quantum numbers
even after this perturbation is accounted for. In detail, the effect of spin–orbit
coupling over a many-electron atomic term is evaluated by writing the spin–orbit
operator in terms of the total angular and spin momentum, L and S:

Ĥs.−o. =
n∑

k=1
𝜁(rk)lk ⋅ sk = 𝜆L ⋅ S (1.5)
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In Equation 1.5, 𝜆 is the spin–orbit coupling within a given Russell–Saunders
multiplet, which is related to the spin–orbit coupling constant of the ion, 𝜁 , by
the relation 𝜆 = ±𝜁∕2S, the+ sign applying for n < 7 and the− sign for n > 7 [15].
The effect of spin–orbit coupling is to split the terms in multiplets with same L,
S and different values of J , with energies E(2S+1LJ ) = (𝜆∕2)[J(J + 1) − L(L + 1) −
S(S + 1)], so that the ground state is J = L − S for n < 7 and J = L + S for n > 7.
The important point is that the ground state corresponds to different orienta-
tion of the spins with respect to the angular orbital momentum: antiparallel for
n < 7 and parallel for n > 7. As we will see, this has paramount importance for
the magnetic properties throughout the lanthanide series. The remaining 2J + 1
(Figure 1.1) degeneracy can only be removed by a further perturbation: either by
a magnetic field, or by the ligand field, the effect of which is considered in the
following sections.

Electronic
configuration

Interelectronic
repulsion

Spin-orbit
coupling

Magnetic
field

4fn−1 5d1

4fn

≈104 cm−1

≈103 cm−1

≈1 cm−1
2S+1L

2S+1LJ

MJ

Figure 1.1 Effect of interelectronic repulsion, spin–orbit coupling and magnetic field on
the energy levels arising from a given 4fn configuration for a free-ion Ln3+ . The magnetic
field effect is estimated assuming a 1 T field.
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1.2.1
Free Ion Magnetism

By applying a magnetic field, the degeneracy of the (2J + 1) levels in each 2S+1LJ
multiplet is removed, providing a series of levels identified by their MJ value, with
−J ≤ MJ ≤ +J .The corresponding field-dependent energy can be written in terms
of a Landé splitting factor, gJ , depending on J , L and S. The value of this factor as
a function of J , L and S can be obtained by considering that the corresponding
magnetic moment will be

𝜇J = 𝜇BgJ J = 𝜇B(gLL + gSS) (1.6)

One can thus write the following equality for the diagonal matrix elements of
𝜇J ⋅ J : ⟨

J ,MJ
|||𝜇J ⋅ J|J ,MJ⟩ = 𝜇BgJ⟨J ,MJ |J ⋅ J|J ,MJ⟩ (1.7)

The second term of Equation 1.7 may be rewritten, making use of Equation 1.6, as

𝜇B
(

gLL ⋅ J + gSS ⋅ J
)
= 𝜇B

[
gL

(
L2 + 1

2
(

J2 − L2 − S2))
+ gS

(
S2 + 1

2
(

J2 − L2 − S2))] (1.8)

which finally yields

gJ =
gL(L(L + 1) + J(J + 1) − S(S + 1)) + gS(S(S + 1) + J(J + 1) − L(L + 1))

2J(J + 1)
(1.9)

Since gL = 1 and assuming for the sake of simplicity gS = 2, one obtains

gJ =
3
2
+ S(S + 1) − L(L + 1)

2J(J + 1)
(1.10)

For J = 0 there is obviously no first-order Zeeman splitting: however, application
of a magnetic field can result in second-order splitting. As such, it is necessary to
evaluate the corresponding gJ factor, which is g0 = 2 + L(2 + S).
The magnetic susceptibility of the free ion will follow the Curie law:

𝜒M =
NAg2J 𝜇

2
B

3kT
J(J + 1) (1.11)

where 𝜒M is the molar magnetic susceptibility and NA is the Avogadro number.
This situation is indeed experimentally observed for Ln3+ complexes at room
temperature, where the measured magnetic moment coincides with what is
expected for the free-ion Curie behaviour, provided that the ground J multiplet
is well isolated from the excited states (see Table 1.1). This is not the case both
for Eu3+ – whose first excited state 7F1 is lying only at ca 350 cm−1 above the
non-magnetic 7F0 ground state – and Sm3+, for which the first excited state 6H7∕2
is lying about 700cm−1 above the ground 6H5∕2 state [10].



1.3 Electronic Structure of Lanthanide Ions in a Ligand Field 7

Table 1.1 Relevant magnetic information for free Ln3+ ions.

Ion Groundmultiplet S L J g 𝝌T value calculated 𝝌T value experimental

Ce3+ 2F5∕2 1/2 3 5/2 6/7 0.80 0.82
Pr3+ 3H4 1 5 4 4/5 1.60 1.54
Nd3+ 4I9∕2 3/2 6 9/2 8/11 1.64 1.57
Pm3+ 5I4 2 6 4 3/5 0.90 Not measured
Sm3+ 6H5∕2 5/2 5 5/2 2/7 0.09 (0.31) 0.27
Eu3+ 7F0 3 3 0 0 0 (1.5) 1.40
Gd3+ 8S7∕2 7/2 0 7/2 2 7.87 8.10
Tb3+ 7F6 3 3 6 3/2 11.82 11.33
Dy3+ 6H15∕2 5/2 5 15/2 4/3 14.17 13.91
Ho3+ 5I8 2 6 8 5/4 14.07 13.52
Er3+ 4I15∕2 3/2 6 15/2 6/5 11.48 11.28
Tm3+ 3H6 1 5 6 7/6 7.15 6.51
Yb3+ 2F7∕2 1/2 3 7/2 8/7 2.57 2.49

For Sm3+ and Eu3+ the χT values (given in emu kelvin per mole) obtained by including the Van
Vleck contribution are reported in brackets. The experimental values refer to the Ln2(SO4)3 ⋅ 8H2O
series, obtained as an average of the different measurements reported by Van Vleck [9].

For the latter two ions, the presence of low-lying excited states makes the inclu-
sion of both the first-order contribution of the excited states and the second-order
effects due to coupling of the ground J state with the excited states crucial in a
correct estimation of the room-temperature values of 𝜒T . Indeed, second-order
contribution in Van Vleck [9] expansion of the susceptibility is inversely propor-
tional to the energy difference between the ground and the excited states:

𝜒VV = −2N
J∑

MJ=−J

−M′
J∑

J ′=−M′
J

⟨J ,MJ |𝜇B(L + gSS)|J ′,M′
J⟩

EJ ,MJ
− EJ ′ ,M′

J

=
2N𝜇2

B(gJ − 1)(gJ − 2)
3𝜆

(1.12)

1.3
Electronic Structure of Lanthanide Ions in a Ligand Field

When a lanthanide ion is placed in a ligand environment with symmetry lower
than spherical, the energies of its partly filled 4f orbitals are split by the electro-
static field of the ligand. The result is a splitting of the 2J + 1 degeneracy of the
free ion states (see Figure 1.2).
This is an immediate consequence of the lowering of the symmetry as, even in

the regular octahedral geometry, group theory tells us that the highest dimension
of the irreducible representation is three. This is the basis of Crystal FieldTheory,
whose deeply symmetry-based formalism was developed by Bethe in 1929 [16].
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Electronic
configuration

Interelectronic
repulsion

Spin-orbit
coupling Ligand field Magnetic field

4fn−1 5d1

4fn

≈104 cm−1

≈103 cm−1

≈102 cm−1

≈1 cm−1

2S+1L
2S+1LJ

Figure 1.2 Energetic structure of a Kramers lanthanide ion in a ligand field evidencing the
effect of progressively weaker perturbation. The magnetic field effect is estimated assuming
a 1 T field.

Within this framework, the effect of the ligand can be described by an operator
UCF, which is the sum of one-electron operators for all the 4fn electrons of the
lanthanide, which accounts for the potential created by a charge distribution 𝜌(R)
at a distance ri:

UCF = −e
nel.∑
j=1

U j = − e
nel.∑
j=1

∫
𝜌(R)|R − ri|dv (1.13)

The problem of evaluating the effect of the perturbation created by the lig-
ands thus reduces to the solution of the secular determinant with matrix
elements of the type ⟨𝜑l|UCF|𝜑k⟩, where |𝜑l⟩ and |𝜑k⟩ identify the eigen-
functions of the free ion. Since |𝜑l⟩ and |𝜑k⟩ are spherically symmetric, and
can be expressed in terms of spherical harmonics, the potential is expanded
in terms of spherical harmonics to fully exploit the symmetry of the system
in evaluating these matrix elements. In detail, two different formalisms have
been developed in the past to deal with the calculation of matrix elements
of Equation 1.13 [2, 3]. Since UCF is the sum of one-electron operators,
while |𝜑l⟩ and |𝜑k⟩ are many-electron functions, both the formalisms require
decomposition of free ion terms in linear combinations of monoelectronic
functions.
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1.3.1
Stevens’ Formalism

Stevens’ [2] first noted that the electrostatic potential fulfilling the symme-
try requirements of the lanthanide site can be conveniently expressed as the
product of a radial function and of Legendre polynomials, and thus trans-
forms according to an irreducible representation of the rotation group. It is
then possible to find a suitable constant to express such matrix elements by
using an operator equivalent approach, in which the potential is expanded
in a sum of equivalent angular momentum operators. In this approach, the
matrix elements can be easily computed if mixing between different J multiplets
is neglected. The resulting expression for Equation 1.13 using the Stevens’
formalism is

UCF = Ĥ
Stev
CF =

∑
k=2,4,6

𝜌k
k∑

q=−k
Aq

k⟨rk⟩Ôq
k (1.14)

In Equation 1.14, Aq
k⟨rk⟩ is a parameter, Ô

q
k is the operator equivalent of the

crystal field potential and 𝜌k is a number which is different for the different fn

configurations and for the different k values.This accounts for the proportionality
between the electrostatic potential, expressed as a spherical harmonic of order k,
and the corresponding operator equivalent for that configuration [2, 6]. We note
here that the number of q terms with q ≠ 0 to be included is limited by the point
group of the rare-earth site, since the CF Hamiltonian has to be invariant under
all symmetry operations of the point group. The non-vanishing CF parameters
in sites with commonly occurring point symmetries are reported in Table 1.2
[17, 18].
It is worth noting here that negative q values correspond to complex opera-

tors, while Stevens’ parameters are always real [19]. The forms of the operator
equivalents are reported in Table 1.3 [20], and the corresponding matrix ele-
ments are found tabulated in books by Abragam and Bleaney and by Altshuler
[6, 21].

1.3.2
Wybourne’s Formalism

Stevens’ formalism turned out to be very powerful, andworks easily as long as only
the ground 2S+1LJ multiplet of the lanthanide ion is considered.As such, it has been
widely used in studies on EPR properties of lanthanide-based inorganic systems
[6, 22], while it is not well suited for optical spectroscopy. Indeed, when starting
to include excited multiplets the Stevens’ formalism becomes much too involved.
This is the reasonwhy amore general formalism, developed byWybourne [3], is of
widespread use in optical studies – naturally dealingwith excitedmultiplets – and
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Table 1.2 Non-vanishing crystal field terms (Stevens’ formalism) for common lanthanide
point symmetries.

k |q| D3h C6 D2d S4 D3d C3 D2h C2h

D6h C3h D4h C4h C3v S6 C2v Cs

C6v C6h C4v

2 2 + ±
4 2 + ±
4 3 + ±
4 4 + ± + ±
6 2 + ±
6 3 + ±
6 4 + ± + ±
6 6 + ± + ± + ±

When only q > 0 are non-vanishing, the entry is indicated by ‘+’, while ± indicates that both q > 0
and q < 0 terms are non-zero.

Table 1.3 Stevens’ operators expressed in terms of J+ , J− , Jz polynomials.

k q 𝑶̂
q
k

2 0 3̂J2z − J(J + 1)

2 ±1 {̂Jz ,(̂J+± Ĵ−)}+
2c±

2 ±2
Ĵ2+± Ĵ2−

c±
4 0 35̂J4z − [30J(J + 1) − 25] Ĵ2z + 3J2(J + 1)2 − 6J(J + 1)

4 ±1 {[7̂J3z −3J(J+1)̂Jz−Ĵz],(̂J+± Ĵ−)}+
2c±

4 ±2 {[7̂J2z −J(J+1)−5)],(̂J+± Ĵ−)}+
2c±

4 ±3 {̂Jz ,(̂J+± Ĵ−)3}+
2c±

4 ±4 Ĵ4+± Ĵ4−
c±

6 0 231̂J6z − [315J(J + 1) − 735] Ĵ4z + [105J2(J + 1)2 − 525J(J + 1) + 294] Ĵ2z −
5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1)

6 ±1
{33̂J5z −[30J(J+1)−15]̂J3z +[5J2(J+1)2−10J(J+1)+12]̂Jz ,(̂J+± Ĵ− )}+

2c±

6 ±2 {33̂J4z −[18J(J+1)+123] Ĵ2z +J2(J+1)2+10J(J+1)+102,(̂J2+± Ĵ2−)}+
2c±

6 ±3 {11̂J2z −J(J+1)+38,(̂J4+± Ĵ4−)}+
2c±

6 ±4 {11̂J2z −J(J+1)−38,(̂J4+± Ĵ4−)}+
2c±

6 ±5 {̂Jz ,(̂J+± Ĵ−)5}+
2c±

6 ±6 Ĵ6+± Ĵ6−
c±

{A,B}+ is a shorthand notation for the product (AB + BA), c+ = 2, c− = 2i.
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is becoming increasingly applied also to molecular magnetism studies [23–25].
We thus find it appropriate to discuss it in this section.
In this approach, the ligand field potential is expressed as

UCF = Ĥ
Wyb
CF

=
∞∑

k=0

[
B0
0C0

0 (i)+
k∑

q=1
Bk

q(Ck
−q(i)+(−1)qCk

q (i))+iB′k
q(Ck

−q(i) − (−1)qCk
q (i))

]
(1.15)

In Equation 1.15, Bk
q and B′k

q are the crystal field coefficients, which are all real,
and Ck

q (i) are tensor operators, related to the spherical harmonics Y k
q (i) by

Ck
q (i) =

√
4𝜋

2k + 1
Y k

q (i) (1.16)

In much the same way as Stevens’ operators, the summation in Equation 1.15 is
limited to well-defined values: for f-electrons, the restriction k ≤ 7 holds, while q
is limited to those values consistent with the point symmetry of the site. Finally,
the even part (k = 0, 2, 4, 6) is responsible for the CF splitting, while the odd part
(k = 1, 3, 5, 7) is responsible for the intensity of induced electric dipole transitions
in optical spectroscopy [5b, 26].
Crystal field energy levels can be found by diagonalizing the corresponding

matrix, which is made up by elements of the type:

⟨lnτSLJMJ |ĤWyb
CF |ln′𝜏′S′L′J ′M′

J⟩ (1.17)

For low enough symmetries, both Bk
q and B′k

q coefficients will be present in
Equation 1.15, so that Equation 1.17 will be, in those cases, complex quantities.
We finally note that the coefficients are transformed into CF parameters by
multiplying them by the radial parts of the wave functions, represented by Rnl(r),
on which the tensor operators do not act.
Calculation of the angular part of the matrix elements thus remains, which

can be performed exactly using tensor algebra techniques based on group theory.
Since the calculation of the matrix elements is not straightforward, we provide
here some details on it for the interested reader. The treatment follows the proce-
dure described in Ref. [17].
The matrix element

⟨lnτSLJMJ |∑
i

Ck
q (i)|ln′𝜏′S′L′J ′M′

J⟩ (1.18)

can be rewritten in terms of a unit tensor Uk
q as

⟨lnτSLJMJ |Uk
q |ln′𝜏′S′L′J ′M′

J⟩⟨l‖Ck‖l′⟩ (1.19)

The second term of the product is a reduced matrix element which contains the
l-state dependence of the f electrons: since only 4fn configuration, for which l = 3,
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is considered, it can be rewritten making use of Wigner–Eckart theorem and 3-j
symbols for the coupling of angular momenta as

⟨l‖Ck‖l⟩ = (−1)l[(2l + 1)(2l′ + 1)]
1
2

(
l k l′
0 0 0

)
= −7

(
3 k 0
0 0 0

)
(1.20)

Using a similar approach, the first member of the product (Equation 1.19) may be
rewritten as

⟨lnτSLJMJ |Uq
k |ln′𝜏′SL′J ′M′

J⟩ = (−1)J−MJ

(
J k J ′

−MJ q M′
J

)⟨lnτSLJ‖Uk‖ln′𝜏′SL′J ′⟩
(1.21)

where the last term is a reduced matrix element, and is independent of MJ , q and
MJ . Equation 1.21 can be further simplified by making use of Wigner 6-j symbols
and a doubly reduced matrix element, obtaining:

⟨lnτSLJMJ |Uq
k |ln′𝜏′SL′J ′M′

J⟩ = (−1)S+L′+J+k[(2J + 1)(2J ′ + 1)]
1
2{

J J ′ k
L L S

}⟨ln𝜏SL‖Uk‖ln′𝜏′SL′⟩ (1.22)

The last term on the right in Equation 1.22 represents a doubly reduced matrix
element, which can be calculated by recursive formula in terms of the coefficients
of fractional parentage [4, 14], tabulated in the work of Nielson and Koster [27].
Finally, Equation 1.18 is rewritten as⟨lnτSLJMJ |∑

i
Ck

q (i)|ln′𝜏′S′L′J ′M′
J⟩

= (−1)S+L′+2J−MJ+k+17[(2J + 1)(2J ′ + 1)]
1
2

(
3 k 3
0 0 0

)
×
(

J k J ′
−MJ q M′

J

){
J J ′ k
L L S

}⟨ln𝜏SL‖Uk‖ln′𝜏′SL′⟩ (1.23)

Inspection of Equation 1.23 and consideration of the properties of 3-j and 6-j sym-
bols confirm that only even k-values contribute to crystal field splitting. Further,
it indicates that mixing between levels belonging to different J multiplets can only
occur if terms with k ≤ J + J ′ and −MJ + q + M′

J = 0 are allowed by the site sym-
metry of the lanthanide, in much the same way as discussed above for the Stevens’
formalism.
The advantage in using the Wybourne’s approach in molecular magnetism

is that it may provide a direct comparison with data obtained by optical spec-
troscopy, which is themost accurate technique for determination of the electronic
structure of lanthanide ions. The application of this technique to molecular sys-
tems is just beginning, and while usually only the ground J multiplet is considered
in the interpretation of the magnetic properties, the coupling of excited states can
provide important effects on the wavefunction composition, thus affecting both
static and dynamic magnetic properties of lanthanide-containing systems. In this
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respect, complementing the results of magnetic and EPR spectroscopy with those
obtained by luminescence spectroscopy can provide detailed information on the
energy pattern of 4f-containing systems. This approach is still seldom applied
to the study of molecular magnets, but it has been shown in past few years to
provide a much improved understanding of the relation between the electronic
structure and the peculiar magnetic behaviour of these systems [28–30].

1.3.3
Standardization

When treating CF parameters in any of the two formalisms, non-specialists often
overlook that the coefficients of the expansion of the CF potential (i.e. the val-
ues of CF parameters) depend on the choice of the coordinate system, so that
conventions for assigning the correct reference framework are required.The con-
ventional choice in which parameters are expressed requires the z-direction to be
the principal symmetry axis, while the y-axis is chosen to coincide with a twofold
symmetry axis (if present). Finally, the x-axis is perpendicular to both y- and z-
axes, in such a way that the three axes form a right-handed coordinate system
[31]. For symmetry in which no binary axis perpendicular to principal symme-
try axis exists (e.g. C3h, C4h), y is usually chosen so as to set one of the B′k

q (in
Wybourne’s approach) or Aq

k with q < 0 (in Stevens’ approach) to zero, thereby
reducing the number of terms providing a non-zero imaginary contribution to
the matrix elements of the ligand field Hamiltonian. Finally, for even lower sym-
metry (orthorhombic or monoclinic), the correct choice is such that the ratio of
the Stevens’ parameter is restrained to 𝜆′ = A0

2∕A2
2 ∈ (0,±1) and equivalently 𝜅 =

B0
2∕B2

2 ∈ (0,±1∕
√
6) in theWybourne’s notation [19, 32]. If literature-reported or

experimentally determined parameters do not conform to this convention, rota-
tion of the reference system should be applied, resulting in a standardized form of
CF parameters [33].This is of fundamental importance if different sets of parame-
ters are to be compared to derivemagnetostructural correlations and the direction
of the quantization axis, and thus of the principal anisotropy axis, appropriately
defined.

1.3.4
Calculation of Crystal Field Parameters

It is evident that the approach described so far to derive the electronic struc-
ture of lanthanide ions, based on perturbation theory, requires a large number of
parameters to be determined. While state-of-the-art ab initio calculation proce-
dures, based on complete active space self consistent field (CASSCF) approach, are
reaching an extremely high degree of accuracy [34–37], the CF approach remains
widely used, especially in spectroscopic studies. However, for low point symme-
try, such as those commonly observed in molecular complexes, the number of CF
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parameters to be determined is as high as 27 (for Ci symmetry), which is clearly
too large to be meaningful. To reduce the number of free parameters in the fit of
either spectroscopic ormagnetic data, some kind of ab initio calculation on theCF
parameters is clearly necessary and we present here the basic concepts underlying
some of them. Such calculations usually require the use of structural parame-
ters (e.g. length and orientation of lanthanide–ligand atom distance with respect
to a defined reference frame), and the determination of parameters describing
the charge distribution on the ligand (or the ligand–lanthanide interaction in a
molecular orbital oriented description), which should be consistent with chemical
intuition.
The simplest approximation is that of considering a point-charge electrostatic

model (PCEM), which parameterizes the crystal field effect generated by the n
atoms coordinated to the lanthanide by using n point charges placed at the corre-
sponding atomic positions. In other words, one may express Equation 1.13 as

UCF =
nel.∑
j=1

nlig∑
i=1

Zie2

rij
(1.24)

The corresponding parameters obtained by this assumption do not provide,
with some exceptions [38], acceptable fits to the experimentally available data
for lanthanide-based molecular magnets. Indeed, such a model neglects the
degree of covalent interaction of the metal–ligand configuration, and is thus
only justified for ionic compounds. The situation for lanthanide(III) ions in
a molecular compound with organic ligands can be rather different, and it
has been already evidenced that for such compounds the CF can be strongly
affected by covalency. Among the applications of models which take into account
covalence to molecular magnets, it is worth mentioning the determination of
CF parameters by using the simple overlap model. In this model, the ligand
field is calculated by considering effective charges, located in the middle of
the Ln–ligand bond, which are proportional to the total overlap between
lanthanide and ligand wave functions and to charge factors [39]. Among other
systems, this model has been successfully applied to rationalize the magnetic
properties of holmium–nitrone complexes, which were then used as a start-
ing point for the analysis of the exchange coupling in Ho-nitronyl nitroxide
systems [40].
More recently, Coronado et al. [41] suggested a radial effective charge (REC)

model, in which the effect of the ligating atom is modelled through an effective
point charge situated along the lanthanide–ligand axis at a distance R, which is
a parametric distance smaller than the real metal–ligand distance. At the same
time, the charge value (q) is scanned in order to achieve the minimum devia-
tion between calculated and experimental data. This was shown to work quite
well for halide ligands, due to the spherical character of the electron density in
the coordinating atom, while a lone pair covalent effective charge (LPEC) model
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was needed in the case of nitrogen ligands. In the latter case, a further displace-
ment parameter was needed in order to account for the mismatch between the
orientation of the nitrogen lone pair and the Ln–N direction. This model was
used to explain the results obtained in one of the most common classes of single-
ion magnet (SIM), namely lanthanide phthalocyanine sandwich complexes [41b].
Promising results on these systems have been obtained also by Klokishner et al.
[42] by using the exchange-charge model [43], which considers both the interac-
tion of the 4f electrons with the point charges of the surrounding ligands, and
the overlap of the 4f orbitals with the ligand orbitals to contribute to the ligand
field.
Among the most relevant approaches in the description of electronic proper-

ties of lanthanides is surely the angular overlap model (AOM) [44, 45]. The key
idea underlying the model is best explained by looking at the main assumptions
characterizing the AOM: (i) The energy of any f orbital Ef is obtained as a per-
turbation, which is proportional to the squares of metal–ligand overlap integrals.
(ii) If the basis of the f-orbitals is defined relative to a coordinate system xyz, then
the perturbation matrix due to a ligand placed on z is diagonal. (iii) Contributions
arising from different ligands are additive.
The parameters describing the interaction between the ligand and the

lanthanide are directly related to the σ-, π-, δ- and φ-bonding ability of the
ligands, which may be influenced by the synthetic chemist. Moreover it is,
in principle, possible to calculate the effect of the ligand by using the real
coordination geometry around the metal ion site, thus including effects due
to the low symmetry of the ligand field. The relations between angular overlap
parameters and CF parameters was first reported by Urland for the case of
isotropic π-ligands [44b].This was successfully improved by including anisotropic
π-ligands and applied to the interpretation of susceptibility, electronic and EPR
spectra of [Ph4As]2[Yb(NO3)5] [46] and of the extremely well-characterized
series of [Ln(H2O)9][EtOSO3], which showed that electrostatic effects due
to neighbouring complexes become relevant in the determination of axial
second-order ligand field parameters [47]. More recently, Flanagan et al. [45]
provided relations which also include anisotropic π-ligands, and applied the
AOM to a global fit of CF parameters derived by polarized luminescence
spectroscopy. This approach was used for the series of homologous compounds
Ln(trensal) (where H3trensal = 2, 2′, 2′′-tris(salicylideneimino)triethylamine),
where the variations of the AOM parameters were related to the small structural
changes observed along the series. In particular, it was concluded that the
metal–ligand overlap decreases on moving across the series as the result of the
contraction of the f orbitals, which overcomes the effect of the decreasing bond
lengths.
Finally, we note that even if in these studies only eσ and eπ parameters were

used for the description of the ligand field, we have recently shown, by applying
AOM to the interpretation of the magnetic properties of Dy3+ derivatives of both
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polyoxometallate and phthalocyaninate, that eδ cannot always be considered as
negligible [48].

1.4
Magnetic Properties of Isolated Lanthanide Ions

1.4.1
Effect of a Magnetic Field

The application of a magnetic field to the wavefunctions obtained by the pro-
cedure described in the previous sections results in the complete removal of
the degeneracy of the J multiplet, either pertaining to Kramers or non-Kramers
ions, and yields a temperature-dependent population of the different 2J + 1
components (Figure 1.2) Thus, at low temperatures, large deviations from the
Curie law are observed. The effect of the magnetic field is described by the
Zeeman Hamiltonian:

ĤZeem = −𝝁̂ ⋅ B (1.25)

where

𝝁̂ = −𝜇B[(L̂x + 2Ŝx)i + (L̂y + 2Ŝy)j + (L̂z + 2Ŝz)k] (1.26)

For a general orientation 𝛼 of the magnetic field B, with intensity |B| and compo-
nents (Bx,By,Bz), Equation 1.25 can be rewritten as

ĤZeem,𝛼 = 𝜇B[(L̂x + 2Ŝx)Bx + (L̂y + 2Ŝy)By + (L̂z + 2Ŝz)Bz] (1.27)

The effect of ĤZeem,𝛼 is evaluated by applying it to the eigenfunctions resulting
from the crystal field analysis, which provides the eigenvectors |n𝛼⟩ and the ener-
gies En,𝛼 . The resulting magnetization in a magnetic field applied along the direc-
tion 𝛼 is written as

M𝛼 = NA

∑
n,𝛼

−
∂En,𝛼

∂B
exp

(
−

En,𝛼

kBT

)
∑
n,𝛼

exp
(
−

En,𝛼

kBT

) (1.28)

where the values of ∂En,𝛼∕∂B can be calculated by applying the operator ĤZeem,𝛼∕B
on the eigenvectors |n𝛼⟩. As a consequence of the crystal field effects, ∂En,𝛼∕∂B
can be strongly dependent on 𝛼, thus providing a magnetization which can
be largely anisotropic even at room temperature [49]. Single crystal mea-
surements, of magnetization, susceptibility or torque, are then very powerful
to obtain an accurate determination of CF parameters. On the other hand,
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magnetic properties of powder samples are much less sensitive to CF param-
eters, especially the transverse ones (i.e. q ≠ 0), so that reliable estimates can
only be obtained in these cases when additional information is available (i.e.
homologous series of lanthanides, further spectroscopic information). Quite
often, susceptibility measurements are indeed interpreted by assuming an
idealized site symmetry neglecting most of the supposedly small transverse
term of the crystal field [24, 50]. This has to be accurately considered when
trying to correlate the low temperature dynamic behaviour of the magnetiza-
tion with the eigenvalues and eigenvectors pattern arising by static magnetic
measurements.

1.4.2
EPR Spectroscopy of Lanthanide Complexes

EPR spectroscopy has been heavily applied in the past to the analysis of the mag-
netic properties of compounds containing ions of the rare-earth group [6]. Results
obtained by this technique were indeed one of the driving forces in the derivation
of a consistent theory of the crystal field. In particular, some degree of admix-
ture of low-lying excited states in the ground state had often to be taken into
account to fit the experimental data, still within a model of ionic character. Due to
the unquenched orbital contribution, EPR spectra of lanthanide ions are usually
observed only at low temperatures, since the resulting fast spin–lattice relaxation
times hamper signal detection at higher temperatures. As a consequence, they are
normally interpreted by considering that only the lowest levels arising from the
ligand field splitting of the ground J multiplet are EPR active.2)
If the Ln3+ centre is a Kramers ion, the spectra can be interpreted in terms of a

doublet with largely anisotropic effective g-values. If one neglects the admixture
of higher lying J multiplets and considers an axial symmetry, the effective g values
will be

g∕∕ = 2gJ⟨Ψ+ |̂Jz|Ψ+⟩
g⊥ = gJ⟨Ψ+ |̂J+|Ψ−⟩ (1.29)

The wavefunctions Ψ± can be written as

Ψ± =
∑

cMJ
|MJ , J⟩ (1.30)

The number of terms retained in Equation 1.30 obviously depends on the sym-
metry of the ligand field: if an axis of q-fold symmetry is present, only MJ values
differing by ±q will contribute to Equation 1.30. Note that for rhombic and lower
symmetries, two different effective values of g are expected for the x and y direc-
tions. In this respect, EPR is extremely sensitive to transverse terms of the CF,

2) To further reduce the linewidth of the spectra, doping in isostructural Y3+, La3+ or Lu3+ host is
usually performed to minimize dipolar broadening and spin–spin relaxation.
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since they not only alter cMJ
coefficients, and thus the effective g values, but may

provide the onlymechanism to obtain a non-zero transition probability within the
doublet.
In more general terms, considering also the mixing of higher lying J states, the

ground doublet wavefunction will be of the type

Ψ± =
∑

cMJ
|MJ , J⟩ +∑

c′MJ
|MJ , J ′⟩ (1.31)

While this generally has only small effects on the staticmagnetic properties, itmay
play a relevant role in providing a quantitative agreement with experimental reso-
nance data, and in explaining quantum tunnelling relaxation of the magnetization
at low temperature [51].
For non-Kramers lanthanide ions, the ligand field splitting may provide,

depending on the symmetry, either singlets, doublets or pseudo-doublets. In
this situation, spectra are usually analysed, depending on the symmetry, either
as pseudo-doublets or pseudo-triplets (if the energy difference between singlet
and doublet or pseudo-doublet groups of levels is relatively small) with very
anisotropic g-value and a sizeable zero field splitting (ZFS) term of the effective
spin Hamiltonian:

ĤnK = 𝜇𝐁B ⋅ g ⋅ S𝐞𝐟𝐟 + S𝐞𝐟𝐟 ⋅ D ⋅ S𝐞𝐟𝐟 (1.32)

Despite the historical relevance of EPR spectroscopy in the elucidation of the
electronic structure of lanthanide compounds, relatively few results have been
reported in the domain of molecular magnetism. The vast majority of these stud-
ies, as will be seen hereafter, were focused on complexes of the second half of
the lanthanide series, to gain more information about the slow relaxation of the
magnetization in these systems. Among the few exceptions, our group reported
a few powder EPR spectra of the family Ln(trp)(HBPz3)2 (where trp, tropolonate,
HBPz3, hydrotrispyrazolylborate), of which only Yb(trp)(HBPz3)2 could be fully
interpreted and simulated. Despite the rhombic structural symmetry, this system
provided a near-axial spectrum, indicating that the best description of the lig-
and field geometry is square antiprismatic with fourfold symmetry. The observed
effective g-values were rationalized on the basis of this idealized geometry, and
the ground doublet of Yb(trp)(HBPz3)2 turned out to be composed by |J ,MJ⟩ =|7∕2,±5∕2⟩ for 98% [52].
A more complex situation was encountered in the analysis of single-crystal

EPR spectra of the member of [Ce(dmf)4(H2O)3(μ-CN)Co(CN)5] (dmf, N ,N ′-
dimethylformamide, Co = Co3+) [53]. In this case, the investigation provided
the orientation of the principal g-values of Ce3+ ground doublet, which, quite
interestingly, did not show any peculiar relation to the axis of the bicapped trigo-
nal prism formed by the ligands (Figure 1.3). Furthermore, on an analysis based
on orthorhombic symmetry and the lowest J = 5∕2 value only, Equation 1.30
yielded calculated g-values which agree with the observed values only within
12%. The observed discrepancy was attributed both to a small amount of mixing
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Figure 1.3 Orientation of the g tensor of
Ce3+ in [Ce(dmf)4(H2O)3(μ-CN)Co(CN)5] with
respect to the bicapped trigonal prism of the
coordination sphere of Ce3+ centre (a), and

with respect to the Co–C–N–Ce plane (b).
For both figures, each component of the ten-
sor is proportional to its respective modulus.
(After Ref. [53], WIley-VCH.)

of the 2F7∕2 state in the ground doublet and to the simplifying assumption of
orthorhombic symmetry.
The importance of EPR spectroscopy in evidencing low-symmetry terms of

the CF was reported by one of us, in collaboration with the group of Boskovic
and Kogerler [24], in the investigation of a Dy3+ polyoxometallate, based on the
[As2W19O67(H2O)]14− anion. X-band EPR spectra were strongly temperature
dependent, with a signal reaching a maximum intensity around 40K: on the
basis of the fit of magnetic susceptibility, which neglected the transverse CF
terms, this was assigned to a doublet with prevailing MJ = ±9∕2 component,
which, according to ligand field calculations, lies 34K above the ground state.The
observation of an EPR spectrumwith g⊥ ≠ 0 demonstrated unequivocally that the
transverse fourth-order ligand-field components are non-zero, since these terms
provide the only means to observe a non-zero perpendicular component of the
spectrum. Calculation based on Equations 1.29–1.30 suggested that a rather large
mixing is induced by these terms, indicating the importance of spectroscopic
information complementing the thermodynamic ones in providing an accurate
picture of the electronic structure of these systems. A similar phenomenon was
more recently observed by Schelter and coworkers [54], who performed X-band
EPR spectroscopy on two of the Dy3+ complexes, showing that, while the ground
state was essentially MJ = ±13∕2 in nature, non-negligible mixing due to low
symmetry components of the ligand field occurred.
Finally, we note that, to the best of our knowledge, only one report exists about

EPR spectra of non-Kramers lanthanide ions in molecular magnets. In 2012, Hill
and coworkers [51] performed amultifrequency study on powder and single crys-
tal samples of Na9Ho(W5O18)2 ⋅ nH2O, in both the pure form and when doped
into the isostructural Y3+ derivative. While crystallizing in a triclinic unit cell, the
symmetry of the lanthanide ion in this family is very close to D4d. For this reason,
susceptibility data had been previously fitted by a purely axial Hamiltonian [50].
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However, consistent explanation of the EPR properties of the Ho3+ derivative
required the inclusion of at least transverse fourth-order terms. The parameters
obtained by accurate single-crystal EPR simulations confirmed the dominant
MJ = ±4 character of the ground pseudo-doublet, which is separated by about
16cm−1 from the first excited state, of essentially MJ = ±5 character. More
important, however, is that the two components of the ground state are partially
split both by a fourth-order transverse term and by hyperfine interaction with the
I = 7∕2 Ho nucleus, resulting in the pattern outlined in Figure 1.4. In particular,
the former terms are the only ones capable of explaining the actual observation
of non-zero intensity in the EPR spectrum. Furthermore, they are very efficient
(to just the second-order of perturbation) in mixing the two components of the
ground state, thus explaining the field-dependent spin dynamics of this system.
Such studies clearly highlight the relevance of EPR techniques in unveiling subtle
details of the electronic structure of lanthanide-based molecular magnets, which
are otherwise inaccessible by magnetic characterization. This is of paramount
importance in determining the key factors affecting their low temperature spin
dynamics. In particular, the possibility of having access to details of hyperfine
interaction may be of much relevance to the explanation of hyperfine mediated
tunnelling relaxation [55, 56].
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Figure 1.4 Plot of the lowest hyperfine split
pseudo-doublet for field applied along the
easy magnetization axis of Na9Ho(W5O18)2 ⋅
nH2O. Grey dotted lines are obtained in the
assumption of purely axial symmetry while
black continuous lines result after inclusion

of symmetry allowed fourth-order trans-
verse anisotropy. Black arrows represent the
calculated resonance position in the latter
assumption for X-band frequency. (Redrawn
using original data reported in Ref. [51],
Royal Society of Chemistry.)
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1.5
Exchange Coupling in Systems Containing Orbitally Degenerate Lanthanides

Up to now, we have only treated systems containing a single lanthanide ion.
We wish to introduce here some of the problems which are encountered when
dealing with exchange coupling in systems containing orbitally degenerate ions.
The main problem in evaluating the exchange coupling in such compounds lies
in the fact that one cannot use the isotropic spin Hamiltonian approach which
is normally adopted to parameterize the magnetic interactions in compounds
containing orbitally non-degenerate centres [57]. Indeed, when systems with
unquenched angular orbital momentum are considered, S is no longer a good
quantum number, and the energies of the levels depend also on the value of
MS, with −S ≤ MS ≤ S, that is, there will be some preferential orientation of the
magnetic moment even in zero field. This is the main reason for the peculiar
difficulties arising in the analysis of the magnetic behaviour of the lanthanides.
The first detailed and quantitative treatment of the interactions involving
one orbitally non-degenerate ion, such as Fe3+, and an orbitally degenerate
lanthanide ion was performed by Levy [58] in an attempt to rationalize the
exchange interactions in Yb3+ garnets, and was later employed by Yamaguchi and
Kamimura [59] to analyse the behaviour of Ho3+ garnets. The assumptions on
which this approach relies are (i) that the spin dependence of the superexchange
interaction between a 4f electron and the orbitally non-degenerate state ions is
well described by the Dirac–Van Vleck Hamiltonian and (ii) that the dependence
of this interaction on the orbital state of the lanthanide is accounted for by an
exchange potential. The exchange interaction is then described by an anisotropic
exchange Hamiltonian exploiting the formalism of irreducible tensor operators
T [k]

q :

Ĥexc =
2l∑

k=0

k∑
q=−k

𝛼kqT [k]
q (i)s(i) ⋅ S(TM) (1.33)

where l = 3 for lanthanides, i indicates the i-th electron of the lanthanide ion,
S(TM) is the spin operator of the transition metal ion and 𝛼kq are the exchange
coupling parameters, 𝛼00 being the isotropic one. Furthermore, it is necessary
to know the wavefunctions of the lanthanide (and thus the relative coefficient
of S values entering Equation 1.33 in the absence of exchange, which can be
obtained by the CF parameters as discussed in Section 1.3). It is evident that the
number of adjustable parameters is now huge, especially in the low site symmetry
usually characteristic of molecular complexes of Ln3+, and a meaningful fit of
the experimental parameters becomes extremely difficult. Furthermore, it is
in principle absolutely necessary to perform orientation-dependent measure-
ments because the global Hamiltonian, including both exchange and single
ion contributions, is intrinsically anisotropic. For this reason, there have been
no reports of the application of this approach to molecular complexes, after
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the series of papers by the Florence University group [60], which synthesized
and magnetically characterized different copper–lanthanide molecular com-
plexes. CF parameters were obtained by an independent fit of the powder
magnetic susceptibility of [Ln(hfac)3(H2O)2] (hfac, hexafluoroacetylacetonate)
and fixed in order to reduce the parameterization of the system. It was then
possible to find out that the isotropic term of the coupling Hamiltonian was
antiferromagnetic while the anisotropic ones were ferromagnetic: to reduce the
number of parameters, however, only second-order anisotropic exchange was
considered.
More often, a simple qualitative approach has been used to get information on

the nature of the interaction (ferro- or antiferromagnetic) in lanthanides coupled
to organic radicals or to copper(II).Within this approach, the exchange interaction
in coupled systems is made apparent by subtracting from 𝜒T of the complex the
contribution arising from the thermal depopulation of the Mj sublevels of Ln3+,
𝜒LnT , which is obtained by measuring an isostructural Ln3+ complex with a dia-
magnetic surrounding. This approach has been successfully applied both to the
investigation of 4f–3d couples, for example, by replacing the paramagnetic cop-
per(II) by a square-planar nickel(II) or zinc(II), and to 4f–2p complexes, where
the organic radical was substituted by a diamagnetic ligand analogue carrying the
same charge [52, 61–63].
Extension of this approach to quantitative estimation of the exchange coupling

has also been reported by different groups [40, 42] by fitting the data of the dia-
magnetic substitute analogue with one of the CF calculation models described in
Section 1.3.4. This allows derivation of the eigenfunctions and eigenvalues of the
ground multiplet of the isolated lanthanide. The exchange interaction is subse-
quently evaluated in the assumption of isotropic coupling, which is often sufficient
to yield a reasonable fit of the powder susceptibility.
As powerful as it can be, the diamagnetic substitution approach does not

provide reliable information about the anisotropic features of the exchange
between the species involved if only powder measurements are considered.
We have recently demonstrated this by an integrated single crystal EPR and
magnetic study on the [Ln(dmf)4(H2O)3(μ-CN)M(CN)5] family discussed
above, with M = Co3+, Fe3+ and Ln = La, Ce. Investigation of the two mem-
bers of the family containing one paramagnetic centre resulted in a detailed
picture of the low-lying levels of Ce3+ and Fe3+ ions. Analysis of the coupled
species performed using this piece of information clearly indicated that a sound
explanation of the data required the inclusion of isotropic, anisotropic and
antisymmetric terms to describe the exchange interaction among the doublets
[53].
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