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1.1
Introduction

The concept of a plasma dates back to Langmuir (1928) and originates from the fundamental
difference between regions of electrical gas discharges which are distant from boundaries (bulk
of the discharge) compared with regions which adjoin the boundaries (sheaths).

1.1.1
Definition

Plasmas are quasineutral particle systems in the form of gaseous or fluid-like mixtures of free
electrons and ions, frequently also containing neutral particles (atoms, molecules), with a large
mean kinetic energy of the electrons and/or all of the plasma components (0.2 eV to 2 MeV per
particle) and a substantial influence of the charge carriers and their electromagnetic interaction
on the system properties.

The interactions between the electric charges of the plasma components show two aspects:

• Coulomb interaction among the charge carriers. Owing to the long range of the Coulomb
force in the case of large charge-carrier densities (ne � 1/λ3

D), each charge carrier
interacts simultaneously with many others (collective interaction).

• Formation of macroscopic space charges (in the frame of quasineutrality) as a consequence
of external influences and modification of charge-carrier movement in the electrical field
of these space charges.

Related to the quasineutrality and the presence of free charge carriers, the most intrinsic attribute
of the plasma state is its tendency to minimize external electric and magnetic fields inside the
bulk, in contrast to its behavior in the surrounding sheaths.
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Table 1.1 Subdivision of plasmas.

Low-temperature plasma High-temperature plasma
(LTP) (HTP)

Thermal LTP Nonthermal LTP
Te ≈ Ti ≈ T � 2 × 104 K Ti ≈ T ≈ 300 K Ti ≈ Te � 107 K

Ti � Te � 105 K
e.g., arc plasma e.g., low-pressure e.g., fusion plasmas

at normal pressure glow discharge

1.1.2
Types of Plasmas

Plasmas are frequently subdivided into low- (LTP) and high-temperature plasmas (HTP). A
further subdivision relates to thermal and nonthermal plasmas (see Table 1.1).

1.2
Starting Point for Modeling the Plasma State

There are three different basic approaches toward a theoretical description of the many-particle
plasma state: single-particle trajectories, kinetic and statistical theory, and hydrodynamic ap-
proximation.

1.2.1
Single-Particle Trajectories

This model is based on the motion of individual particles (e.g., under the influence of the Lorentz
force). Problem: The electric and magnetic fields in the plasma must be regarded as given and
cannot be obtained in a self-consistent manner from the cooperative movement of the particles.
Using Monte Carlo simulations the study of single-particle trajectories could be extended to
kinetic ensembles taking into account the effect of collisions. This technique is an alternative to
the kinetic theory.

1.2.2
Kinetic and Statistical Theory

On the basis of kinetic criteria each particle ensemble of the plasma is analyzed taking into
consideration the specific conditions and generalizing the kinetic theory of neutral gases to
plasmas. The ultimate goal is to be able to calculate the space and time dependence of all the
interesting distribution functions by solving the kinetic equations.

For nonthermal low-temperature plasmas the most important of these is Boltzmann’s equa-
tion (1872) for the energy or velocity distribution of the electron component. This equation
describes the balance of the particle density in phase space. The total time derivative of the
distribution function is the sole outcome of particle collisions, contained in the so-called colli-



1.3 The Role of Charge Carriers 3

sion integral, which usually encloses a multitude of terms for different collisions of electrons
(elastic, inelastic, collective, etc.). After explicit replacement of the external forces by the general
Lorentz force, which then appears as self-consistently given by electric and magnetic fields of
space charges and moving charge carriers, the collision-free approximation of the Boltzmann
equation reduces to the Vlasov equation.

The kinetic theory is the strongest instrument of plasma theory, e.g., for handling extreme
nonequilibrium conditions as well as deviations from the Maxwell distribution function in many
realistic plasmas.

1.2.3
Hydrodynamic Approximation

This model treats the plasma as a continuum and determines the interesting macroscopic char-
acteristics (density, flow, pressure, etc.) from the balance equations of the number, energy, and
momentum of each particle species. The balance equations are obtained as integrals of the
appropriate kinetic equation. A special form of this approximation is the so-called magneto-
hydrodynamics (MHD) model, in which the plasma is considered as an electrically conducting
liquid under the influence of magnetic fields.

1.3
The Role of Charge Carriers

The existence of charge carriers as the dominating components of the plasma is connected with
a series of characteristics which are also important in industrial applications. The most active
component of a nonthermal low-temperature plasma (LTP) is the hot electron gas. The high
mean kinetic energy of electrons results in the generation of electromagnetic radiation (lines
and continua) and in the production of numerous ionized, excited, and dissociated species of
increased chemical activity. Applications are plasma light sources and plasma chemical reactors.

Furthermore, the existence of charge carriers manifests itself in the following:

• occurrence of electrical conductivity,

• screening of electric fields,

• occurrence of a multitude of oscillations and waves, typical for the plasma (Langmuir
oscillations, ion acoustic oscillations, cyclotron oscillations, drift waves, surface waves,
Alfven waves, etc.), as well as corresponding instabilities (plasma turbulence),

• interaction with magnetic fields. This is an important aspect of modern plasma physics.
In the interaction with magnetic fields the whole spectrum and variety of the typical plasma
properties become effective, and

• formation of characteristic boundary sheaths due to the contact of plasmas with solid
surfaces. This is of particular importance in the technology of plasma processing.
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1.4
Facts and Formulas

1.4.1
Electron Energy Distribution Functions (EEDF)

Calculation of the distribution functions F for the velocity or energy of the electron component
under existing conditions in each case is the central problem in nonthermal low-temperature
plasmas. One approach is offered by solving the Boltzmann equation adapted to plasmas:

dF

dt
=

∂F

∂t
+ �c

∂F

∂�r
+

�FL

me

∂F

∂�c
= C(F ) (1.1)

where �r is the position vector of the particle and �c its velocity, and

�FL = eo ( �E + �c × �B) (1.2)

is the Lorentz force. The treatment of this equation has shown considerable progress during the
last third of the 20th century, especially with the handling of the complexity of the collision integral
C(F ) and the time and space variable terms (see, e.g., Chapter 2). However, the problem has not
been mastered at all and will continue into the 21st century. Sometimes the approximation of
distribution functions by simple formulas is desirable. On this occasion the following standard
terms for the electron energy distribution have proved to be valuable:

f̂0 (U) =
a

U
3/2
e

exp
[
− 1

m

(
U

Ue

)m]
with m > 0 (1.3)

and where

a = (1/m)(3−2m)/2m/Γ(3/2m) (1.4)

(see Table 1.2). A possible dependence on space and time of the kinetic energy e0U may be
incorporated in the distribution parameter Ue = Ue(�r, t). With m = 1, Eq. (1.3) yields the
Maxwell distribution, while m = 2 represents the Druyvesteyn distribution. Of course the
application of standard energy distributions in plasma physics is restricted to special cases, e.g.,
if only electrons with kinetic energies near the mean energy are of importance.

Table 1.2 Values of a for given m.

m 1 2 3

a 1.128 0.970 0.798

1.4.2
Kinetic Temperature of Electrons

The kinetic temperature Te of an electron gas is defined by means of the mean energy Uem,

3
2

kTe = e0 Uem with Uem =
∫ ∞

0
U3/2 f̂0 (U) dU (1.5)
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This results in

Te (kelvin) =̂ 7734 Uem (volt)

Using Eq. (1.3), we obtain

Uem = ε Ue with ε = m1/mΓ(5/2m)/Γ(3/2m) (1.6)

(see Table 1.3). For the Maxwell distribution we thus obtain

Te (kelvin) =̂ 11, 600 Ue (volt)

In most cases the approximation 1 V � 104 K is sufficient.

Table 1.3 Values of ε for given m.

m 1 2 3

ε 1.5 1.046 0.856

1.4.3
Coefficients for Particle and Energy Transport

The electron flow density depends on the electron density ne and the drift velocity �ve and is given
by

�je = ne �ve = − ne μe
�E − grad (neDe) (1.7)

The first term on the right-hand side represents the electrical field drift, the second one combines
the action of diffusion and thermodiffusion. Using the usual approximations the mobility μe

and the diffusion coefficient De are given by

μe = − 1
3

(
2e0

me

)1/2 ∫ ∞

0
λeU

∂f̂0

∂U
dU (1.8)

De =
1
3

(
2e0

me

)1/2 ∫ ∞

0
λe U f̂0 dU (1.9)

The particle flow is connected with a flow of energy,

�j∗
e = neUem �v∗

e = − ne μ∗
eUem

�E − grad (ne UemD∗
e) (1.10)

Uem μ∗
e = − 1

3

(
2e0

me

)1/2 ∫ ∞

0
λeU

2 ∂f̂0

∂U
dU (1.11)

UemD∗
e =

1
3

(
2e0

me

)1/2 ∫ ∞

0
λeU

2 f̂0 dU (1.12)
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Using a simple exponential approximation for the energy dependence of the free path λe for
momentum transfer of electrons:

1
λeN

= σm(U) = amUn (1.13)

where N is the particle density of the neutral gas and σm(U) is the cross section for momentum
transfer; the standard distribution equation (1.3) results in the following transport coefficients:

μe =
μ

amN

(
2e0

me

)1/2

U−(2n+1)/2
e

De = αUeμe Nernst–Townsend–Einstein relation

D∗
e = α∗Ueμe (1.14)

μ∗
e = γμe

with

μ =
m

2m−2n−1
2m

3
Γ
( 1+m−n

m

)
Γ
( 3

2m

) α = m
1−m

m
Γ
( 2−n

m

)
Γ
( 1+m−n

m

) (1.15)

α∗ = m
1−m

m
Γ
( 3

2m

)
Γ
( 5

2m

) Γ
( 3−n

m

)
Γ
( 1+m−n

m

) γ =
Γ
( 3

2m

)
Γ
( 5

2m

) Γ
( 2+m−n

m

)
Γ
( 1+m−n

m

) (1.16)

1.4.4
Generalized Boltzmann Equilibrium

In front of insulating walls or floating metallic surfaces a plasma shows, as a matter of principle,
inhomogeneities which are similar to the Boltzmann equilibrium in a neutral gas under the
action of external forces. These inhomogeneities should not be confused with sheath regions
because there is no violation of the plasma conditions. In particular, the quasineutrality remains
in force. Of course important differences from the Boltzmann equilibrium with neutral gases
exist in the plasma:

• The origin of the forces is space charges in the plasma.

• Deviations from the Maxwell distribution function must be taken into consideration.

• The distribution function may vary in space.

The first condition for the Boltzmann equilibrium is a vanishing particle flow in the flow direction.
Then Eq. (1.7) yields

�E = − 1
μe

grad (neDe)
ne

(1.17)

In the case of a Maxwell distribution which is constant in space, we have

�E = − Ue
grad ne

ne
= − grad V (1.18)
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and the concentration ne(�r) shows the well-known exponential behavior under the action of the
potential V (�r) according to the barometric formula:

ne (�r)
ne(0)

= exp
(

V (�r)
Ue

)
(1.19)

In this case the properties of the Maxwell distribution also provide for the energetic equilibrium
of the electrons (�j∗

e = 0). Every generalization (e.g., Ue = Ue(�r)) has to ensure additionally
that

�j∗
e = 0 , resulting in �E = − 1

Uem μ∗
e

grad (ne Uem D∗
e)

ne
(1.20)

Equations (1.17) and (1.20) determine the necessary conditions of the spatial variables Ue(�r),
V (�r), ne(�r) for generalized equilibrium. Hence for the standard distributions (Eq. (1.3)) and
with Eq. (1.13) it follows that

grad Ue

Ue
=

δ grad ne

ne
δ =

α∗ − αγ

(n− 1/2)(α∗ − αγ)− α∗ (1.21)

�E = −α

(
1 +
(

1
2
− n

)
δ

)
Ue grad ne

ne

Ue(�r)
Ue(0)

=
(

ne(�r)
ne(0)

)δ

(1.22)

For the Maxwell distribution, which holds for Ue = const., we have δ = 0. For non-Maxwell
distributions (δ �= 0) we obtain

ne(�r)
ne(0)

=
(

δ

α(1 + (1/2− n)δ)
V (�r)
Ue(0)

+ 1
)1/δ

(1.23)

Consideration of the spatial variations of the electron distribution function is of utmost impor-
tance in the case of deviations from the Maxwell distribution. Such deviations are common in
plasmas, mostly as a consequence of collisions with heavy particles. Consequently a detailed
analysis of the energetic relations of the electron gas is necessary. Very recently the nonlocal com-
plex nature of the power and momentum balance in space-dependent plasmas was studied for the
first time, starting from the Boltzmann equation (Winkler 1996, see also Chapter 2). Neglecting
collisions, the predominance and stability of the Maxwell distribution (e.g., in low-pressure dis-
charges, Langmuir paradox) should be a consequence of an energetic quasiequilibrium�j∗

e ≈ 0.
Table 1.4 shows numerical values for the particle and energy transport, using standard distri-

butions, while Figs. 1.1 and 1.2 contain some illustrations of the Boltzmann equilibrium and its
generalization.

1.4.5
Ambipolar Diffusion

Within the plasma the movements of ions and electrons are interconnected via electric space
charges. In the absence of external forces these space charges provide for equal electron and



8 1 Characteristics of Low-Temperature Plasmas Under Nonthermal Conditions – A Short Summary

Table 1.4 Numerical values for particle and energy transport,
calculated for three different standard distributions.

m = 1 (Maxwell distribution)

n = −1 –1/2 0 1/6 1 3 /2

α 1 1 1 1 1 1
α∗ 2 1.667 1.333 1.222 0.667 0.333
γ 2 1.667 1.333 1.222 0.667 0.333
δ 0 0 0 0 0 0
μ 0.752 0.5 0.376 0.354 0.376 0.667

m = 2 (Druyvesteyn distribution)

n = −1 –1/2 0 1/6 1 3/2

α 0.627 0.697 0.798 0.842 1.253 2.093
α∗ 0.956 0.956 0.956 0.956 0.956 0.95
γ 1.797 1.667 1.524 1.476 1.198 1
δ 0.243 0.275 0.315 0.333 0.444 0.543
μ 0.647 0.5 0.406 0.383 0.324 0.333

m = 4

n = −1 –1/2 0 1/6 1 3/2

α 0.489 0.571 0.692 0.746 1.282 2.443
α∗ 0.659 0.716 0.789 0.820 1.036 1.269
γ 1.713 1.667 1.616 1.579 1.498 1.427
δ 0.453 0.488 0.522 0.534 0.598 0.636
μ 0.593 0.5 0.429 0.409 0.334 0.307

ion drifts. For instance in the direction toward isolating walls the steady-state drift velocities of
electrons and ions converge to the common velocity vam of ambipolar diffusion (ne ≈ ni = n)

vam = −Dam
grad n

n
(1.24)

where Dam =
μe Di + μi De

μe + μi

is defined as the ambipolar diffusion coefficient. Generally we have μe � μi, which results in

Dam ≈ α μi Ue (1.25)

The regime of ambipolar diffusion (je = ji) shows some analogy to the Boltzmann equilibrium
(je = ji = 0). Therefore the formulas of Section 1.4.4 are also valid approximately for ambipolar
diffusion. Instead of formula (1.17) we obtain for the internal electric ambipolar field:

�Eam = − 1
μe

(
1− μi

μe

)
grad (neDe)

ne
(1.26)
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Fig. 1.1 Equilibrium values of the electron concentration and temperature
for given electrical potentials (full curves: Boltzmann equilibrium, i.e.,
Maxwell distribution with Ue = const.; dashed curves: Generalization
for a Druyvesteyn distribution with Ue = Ue(r) and n = 0 in Eq. (1.13)).

1.4.6
Condition of Quasineutrality

In order to guarantee the status of free particles for electrons and ions in the plasma the field
energy of space charges is limited to values much less than the kinetic energy of the charge
carriers. This results in tolerable deviations Δne = neo − ne from exact neutrality neo = nio:

|Δne|/neo ≤ λD/L (1.27)

where λD is the Debye screening length (see Section 1.4.7), and L is a characteristic plasma
length (e.g., the radius of a plasma column). Within the Debye length considerable deviations
from neutrality may occur in plasmas. In this case the dynamics of such deviations is governed
by the Langmuir plasma frequency.

1.4.7
Debye Screening Length

The electrical potential distribution of a charge carrier inside a plasma is different from the cor-
responding distribution in a vacuum. In a plasma each charge-carrier polarizes its surroundings
and thereby reduces the interaction length of the Coulomb potential Vc which is compensated
in part by the space charge potential VR (see Fig. 1.3). In the case of ions of charge Ze0 and with
e0VD � kTi the screened potential is
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Fig. 1.2 Equilibrium values of the electron temperature and the electrical
potential for a preset concentration profile ne(r)/ne(0) = 1 − (r/r0)2;
curves according to the conditions of Fig. 1.1.

VD(r) =
1

4πε0

e0

r
exp
(
− r

λD

)
λ2

D =
ε0 kTe

e2
0 ne0 (1 + ZTe/Ti)

(1.28)

Outside the Debye length λD the potential may be neglected (VD ≈ 0). This cutoff is typical
for plasma conditions and of great importance for the interaction of charge carriers. Equation
(1.28) is based on the assumption that in a sphere of radius λD many charge carriers exist, i.e.,

4π

3
ne0 λ3

D � 1 (1.29)

Then the plasma state is termed ideal. In this case the Coulomb interaction energy between
two charge carriers at the mean distance is much smaller than the thermal energy. For nonideal
plasmas the electrostatic energies exceed the thermal energy. Figure 1.4 displays calculated
values of the Debye length.
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1.4.8
Degree of Ionization

Calculation of the degree of ionization in a closed form is only possible for plasmas in the exact
equilibrium state. The Saha–Eggert equation then holds. For single ionization the following
equation is valid:

x2

1− x2 = 2
(

2πme

h3

)3/2
g1E

5/2
0

g0p

(
kT

E0

)5/2

exp
(
−E0

kT

)
(1.30)

where x = ne/(n0 + ne) is the degree of ionization, p = (n0 + 2ne)kT is the kinetic pressure,
g0 and g1 are statistical weights, and E0 is the ionization energy.

Figure 1.5 shows according to Eq. (1.30) some curves of constant degree of ionization. Under
the nonequilibrium conditions of LTP the calculation of ne or x requires a detailed analysis of
the corresponding balances. The energy balance of the electrons then results in a very simple
and useful expression for the estimation of the degree of ionization. In the steady state and for
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Fig. 1.4 Debye screening length λD versus electron concentration (r̄,
mean distance of electrons; a0, radius of the first Bohr orbit).

ne � n it reads

ne

n
≈ 2

3
1

δloss

τe n

e0 Ue

P/V

n2 (1.31)

where τe is the mean free time between electron collisions, P/V is the power density supplied
to the plasma and δloss is the mean fraction of energy that the electrons lose in a single collision.
For elastic collisions, δloss = δel = 2me/M is of the order of δel ≈ 10−4–10−5. The inelastic
energy loss δinel is typically larger by one to two orders of magnitude. The quantity τen/δloss is a
function of Ue, but often its variations are rather small. Compared to the range of P/V n2 it may
be regarded as constant. This is a rather good approximation at higher gas pressures (p ≥ 103

Pa).

1.4.9
Electrical Conductivity

Under the action of an electrical field �E the free electrons and ions of the plasma gain drift
velocities and generate an electric current density of

�j = − e0 (ne �νe − ni �νi) = e0 (ne μe + ni μi) �E (1.32)

Generally, since of μe � μi and ne ≈ ni, only the contribution of electrons determines the
current density. Then the electrical conductivity σ of a plasma is given by

σ = e0 ne μe (1.33)

The concentration ne and mobility μe of the electrons are given by, e.g., Eqs. (1.8) and (1.31).
The elementary kinetic approximation for the conductivity reduces to

σ = e2
0neτe/me (1.34)
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Fig. 1.5 Curves for constant degree of ionization in conformity with the
Saha–Eggert equation.

With regard to the degree of ionization two cases may be distinguished:

• Weakly ionized plasmas. The mean free time of flight τe is defined by electron–atom
collisions and is independent of ne. Consequently, σ ∝ ne.

• Fully ionized plasmas. τe is determined by Coulomb collisions with τe ∝ 1/ne and the
conductivity is constant.

For a fully ionized thermal plasma the corresponding equation is named the Spitzer formula

σ =
64
√

2π ε2
0

e2
0
√

me

(kTe)3/2

ln Λ
(1.35)

where ln Λ is the Coulomb logarithm; its numerical value for the majority of plasmas lies in the
range from 15 to 20.
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1.4.10
Plasma Frequency

Representative of the multitude of dynamic processes in plasmas is the longitudinal electrical
oscillations (Langmuir 1928). The occurrence of space charges generates in general a quasielastic
coupling of the electrons to the ionic background and results in oscillations with a frequency ωP

given by

ω2
P =

e2
0 ne

ε0 me
(1.36)

The electron plasma frequency (Eq. (1.36)) is critical for the propagation of electromagnetic
waves in plasmas. In the range ω < ωP the damping of the waves is strong. For ω = ωP

electromagnetic waves show strong reflection at the plasma interface. This is related to the
refractive index n2 = 1− (ωP /ω)2 (Eccle relation).




