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The Failure of Classical Physics

Quantummechanics (QM) emerged in the early twentieth century from attempts to
explain some properties of blackbody radiation (BBR) and heat capacity of gases, as
well as atomic spectra, light–matter interactions, and behavior of matter on the
microscopic level. It soon became clear that classical physics was unable to account
for these phenomena. Not only did classical predictions disagree with experiments,
but even the mere existence of atoms seemed to be a miracle in the framework of
classical physics. In this chapter, we briefly discuss some of the contradictions
between classical concepts and observations.

1.1
Blackbody Radiation

First, we outline the failure of classical physics to describe some properties of
radiation.
A macroscopic body with absolute temperature T > 0 emits radiation, which

generally has a continuous spectrum. In the case of thermal equilibrium, in any
frequency range the body absorbs as much radiation as it emits. We can envision
such a body as the interior of an empty container whose walls are kept at a constant
temperature [1,2]. Its volume is permeated with electromagnetic (EM) waves of all
frequencies and directions, so there is no overall energy transfer and no change in
energy density (random fluctuations neglected). Its spectrum is independent of
the material of container’s walls – be it mirrors or absorbing black soot. Hence, its
name – the blackbody radiation. In an experiment, we can make a small hole in the
container and record the radiation leaking out.
There is an alternative way [3] to think of BBR. Consider an atom in a medium.

According to classical physics, its electrons orbit the atomic nucleus. Each orbital
motion can be represented as a combination of two mutually perpendicular
oscillations in the orbital plane. An oscillating electron radiates light. Through
collisions with other atoms and radiation exchange, a thermal equilibrium can be
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established. In equilibrium, the average kinetic energy per each degree of freedom
is [1]

Ei ¼ 1
2
kT ; ð1:1Þ

where k is the Boltzmann constant. This is known as the equipartition theorem. The
same formula holds for the average potential energy of the oscillator, so the total
energy (average kinetic þ average potential) per degree of freedom is kT. Thus, we
end up with the average total energy kT per oscillation. In an open system, such
equilibrium cannot be reached because the outgoing radiation is not balanced and
the energy leaks out. This is why any heated body cools down when disconnected
from the source of heat.
But if themedium is sufficiently extended or contained within a cavity whose walls

emit radiation toward its interior, then essentially all radiation remains confined, and
thermal equilibrium can be attained. Each oscillator radiates as before, but also
absorbs radiation coming from other atoms. In equilibrium, both processes balance
each other. In such a case, for each temperature Tand each frequencyv there exists a
certain characteristic energy density rðv;TÞ of radiation such that the rate of energy
loss by atoms through emission is exactly balanced by the rate of energy gain
through absorption. The quantity rðv;TÞ is called spectral energy density (the
energy density per one unit of frequency range). In classical EM theory, it is
determined by the corresponding field amplitudes EEðvÞ and BðvÞ of mono-
chromatic waves with frequency v:

rðv;TÞ ¼ 1
4

e0jEEðvÞj2 þ jBðvÞj2
m0

 !
¼ 1

2
e0jEEðvÞj2 ¼ jBðvÞj2

2m0
: ð1:2Þ

The last two expressions in (1.2) are obtained in view of the relation
B ¼ ffiffiffiffiffiffiffiffiffi

m0e0
p

n̂� EEÞð , where n̂ is the unit vector along the wave propagation. Note
thatv is the angular frequency,1) and all quantities involved are measured in the rest
frame of the given medium.2)

Under the described conditions, rðv;TÞ is a universal function of v and T.
According to thermodynamics (Kirchhoff’s law of thermal radiation), it must be the
product of v3 and another universal function of v/T [2,3]:

rðv;TÞ ¼ av3f
v

T

� �
: ð1:3Þ

Using (1.3), one can show that the total energy density gðTÞ of BBR is

gðTÞ ¼
ð1
0

rðv;TÞdv ¼ sT4; ð1:4Þ

1)We will use throughout the book the angular frequency v, which is ordinary frequency f
(number of cycles/s) multiplied by 2p. In the physicists’ jargon, the word “angular” is usually
dropped.

2) Rest frame of an object is the frame of reference where the object’s center of mass is at rest.
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where

s � a

ð1
0

j3f ðjÞdj; j � v

T
: ð1:5Þ

The relation (1.4), known as the Stefan–Boltzmann law, is exact and has been
experimentally confirmed. Figure 1.1 shows a few graphs of rðv;TÞ obtained
from experiments. But all attempts to derive the pivotal function f ðv=TÞ determin-
ing rðv;TÞ and s have failed.
By 1900 there were two half-successful attempts to derive rðv;TÞ. Their results

were different due to the different models chosen to represent radiation.
The first model considered radiation as EM waves. In this model, the molecules

interacting with radiation were represented as harmonic oscillators; similarly,
each monochromatic component of radiation can also be considered as an
oscillator with the corresponding frequency. Then, the total energy density could
be evaluated as a product of the average energy hEi¼ kTper one EM oscillator and
the number N of oscillators occupying all states with frequency v [4]. Such an
approach results in

rðv;TÞ ¼ NðvÞhEi ¼ v2

p2c3
kT : ð1:6Þ

This expression is known as the Rayleigh–Jeans formula. Note that it does have the
form (1.3). But, while matching the data at low frequencies, it diverges at high
frequencies (Figure 1.2), predicting the infinite spectral density rðv;TÞ and infinite
total energy density gðTÞ at v ! 1; even at low temperatures! This conclusion of
classical theory was dubbed “the UV catastrophe.” Something was wrong with the
classical notion of energy exchange between matter and radiation as a continuous
process, especially when applied to the high-frequency range!

Figure 1.1 The BBR spectrum at various temperatures.
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The second model suggested by W. Wien used the Newtonian view of radiation as
a flux of particles. Applying to such particles Boltzmann’s statistical treatment, he
obtained the expression

rðv;TÞ ¼ constv3 e�cðv=TÞ; ð1:7Þ
where c is another constant. This expression also satisfies the requirement (1.3),
and, in contrast with (1.6), it describes accurately the experimental data for high
frequencies. However, it does not match the data at low frequencies (Figure 1.2).
Something was wrong with the notion of radiation as classical particles, especially in
the low-frequency range!
Thus, regardless of whether we view radiation as purely classical waves (Maxwell)

or purely classical particles (Newton), either view only partially succeeds. The wave
picture works well in describing low frequencies, and the particle picture works for
high frequencies, but both fail to describe all available data. That was the first
indication that the EM radiation is neither exactly waves nor exactly particles.

1.2
Heat Capacity

Heat capacity is the amount of heat dQ required to change a body’s temperature T by
1K: C ¼ dQ=dT : We model the body as an ideal gas whose molecules do not interact
with each other. The analysis for an ideal gas hinges on the number of degrees of
freedom. For an atom considered as a point-like object, three mutually independent
directions of its motion (or three components of its position vector) form three degrees
of freedom.Adiatomicmolecule presents amore complex case. If it is a rigidpair of two
point masses, then it has five degrees of freedom – three coordinates of its center of
mass and two angular coordinates specifying the orientation of its axis. If the separation
s between the two masses can change (e.g., two masses connected by a spring), then it
becomes a variable s, and the total number j of degrees of freedom jumps from 5 to 6.
This is themaximal number for a diatomicmolecule formed from twopoint-like atoms.
The number j here can also be determined as 3� 2 (three degrees of freedom per
particle times the number of particles).

Figure 1.2 The BBR spectrum according to different approaches treating radiation as classical
waves or particles, respectively. (a) BBR spectrum; (b) the Rayleigh–Jeans curve; (c) the Wien curve.
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But as stressed in comment to Eq. (1.1), the vibrational degree of freedom
“absorbs” the energy kT, where the additional amount (1/2)kT is due to the average
potential energy of vibration. This can be formally described by adding and extra
degree of freedom for each vibration, so that for a classical diatomicmolecule we can
write j0 ¼ jþ 1¼ 7.
Suppose we have a system of particles (e.g., a container with gas) in a state of

thermodynamic equilibrium. The gas in this case is described by the ideal gas
equation PV ¼ NkT [3,5,6], where P and V are the gas pressure and volume,
respectively, and N is the number of molecules. For one mole of gas, that is,
N ¼ NA, where NA is the Avogadro number, we have

PV ¼ RT ; ð1:8Þ
where R ¼ NAk is the universal gas constant.
Let us now recall the relationship between pressure P and the internal energyU of

the gas, P ¼ ð2=j0ÞðU=VÞ. Combining this with (1.8) gives

U ¼ j0

2
RT : ð1:9Þ

There are two different types of heat capacity depending on two possible ways of
transferring heat to a system.We can heat a gas keeping it either at fixed volume or at
fixed pressure. The correspondingmolar heat capacities will be denoted as cP and cV ,
respectively. To find them, recall the first law of thermodynamics [2,3],
dQ ¼ dU þ dW ¼ dU þ P dV , where dW is an incremental work done by the
system against external forces while changing its volume by an incremental amount
dV. Applying the basic definition C ¼ dQ=dT , we have for the case of fixed volume
dV ¼ 0:

C ! cV ¼ @U
@T

¼ j0

2
R: ð1:10Þ

When P¼ const, we obtain

C ! cP ¼ @U
@T

þ P
@V
@T

¼ cV þ P
@V
@T

: ð1:11Þ

By virtue of (1.8) taken at P¼ const, this gives

cP ¼ cV þ R ¼ j0

2
þ 1

� �
R: ð1:12Þ

The ratio

c � cP
cV

¼ 1þ 2
j0

ð1:13Þ

gives us direct information about the number j0.
In the outlined classical picture, the number j0 and thereby cP; cV, and c are all

independent of T. But this contradicts the experiments. Heat capacities of all sub-
stances at low temperatures turn out to be noticeably less than predicted and go to zero
in the limitT ! 0. Shown inTable 1.1 are the classically predicted values of cV ; cP; and
c for a few different substances and their experimental values at room temperature [6].
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The table shows a very interesting (and mixed) picture. The measurement results
almost exactly confirm theoretical predictions formonatomic gases such as helium.The
calculated and measured values of c and c are in excellent agreement for j ¼ 3.
For diatomic gases (j¼ 6, j0 ¼ 7), however, the results are more complicated.

Consider, for instance, hydrogen. Its measured value of cV ¼ 20:36 is significantly
lower than the expected value 24.42. A similar discrepancy is observed for c: the
measured value is 1.41 instead of predicted 1.33. A closer look at these numbers
reveals something very strange: they are still in excellent agreement with Equa-
tions 1.10–1.13, but for j0¼ 5 instead of 7. Thus, the agreement can be recovered,
but only at the cost of decreasing the number j0 ascribed to a diatomic molecule. It
looks like two “effective” degrees of freedom “freezes” when the particles get bound
to one another. Which kind of motion could possibly undergo “freezing”? Certainly
not 2 out of 3 translational motions: there is nothing in the isotropic space that could
single out one remaining motion. It could be either 2 rotational motions, or 1
vibrational motion. Running ahead of ourselves, we will say here that it is vibrational
motion that freezes first as the gas is cooled down. Already at room temperatures, we
cannot pump energy into molecular vibrations. At these temperatures, the connec-
tion between the two atoms in an H2 molecule is effectively absolutely rigid.
Thus, already the experimental results for different gases at room temperature show

that something is wrong with the classical picture. But the situation becomes even
worse if we carry out experiments for the same gas at widely different temperatures.
As an example, consider the data for molecular hydrogen (Table 1.2).
At sufficiently low temperatures, experimental values become lower than

the classical prediction even after we ascribe to the diatomic molecules only
five degrees of freedom instead of effective seven. For instance, the experimental

Table 1.1 Predicted versus observed heat capacities at T¼ 293 K (in J/(mol K))

Gas j cV cP c

Theory Exp Theory Exp Theory Exp

Helium (He) 3 12.47 12.46 20.79 20.90 1.67 1.67
Hydrogen (H2) 6 24.42 20.36 32.73 28.72 1.33 1.41
Water vapor (H2O) 9 37.41 27.80 45.73 36.16 1.22 1.31
Methane (CH4) 15 62.36 27.21 70.67 35.57 1.13 1.30

Table 1.2 Constant-volume heat capacity of hydrogen as
a function of temperature (in degrees Kelvin)

T cV

197 18.32
90 13.60
40 12.46

6j 1 The Failure of Classical Physics



value cV ¼ 12:46 at 40 K is significantly less than cV ¼ 20:36 measured at room
temperature. It could still fall within the classical prediction, but only at the cost of
reducing the number of degrees of freedom from 5 to 3. It looks as if more andmore
degrees of freedom become frozen as the substance is cooled down. This time we
can, by the same argument as before, assume the freezing of two rotational degrees
of freedom associated with the spatial orientation of the molecule.
The same tendency is observed in themeasurements of c (Figure 1.3). Contrary to

the classical predictions, experiments show that c increases with T, and this
behavior, in view of Equation 1.13, can be attributed to the same mysterious
mechanism of “freezing.” We can thus say that decrease of cV and increase of c
at low temperatures represent two sides of the same coin.
The general feature can be illustrated by Figure 1.4. It shows that heat capacities

fall off with temperature in a step-like fashion. Each step is associated with the
freezing of one or two degrees of freedom. At the end of this road, all of the initial
degrees of freedom are frozen and accordingly heat capacities approach zero.
If we now increase the temperature, starting from the absolute zero, we observe

the same phenomenon in reverse. As we heat a body, it effectively regains its degrees
of freedom all the way back to their normal number at sufficiently high
temperatures.
What causes these strange effects? And what is the “normal” number for c to

begin with? Classical physics cannot answer these questions even in the simplest
case of a monatomic gas. Let us, for instance, get back to helium.We started with the
apparently innocuous statement that a helium atom at room temperature has j ¼ 3.
But after a second thought we can ask: “Why is j equal to 3, in the first place?” After
all, the helium atom consists of the nucleus and two electrons, so there are three
particles in it, and therefore there must be j ¼ 3� 3 ¼ 9. Further, the He nucleus
consists of two protons and two neutrons, so altogether we have six particles in a
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Figure 1.3 Experimental values of c as functions of T for H2 and O2. The dashed horizontal line
is the classical prediction for a diatomic molecule with vibrational degree of freedom ( j0 ¼ 7).
(Reproduced from Refs [3,6].)
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helium atom and accordingly the number jmust be j ¼ 6� 3 ¼ 18 instead of 3. And
if we also realize that each nucleon, in turn, consists of three quarks, which makes
the total number of particles in the helium atom equal to 14, then the number jmust
be j ¼ 14� 3 ¼ 42. Accordingly, the theoretical prediction for the molar heat
capacities for He must be cV ¼ 174:6 and cP ¼ 182:9 instead of 12.46 and 20.8,
respectively. In other words, already at room temperature and in the simplest case of
a monatomic gas, there is a wide (by about one order of magnitude!) discrepancy
between theory and experiment. Experiment shows that nearly all degrees of
freedom of the subatomic particles are frozen so fundamentally that they are as
good as nonexisting, at least at room temperatures, and only the remaining three
degrees determining the motion of the atom as a whole survive. Why is this so?
One could try to explain this by the fact that the binding forces between the

electrons and the atomic nucleus are so strong that they practically stop any
relative motion within an atom; this is true even more so for the protons and
neutrons within a nucleus, and so on. As we go farther down the subatomic
scale, the interaction forces increase enormously, thus “turning off” the corre-
sponding degrees of freedom. But this argument does not hold. The notion about
the forces is true, but the conclusion that it must “turn off” the corresponding
motions is wrong.
The equipartition theorem is a very general statement that applies to any

conservative (i.e., described by potential) forces, regardless of their physical nature
or magnitude. As a simple example, consider two different types of diatomic
molecules in thermodynamic equilibrium. Let each molecule be represented by
a system of two masses connected by a spring, but the spring constant is much
higher for one molecule than for the other. Equilibrium is established in the process
of collisions between the molecules, in which they can exchange their energy.
Eventually, molecules of both types will have, on average, an equal amount of
vibration energy. The total mechanical energy of vibration for a spring described by

CV

Low T                        Medium T                        High T T

Figure 1.4 Graph of the heat capacity versus temperature for a diatomic ideal gas.
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Hooke’s law is E ¼ kA2=2, where k is the spring constant (not to be confused with
the Boltzmann constant!) and A is the amplitude of vibration. In thermal equili-
brium, we will have E1 ¼ E2, that is, k1A2

1 ¼ k2A2
2.

The fact that one spring is much stronger than the other will only result in the
smaller amplitude of vibration for this type of molecules, that is, A2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k1=k2

p
A1,

and A2 � A1 if k2 � k1, but it will not affect the energy of vibration. Applying this to
our system, we can say that the constituents of an atomic nucleus, according to the
classical theory, must jitter with a very small amplitude, but with the same energy as
twice the average energy of the atom’s translational motion in a state of thermal
equilibrium. And this energy must contribute to the observed heat capacity on the
same footing as the energy of translational motion, even in the limit of arbitrarily
high k. But no such contributions are evident in the observed capacities. It turns out
that the word “freezing” is not strong enough and must be understood as total
elimination of any contributions from the corresponding degrees of freedom.
It is only because the physicists did not know much and accordingly did not think

much about the subatomic structure of matter 100 years ago that they could mislead
themselves into believing that the existing theory at least partially accounted for the
experimental observations. Strictly speaking, there was not even a partial match
between the two.
What could have caused such a miserable failure of the classical picture? As we try

to figure it out and go to the origins of the equipartition theorem, we realize that it
was the assumption that energy exchange between the systems is a continuous
process and the energy of a bound system of particles is a continuous variable. The
resulting discrepancy with observations shows that there was something wrong with
these classical notions of energy.

1.3
The Photoelectric Effect

The photoelectric effect (PEE) is the ejection of electrons from the surface of an
illuminated conducting material (mostly metals). Such an effect is by itself easy to
understand in the framework of classical physics. The conducting electrons in a
metallic plate are bound to it by the electric forces in such a way that, while being free
tomove within the plate, they are not free to leave it. This can bemodeled by a simple
picture of an electron trapped within a potential well of macroscopic dimensions
(Figure 1.5). The electron within such a well has a negative potential energy, and if its
kinetic energy is not sufficiently high, it can only move within the well by bouncing
off its walls, but it cannot go beyond the wall, and thus finds itself trapped.
However, when the plate is illuminated, those electrons that are sufficiently

close to the surface get exposed to the EM field, which starts “shaking” them with
an oscillating force. The resulting motion of the electron under such a force is well
known [7,8]. For instance, if the light is monochromatic and linearly polarized, it
will cause the electron to oscillate along the direction of the electric field with the
frequency v of the incident wave. In addition, the electron will start drifting along

1.3 The Photoelectric Effect j9



the direction of wave propagation. The kinetic energy associated with both kinds
of motion stands in proportion to the light intensity I. Therefore, one can expect
that at a sufficiently bright illumination the electron eventually will accumulate
enough energy to quit the plate.3) Thus, the effect itself could be easily explained.
However, its specific details were in flat contradiction with theoretical predictions.
First, according to the simple picture outlined above, a sufficiently intense light

beam, regardless of its frequency, must cause electron emission from the illumi-
nated surface and should produce free electrons with accordingly high kinetic
energy. On the other hand, if I is less than a certain critical value depending on the
kind of material involved, no electrons will be emitted since they cannot collect
enough energy to break loose from the trap (Figure 1.5b).
In fact, however, it was found that for a sufficiently highv, no matter how dim the

incident light, at least one emitted electron can be observed, and the number of
emissions increases with I, but no matter how intense the light, the maximum
kinetic energy of ejected electrons is the same. So instead of kinetic energy, it is the
number of the ejected electrons that increases in proportion to I. This statement is
known as the first law of PEE (or Stoletow’s law).

U (x)  

E
ΔE

x                       x  
E

ΔU0 ΔE

U0

)b()a(

Figure 1.5 An electron in a valence band in a
conducting plate can be represented as trapped
within a potential well U0. The electron can
break loose of the plate only if it obtains from
the environment the minimal energy equal to

DU0 (the work function). (a) The electron
obtains the energy K>DU0 and becomes free.
(b) The electron obtains the energy K<DU0. In
this case, it remains trapped within the plate.

3) The explanation seems straightforward to
us, as we are looking at it retrospectively,
but in fact the discovery of the PEE by
Hertz, in 1887, preceded the discovery of
the electron (the latter would only be
discovered in 1897 by J.J. Thomson). For
this reason, the nature of the phenomenon

was not quite as obvious to nineteenth-
century physicists as it is to us. Actually,
Thomson used the photoeffect in his
cathode ray tube experiments, which led
him to identify the electron as a charged
subatomic particle.
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Second, the classical picture predicts that electron emission will occur regardless
of the value of v. At any v, an electron could eventually accumulate enough energy
to overcome the potential barrier if I is sufficiently high and the exposure is long
enough. Moreover, according to the classical picture, low-frequency waves pump
energy into electrons more efficiently than high-frequency ones since in each cycle
the former provide more time for an electron to accelerate in one direction and
thereby to attain higher speed and kinetic energy [8]. But experiments performed by
Lenard in 1902 demonstrated that no matter how intense the incident light, there
were no electrons emitted when v was below a certain critical value (the threshold
frequency), depending on the kind of material, and above the threshold frequency
there was an emission, with the maximum kinetic energy of the emitted electrons
increasing linearly with v (Figure 1.6). This is the second law of photoeffect.
Third, classical physics predicts the existence of a certain time interval (the

transition period) between the beginning of exposure and the beginning of the
resulting emission. This seems natural, since according to the classical view any
energy exchange is a continuous process, and it always takes a certain time for a
system’s energy to change. However, in experiments, electron emission started
practically instantly (within less than 10�9 s) after the illumination. There was no
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Figure 1.6 Comparison of CM and QM
predictions for the basic characteristics of the
photoeffect. (a) Dependence of the electrons’
kinetic energy K¼K (I) on the intensity I of the

incident light; (b) dependence of photocurrent
J(I) on I; (c) dependence of K on the light
frequency v; (d) dependence of J on v.
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way to reconcile this observation with the notion of interaction as a continuous
process.
Summary: In the example considered here (as well as examples in the previous

two sections), the notion of continuity of certain physical characteristics such as
energy, intensity of monochromatic light, and so on leads to the wrong description
of a real process.

1.4
Atoms and Their Spectra

According to the classical picture (the “planetary” model) based on Rutherford’s
experiments, an atom is a system of electrons orbiting around the nucleus like
planets around the sun (hence the name of the model). This model looked simple
and very compelling, all the more so that the interaction law (attraction F � r�2) is
mathematically the same in both cases. And some could find it philosophically
attractive as well: the big is just an upscale of the small, and vice versa!
However, according to the same classical physics, such an atom cannot exist. The

reason is very simple. The electrons in a Rutherford’s atom seem to be in far more
favorable conditions than, say, Earth’s artificial satellites, which eventually spiral
downwarddue to a small drag force in theupper atmosphere. In contrast, the electrons
appear totally free of any dissipative forces: there is nothing else in the space around
the nucleus. They should be ideal “planets” – no energy losses on the way!
This argument overlooks the fundamental fact that each electron carries an

electric charge, and accordingly, its own electromagnetic field. Due to this field,
electrons become down-spiraling artificial satellites rather than ideal planets.
According to the EM theory, if an electron is moving with constant velocity, then
its field just follows this motion, remaining “rigidly” attached to its “master” [7,8]. If,
however, the electron accelerates, its field is getting partially detached. This is
precisely what happens with an orbiting electron – orbiting involves acceleration!
Accordingly, the electron must be losing its energy, which is radiated away together
with the “detached” part of its field. The classical atomic electron must, in a way,
move in an “atmosphere” of its own radiation field, and it must lose energy due to
the “radiative friction” in this atmosphere [3,7]. As a result, very soon (in about
10�8 s) all electrons, having emitted a blend of electromagnetic waves of different
frequencies, must fall onto the nucleus, and Rutherford’s atom will cease to exist.
It seems that classical physics has come to a dead end. On the one hand, the

Rutherford’s experiments have shown that his planetary model is the only one
possible. On the other hand, according to the ongoing experiment carried out by
Nature, atoms are stable. And in cases when they do radiate (say, in collisions or after
an optical excitation), the corresponding spectrum is discrete: one sees on a dark
screen or a photographic film a set of distinct spectral lines (Figure 1.7). An atom of
each chemical element has its own unique discrete spectrum.
Moreover, the features of this spectrum defied all classical notions about its

possible origin. In principle, one could try to explain the discrete spectrum
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classically by neglecting the continuous spiraling of the electron toward its nucleus.
Suppose that spiraling is very slow as compared with the orbital frequency (it takes
much longer than one complete cycle). Then the electron’s motion can be approxi-
mated as periodic. In this case, its coordinates in the orbital plane can be expanded
into a Fourier series [9]

xðtÞ ¼
X1

n¼�1
xn e

inv1t; yðtÞ ¼
X1

n¼�1
yn e

inv1t; ð1:14Þ

where v1 is the fundamental frequency and jnj > 1. According to EM theory, the
amplitudes xn and yn determine the intensity In of radiationwith frequencyvn ¼ nv1.
The possible frequencies thus form a discrete linear set v ¼ v1;v2; . . . ;vn; . . .. In
the same way, one can arrange the corresponding intensities In. However, this
classical picture was also in contradiction with experiment, and even in two different
ways. First, the observed frequencies are determined by two numbersm and n from the
linear array of auxiliary frequenciesV ¼ V1;V2; . . . ;Vn; . . . in such a way that each
v comes as the difference of two Vi, that is,

vn ! vmn � Vm �Vn ð1:15Þ
(Ritz’s combination principle) [9]. In other words, instead of forming a linear array, the
observed frequencies form a matrix

v ¼

0 v12 v13 � � � v1n � � �
v21 0 v23 � � � v2n � � �
..
. ..

. ..
.

} ..
. ..

.

vm1 vm2 vm3 0 vmn � � �
..
. ..

. ..
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. ..
.

}

0
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Figure 1.7 (a) Visible spectrum of a He lamp. (b) Schematic of the corresponding optical
transitions of a He atom. (Courtesy Andrei Sirenko, Department of Physics, NJIT.)
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A similar matrix is formed by the corresponding intensities or the oscillation
amplitudes: In ! Imn; xn ! xmn. Second, the auxiliary frequencies Vn do not
form multiple harmonics of a certain fundamental frequency, that is, Vn 6¼ nV1.
One could try to resolve these contradictions by assuming that each of the

frequencies (1.16) is an independent fundamental frequency of periodic motion
corresponding to its own degree of freedom. But then there follows an implication
that even the simplest atom is a system with a huge, in principle, infinite, number of
degrees of freedom, and accordingly, any substance must have an infinite heat
capacity, which flatly contradicts reality. In addition, each of the fundamental
frequencies must be accompanied by a set of its respective harmonics, which
are absent in the observed spectra. This clash between the classical predictions and
the experiment shows that something is wrong in the classical picture of electrons
moving along their paths within an atom.

1.5
The Double-Slit Experiment

When Newton published his “Opticks” in 1704, he argued that light is made up of
small particles – corpuscles. Although Newton’s theory had some initial success, it
was relatively short-lived. In 1801, Thomas Young conducted his famous double-slit
experiment, which caused the whole scientific community to completely abandon
Newton’s corpuscular model. The experimental results bore an unambiguous
signature of wave diffraction. Accordingly, we will first focus on the predictions
of the classical wave theory.
In the simplest case, a monochromatic wave of amplitude EE0 and frequency v

is incident at the right angle on an opaque screen with two narrow slits separated
by distance d (Figure 1.8). Due to diffraction (or, if you wish, according to the
Huygens principle [10,11]), each slit acts as an effective source of light, radiating
uniformly in all directions on the other side of the slit, so we have two over-
lapping diverging waves from two sources. The sources are coherent since they
act as “transformers” of one incident plane wave into two diverging ones (the so-
called wavefront-splitting interference [10]). Denoting the wavelength as l, we can
determine the directions q along which the waves from the two sources interfere
constructively:

d sin q ¼ ml; jmj ¼ 0; 1; 2; . . . ; l ¼ 2p
c
v
: ð1:17Þ

More generally, we can write the expression for the sum of two diverging waves as

EEðr; tÞ ¼ aEE0
eik�r1

r1
þ eik�r2

r2

� �
e�ivt 	 a

EE0

r
eikðr1�rÞ þ eik�ðr2�rÞ
� �

eiðk�r�vtÞ

¼ 2a
EE0

r
cos

kd sin q
2

� �
eiðk�r�vtÞ:

ð1:18Þ
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This expression is a mathematical formulation of the Huygens principle for the case
of two narrow slits. Here a � 2pi=k [7], EE0 is the amplitude of incident light
(polarization ignored), r1 and r2 are the distances between the observation point r
and slits 1 and 2, respectively, and the factors expðikrjÞ=rj describe secondary spherical
wavelets coming to this point from the elements of the wavefront passing through the
slits.4) The maximal intensity will be observed along the directions q satisfying the
condition kd sinq ¼ 2mp. Since k ¼ 2p=l, this condition is identical to (1.17).
Introducing the second (observational) screen a distance L � d away from the

first one (Figure 1.8), we can write sinq ffi y=L, where y is the distance between the
observation point and the center of the screen. The resulting intensity distribution
on the secondary screen is

IðyÞ � EE2ðyÞffi 4a2 I0
r2
cos2 p

d
Ll

y

� �
; r2 ¼ L2 þ y2; I0� EE2

0: ð1:19Þ

It produces alternating bright and dark fringes with the spatial period

Dy ¼ L
d
l: ð1:20Þ

y 

θ

d 

Screen 1 Screen 2

Figure 1.8 The double-slit experiment. The
distance d between the slits is exaggerated
for better clarity. In the actual experiment,
the separation between the slits is so small

that directions from them to a landing point y
make practically the same angle q with the
symmetry axis.

4) Strictly speaking, two narrow slits would produce two cylindrical waves, and we would
accordingly have

ffiffi
r

p
rather than just r in the denominators of the above expressions. But this

will not, for the given conditions, change the main results.
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This expression explains why at all we can observe spatial undulations on the screen
due to the periodic undulations in the light wave, even though a typical wavelength l

in the visible region of spectrum is �0.6mk. This is far below the minimal size we
can see with the naked eye. And yet, we can see the diffraction pattern in Young’s
experiment! This is because of the coefficient ðL=dÞ � 1 in Equation 1.20. In this
respect, the setup with two close narrow slits and a large distance between the two
screens acts as an effective magnifying glass for the wavelength, magnifying its
“image” (undulation period) on the screen by the factor L=d.
The intensity distribution (1.19) for y � L is shown in Figure 1.9. This is a typical

interference picture, regardless of the physical nature of interfering waves. The same
intensity distribution would be obtained with an acoustic wave in air or a surface
wave in a pond if such a wave were incident on a large plate with a pair of narrow slits
separated by a distance d � l.
Now, what happens if we gradually dim the incident light? According to Equa-

tion 1.19, this will only decrease the brightness of the interference pattern. If light is
truly a wave, then – no matter how faint it is – the observation screen will remain
continuously, albeit less and less brightly, illuminated, and exhibit the same pattern.
In other words, decrease in intensity will only result in decrease of the coefficient I0
in (1.19). This was indeed the conclusion of Young and it was well supported by his
observations. Thus, the double-slit experiment caused physicists to accept the view
of light as waves in a hypothetical medium (ether).
Ironically, under a different scenario Young’s experiment could have done exactly

the opposite. If Young had taken high-frequency, low-intensity light sources and
used short exposures and sufficiently sensitive light detectors, his work would have
provided compelling evidence of the corpuscular nature of light. Indeed, the
diffraction experiments under these conditions show gradual disintegration of
the continuous pattern into granular spots. When the brightness falls beyond the
visibility threshold, one can use special detectors or a scintillating screen. In the
limit of nearly zero intensity, nothing will remain of the continuous undulation
(1.19). Instead, one will only observe discrete and apparently random flashes on the
otherwise dark screen (Figure 1.10). Remarkably, all flashes have the same bright-
ness, or, if one uses photodetectors, their “clicks” sound equally loud (an actual

Figure 1.9 The diffraction pattern in the double-slit experiment.

Figure 1.10 The granular pattern in the double-slit experiment at low intensities.
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photodetector converts light into electric pulses, so in a real experiment one will see
identical peaks on the oscilloscope screen). Onemust conclude then that light comes
in identical portions: either one portion or nothing. This behavior has nothing to do
with periodic undulations of a monochromatic wave. It looks exactly as if the screen
were bombarded by identical particles that passed through the slits. If such
measurement techniques were available to Young, then all proponents of the
wave nature of light might immediately (at least, until new data were collected
from experiments with high intensities or long exposures) flock toward Newton’s
corpuscular camp. Accordingly, the word “photon” could have become a part of
scientific vocabulary about two centuries ago!
Suppose for a moment that history indeed took such a turn, forcing scientists to

accept the corpuscular view based on the low-intensity version of Young’s experi-
ment. And, if the particle picture were accepted as the final truth for light, it would be
considered equally true for electrons. So, assume that electrons are pure particles and
consider the same double-slit experiment, but with electrons instead of light [3]. We
will replace the incident wave in Figure 1.8 with a flux of electrons from a source (the
“electron gun”), all having the same kinetic energy. Distance d between the slits
must be much smaller in the case of electrons, so the described setup is merely a
thought experiment. Real experiments with electrons have been carried out with a
specially carved single crystal and used reflection from the crystal lattice rather than
transmission [9,12,13], but the basic features are still the same. So we can try to
visualize the electrons from the electron gun as bullets from amachine gun directed
toward two slits in a steel plate. Each bullet has a chance to pass through one of the
slits and hit the second screen, leaving a mark on it. In the end, we can record the
resulting distribution of bullet marks on the screen. The result will be the sum of two
independent contributions: one from the bullets that passed through slit 1, and the
other from the bullets that chose slit 2. These predictions can be confirmed by
two additional trials – one with only slit 1 open and the other with only slit 2 open
(Figure 1.11). In either case, the outcome can be represented by a curve describing

Figure 1.11 The double-slit experiment with
classical particles. Each dashed curve
represents statistical distribution of particle
landings through the corresponding slit. The

maximum of each curve is directly opposite the
respective slit. The solid curve shows the net
distribution with both slits open.
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the density of marks on the screen. In the first case, the curve peaks right opposite
the slit 1 since this is the place most likely to be hit by a bullet passing through this
slit. In the second case, the corresponding curve will have its peak at the point
opposite the slit 2. Then, in the case with both slits open the outcome will be just the
sum of both curves: since the presence of one slit has no bearing on the probability
for a bullet to pass through the other slit, the net probability (more accurately,
probability density rðyÞ) for a bullet to hit a point y will be

rðyÞ ¼ r1ðyÞ þ r2ðyÞ: ð1:21Þ
Let us now turn to the Supreme Judge – the Experiment. When carried out within
the full range of parameters, it shows a very strange thing. If the flux intensity is so
low that we have only one particle at a time passing through the slits, then each
arrival is recorded as a point hit on the second screen (Figure 1.10), so that nothing
reminds us of the diluted but still continuous pattern in Figure 1.9, characteristic of
a wave. This part of the Experiment suggests that electrons are pure particles.
But there is another part that contradicts this conclusion: The distribution of

the apparently random arrivals emerging after a long exposure is illustrated by
Figure 1.12, not Figure 1.11. It describes the diffraction pattern in Figure 1.9 and is
an unambiguous and indisputable signature of waves, not particles! It can only be
explained as the result of interference of waves passing through two separate slits. In
particular, it shows that there are points on the screen where particles never land,
even though each particle has high probability of landing there with either slit acting
separately. With both slits open, the net probability of landing at such points is less
than that with only one slit open! The actual probability distribution is not the sum of
the individual probabilities.
An attempt to combine both pictures on a higher level that includes all the described

results leaves us with a puzzle on that level as well. We said the results obtained for
low-intensity beams evidence the corpuscular aspect of matter and the ones for high
intensity show its wave nature. This could produce an impression that the wave
features are necessarily associated with a bunch of particles. But now we see that the

Figure 1.12 The double-slit experiment with QM particles. The diffraction pattern is the same as
shown in Figure 1.9 for waves.
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results are much more subtle. The statistics learned at long exposures shows both
corpuscular and thewave aspects already at low intensities. Even if wewere tempted to
think that a diffraction pattern results fromparticles interacting with one another, this
notion is immediately discarded when we turn to experiments with only one particle
at a time passing through the device. It seems that under such conditions there is no
room left for wave behavior! And yet, in no trial do we find a particle landing in the
middle between the bright fringes. We cannot avoid the conclusion that even a single
particle passing through the device has complete information telling it where it cannot
land and where it can – even being encouraged to land there. Such information can
exist only in a wave, in the form of instructions about directions of constructive and
destructive interference impinged on it by the geometry of both slits. Following these
instructions constitutes a wave behavior. Each particle in these experiments interferes
with itself, not with other particles. So already a single particle shows some features of
the wave behavior. And yet it crashes into the screen as a discrete unit, having nothing
to do with a continuous wave. Our classical intuition is insufficient to handle the
whole phenomenon.
Summary: We see a complete failure of classical physics when we attempt to apply

it to the phenomena described in this chapter. In particular, we see inadequacy of the
notion that an entity can be either a pure wave or a pure particle. Real objects of
Nature turned out to be neither exactly waves nor exactly particles. Rather, they are
something much more subtle, exhibiting sometimes one aspect, sometimes the
other, depending on experimental conditions.
What is then their true nature?
The rest of the book is an attempt to describe the answer to these questions as we

know it today.

Problem

1.1 Derive the Stefan–Boltzmann law using universal form (1.3) of the radiation
energy density in thermal equilibrium.
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