
1

1

Polymerization-Induced Self-assembly of Block Copolymer
Nano-objects via Green RAFT Polymerization
Shinji Sugihara

University of Fukui, Graduate School of Engineering, Department of Applied Chemistry and Biotechnology,
3-9-1 Bunkyo, Fukui 910-8507, Japan

1.1 Introduction

Many biomolecules have specific three-dimensional structures in water or
hydrophobic environments, and form higher order structures with high func-
tions. To construct a highly functionalized and higher order structure with a
synthetic polymer, it is necessary to examine the fundamental formulation to
control the polymer’s primary structure and to build the polymers up into a
higher order structure. From this point of view, this chapter focuses on block
copolymer synthesis as a molecular technology for self-organization. The key
technology is in situ “polymerization-induced self-assembly (PISA).”

1.2 Block Copolymer Solution

Self-assembly of AB diblock, ABA, or ABC triblock copolymers to form a vari-
ety of macromolecular nanostructures is well known in both the solid state and
in dilute solutions, with various prominent functions stemming from the struc-
ture [1–21]. In particular, amphiphilic AB diblock copolymers have been demon-
strated to form a variety of self-assembled aggregate structures in dilute solutions,
where the solvent preferentially solvates one of the blocks. Thus, the basic driv-
ing force for solution self-assembly is the solvophobic effect (hydrophobic effect
in aqueous solution). These are well documented in other reviews [1–5]. For
the amphiphilic AB diblock copolymer in a block-selective solvent, the precise
nanostructure, i.e. morphology, is primarily a result of the inherent molecular
curvature described by its mean curvature H and its Gaussian curvature K , which
are given by the two radii of curvatures R1 and R2 in Figure 1.1. The curvature is
related to the surfactant packing parameter, P, which is given by Eq. (1.1). The
value of P depends on the relative core-block volume (v), the effective interfacial
area (a0) at the core–shell/solvent interface, and the chain length normal to the
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Figure 1.1 Various self-assemblies formed by solvophilic block copolymers in a block-selective
solvent. The type of structure formed is due to the inherent curvature of the molecule, which
can be estimated through calculation of its dimensionless packing parameter, P.
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(1.1)

The regions of spherical micelles are favored when P ≤ 0.33, cylindrical micelles
are produced when 0.33< P ≤ 0.50, and vesicles are formed when 0.50< P ≤ 1.00.
Although vesicles are flexible bilayer aggregates, the planar bilayer of lamellae is
ideally favored when P= 1. This concept was originally introduced by Israelachvili
et al. [22, 23] to explain self-assembly of small-molecule surfactants, and was later
extended to include diblock copolymer self-assembly by Antonietti and Förster
[24].

In practice, morphology is controlled by various factors, especially for
small-molecule amphiphiles. Assemblies such as spherical micelles, hexagonals,
cubes, and lamellar lyotropic crystallines are highly dynamic with rapid exchange
of molecules between micelles and the unimer state in solution. Thus, as shown
in Figure 1.2, the packing geometry can be tuned by simply adjusting the
surfactant concentration with the same solvent properties, i.e. without additives
and at a constant temperature. Figure 1.2 shows an ideal phase sequence, which
is only a very generalized picture, and the sequence may be different for some
amphiphiles. However, this rapid exchange of molecules is very important
to determine the structure and morphology of amphiphilic self-assembled
aggregates [4, 23–25].

For many macromolecular amphiphiles, in contrast to small-molecule
amphiphiles, the rate of exchange of unimers between colloidal aggregates and
individual diblock copolymer chains can be negligible, leading to a range of
kinetically frozen, i.e. nonergodic, structures. In other words, most amphiphilic
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Figure 1.2 The “ideal” sequence of phases from L1 to HI to Lα observed upon increasing
amphiphile concentration, in a binary small-molecular amphiphile–solvent system (ergodic
system). Intermediate phases (a and b) are sometimes observed. The normal micellar structure
is termed the L1 phase. At higher concentrations, micelles can fill space efficiently to form a
cubic phase by packing (a). Upon increasing the concentration further, the micelles change
from spherical to rod-like ones. The rod-like micelles then pack into a hexagonal (HI) phase.
The HI phase sometimes changes to a bicontinuous cubic or mesh structure phase (b), which is
characterized by nonzero mean curvature and negative Gaussian curvature. The phase then
changes to bilayers, which tend to stack into a lamellar phase (Lα). Lamellar phases can be
found in different phase states including lamellar crystalline, lamellar gel, and lamellar fluid.
When the solvent becomes the minority phase, inverse structures are formed such as the
inverse hexagonal phase (HII), inverse micellar liquid phase (L2), and intermediates such as the
inverse bicontinuous phase (c), and inverse micellar cubic phase (d).

block copolymers have been recognized for their many advantages, such as low
critical micelle concentration, robust assemblies, and the ability to trap numer-
ous different structures thanks to their kinetic stability due to slow kinetics
[4, 26]. For example, this stability of the polymeric micelles is a very important
issue for a drug (solubilizing substance) carrier for application in drug delivery
systems (DDSs). This is because polymeric micelles can retain the loaded drug
in the same morphology for a prolonged period of time even in a very diluted
condition in the body [19, 20, 27]. In the early stages of research on DDS,
kinetically frozen spherical micelles were used as the drug vehicle. Subsequently,
worms (aka cylinders or filomicelles) were found to be better than spherical
micelles due to their long circulation time in vivo [28, 29] and altered cell inter-
nalization pathway compared to spherical constructs [30]. As another example,
complex polyprodrug amphiphiles were synthesized from block copolymer
amphiphiles, which possess advantages of facile fabrication, high drug loading
content and loading stability, active drug protection, blocked premature leakage,
and on-demand controlled release [31]. Thus, it is no exaggeration to say that
nanoparticles in the biomedical arena are being developed by utilizing the
stability of the block copolymer self-organization. Hence, development of the
formulation of various self-assemblies is essential and techniques for extracting
unstable or metastable assemblies are strongly desired.
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1.3 Synthesis of Block Copolymers via RAFT
Polymerization

In general, controlled/living polymerization refers to chain polymerization
without termination and chain-transfer reaction. Since Szawrc discovered living
anionic polymerization in 1956 [32, 33], the process has been used in various
polymerization mechanisms. In 1962, the first reports on block copolymer
self-assembly were published [34]. The advent of controlled/living free-radical
polymerization (CRP) [35–38] based on the reversible deactivation of the
propagating radicals has revolutionized the domain of polymer chemistry and
opened the door to the possibility of designing new polymer architectures and
creating new materials with targeted properties. A number of fundamental block
copolymers for the assemblies mentioned above have been recently synthesized
using controlled/living polymerization techniques, especially CRP.

As for CRP, atom transfer radical polymerization (ATRP) [37–40],
nitroxide-mediated polymerization (NMP) [41, 42], iodine transfer poly-
merization (ITP) [43, 44], organotellurium-mediated radical polymerization
(TERP) [45, 46], cobalt-mediated radical polymerization (CMRP) [47], reversible
addition–fragmentation chain-transfer (RAFT) polymerization [48–50], and
reversible chain-transfer-catalyzed polymerization [51, 52] are well known.
For almost all polymerizations, the abovementioned PISA has been adopted.
Examples of these include ATRP [53–55], NMP [56], ITP [57], and TERP
[58, 59]. However, the vast majority of reports at present have focused on the
RAFT process, which results in block copolymer formation and self-assembly.
Well-documented reviews of this field have been published by Armes and
coworkers [60–62], Pan and coworkers [63], Charleux et al. [64], Lowe [65], etc.
Incidentally, the author is also one of the coworkers of Prof. Armes.

CRP addresses the philosophy of green chemistry summarized in the 12 main
principles that were established by Anastas and Warner in 1998 [66]. CRP meets
the criteria of atom economy, and is thus a “green” polymerization [67]. In fact,
RAFT polymerization is arguably the most versatile process since it is performed
without a metal catalyst, is tolerant to a wide variety of reaction conditions
and functionalities, and can be performed on existing conventional free-radical
polymerization setups (Scheme 1.1) [48–50]. However, there is a problem of the
resulting polymers having undesirable color and odor [68]. RAFT proceeds via a
degenerative transfer process and relies on the use of compounds employed as
chain-transfer agents such as thiocarbonylthio compounds. The R group initiates
the growth of polymeric chains, and the Z group activates the thiocarbonyl bond
toward radical addition and stabilizes the resultant adduct radical.

Using such CRP techniques including RAFT polymerization, diblock copoly-
mers for an amphiphile are generally synthesized in good solvent (or bulk) for
both blocks. After purification, the desired self-assembly is usually achieved
by post-polymerization processing, where solvent quality affects the solubility
of the core-forming block. Examples also include self-assemblies in mixtures
of good and selective solvents [1–23, 69] and assemblies by stimulus [70–72].
Pioneering work was conducted by Eisenberg’s group over the past two decades,
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Scheme 1.1 The generally accepted mechanism of RAFT polymerization.

which has established a dominant paradigm for processing block copolymer
assemblies in which a common solvent (tetrahydrofuran [THF]) is gradually
decreased in quality for one block by addition of a selective solvent (methanol),
driving the copolymer to aggregate, as in polystyrene-b-poly(acrylic acid)
(PSt-b-PAA) [12, 13]. Frozen assemblies can also be formed from the block poly-
mer. The formulation is performed as follows. The block copolymer prepared
by living anionic polymerization is dissolved in good solvent, N ,N-dimethyl
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formamide (DMF), and then is slowly dialyzed against water (Figure 1.3) [14].
While these assemblies may temporarily be in equilibrium at the onset of
aggregation, further addition of the non-solvent pushes the critical aggregation
concentration toward zero and drives the solvophobic block to solidify, locking
the copolymer into one of a wide range of possible morphologies. However,
such processing allows the attainment of only kinetically stable assemblies
partly because the polymerization temperature is below the glass transition
temperature (Tg) of the second block [73], which is typically conducted in highly
dilute solutions (<1% solids concentration). Thus, efficient synthesis of block
copolymer self-assemblies with well-defined morphologies in concentrated
aqueous solution is widely recognized to be a difficult technical challenge. In
addition, it is also a formidable challenge to obtain different morphologies
without changing the solvent composition from an identical block copolymer
that is kinetically frozen.

1.4 Polymerization-Induced Self-assembly

1.4.1 PISA Using RAFT Process: Emulsion and Aqueous Dispersion
Polymerization

To overcome the abovementioned technical challenges, polymerization for-
mulations have been developed using the RAFT process. Initially, Gilbert
and coworkers focused on ab initio RAFT emulsion polymerization using
water-insoluble monomers such as methyl methacrylate and styrene with an
amphiphilic macromolecular RAFT agent (the so called “macro-chain-transfer
agent [CTA]”) [74]. The amphiphilic macro-CTA can mediate polymerization
in both aqueous and organic phases, and is prepared with a water-soluble
monomer such as acrylic acid (AA) and a hydrophobic monomer such as n-butyl
acrylate (BA). The resulting hydrophobic moiety is an oligomer, which forms
rigid micelles with a poly(acrylic acid) shell (RAFT-containing seeds). Thus, the
self-assembly approach relies on micellar particle nucleation via self-assembly
of amphiphilic macro-CTA. This is a very efficient formulation to induce the
formation of kinetically trapped spheres (Figure 1.4).

Charleux and coworkers have made considerable progress toward this
important scientific objective utilizing various emulsion polymerization formu-
lations. A water-soluble polymer precursor is chain-extended by polymerizing a
water-immiscible monomer via living radical polymerization including RAFT so
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Figure 1.4 AA-BA-RAFT macro-CTA for RAFT emulsion polymerization of styrene or methyl
methacrylate and the ab initio RAFT emulsion polymerization model of styrene.

as to produce an amphiphilic diblock copolymer in situ [75–78]. This approach
leads to PISA and can produce diblock copolymer nanoparticles in the form
of spheres, worms, or vesicles, with the final copolymer morphology being
dictated primarily by the relative volume fractions of the hydrophilic and
hydrophobic blocks. The best advantage of RAFT emulsion polymerization is
that many hydrophobic (water-insoluble) monomers are available, unlike the
RAFT aqueous dispersion polymerization described below. However, their
formation mechanism is complicated because macro-CTA must be sufficiently
hydrophobic for micellar nucleation to dominate; otherwise, particles may form
mainly via homogeneous nucleation [79, 80].

In contrast to RAFT emulsion polymerization, RAFT dispersion polymeriza-
tion is a much simpler formulation for self-assembly since the initial reaction
solution is homogeneous and block copolymer architecture, such as the pack-
ing parameter of the solvent, can be directly applied. An important prerequisite
for such formulations is the selection of a water-miscible monomer, which, when
polymerized, forms a water-insoluble polymer. Normally, this would simply lead
to macroscopic precipitation. However, when using a reactive steric stabilizer
(macro-CTA), stable colloidal dispersions can be obtained if an appropriate col-
loid stability mechanism prevails [81]. This typical formulation using aqueous
dispersion polymerization is shown in Figure 1.5.

The first report of RAFT aqueous dispersion polymerization was published
by Hawker and coworkers, who prepared poly(N ,N ′-dimethylacrylamide)−poly
(N-isopropylacrylamide) diblock copolymer (PDMA-b-PNIPAM) nanoparticles
from PDMA macro-CTA with the aid of microwave irradiation, with the further
addition of a bis(acrylamide) cross-linker during the N-isopropylacrylamide
(NIPAM) polymerization to produce thermoresponsive nanogels as shown in
Figure 1.6 [82]. Similar nanogels were prepared in the same year by Charleux
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Figure 1.5 Typical formulation using aqueous dispersion polymerization: a soluble diblock
copolymer is initially obtained after the second block copolymerization from a steric stabilizer
block, but at some critical degree of polymerization the growing second block becomes water
insoluble, which causes in situ self-assembly to form a micellar nanoparticle. Upon further
polymerization, various morphologies can be formed depending on the polymerization
parameters. The primary structural feature governing the final nanoparticle morphology is the
packing parameter, i.e. the relative volume fractions of the constituent blocks.
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Figure 1.6 Initial research on RAFT aqueous dispersion polymerization of NIPAM for the
synthesis of nanogels.

and coworkers using NMP instead of RAFT polymerization [83]. NMP is
also a metal-free polymerization but is available to only a small number of
monomers [42].

Recent synthetic advances in RAFT aqueous dispersion polymerization
now allow spherical micelles, stable or metastable worm-like micelles or
vesicles, and nonspherical strange assemblies composed of well-defined AB
diblock copolymers to be prepared directly in concentrated aqueous solution
as described in detail later [84–87]. However, there is a limited number of
suitable core monomers that possess the requisite “water-miscible monomer”
and “water-insoluble polymer” characteristics for the RAFT aqueous dispersion
polymerization. This is a pressing issue to solve.

In the case of RAFT dispersion polymerization in a variety of media such as
alcohols including alcohol/water mixtures, some core monomers including com-
modity styrenes can be utilized. The first research on this was reported by Zeng
and Pan [88]. Representative examples of other media are polar media [88], non-
polar media [89], ionic liquids [90], and supercritical CO2 [91]. Reviews of RAFT
dispersion polymerization in nonaqueous media are shown in Refs. [64, 65].
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1.4.2 Reagents for RAFT Aqueous Dispersion Polymerization

Aqueous dispersion (precipitation) polymerization is a heterogeneous polymer-
ization process carried out in the presence of a polymeric stabilizer in a reaction
medium using a water-soluble initiator. Thus, in RAFT aqueous dispersion poly-
merization, a highly hydrated macro-CTA as a steric stabilizer is needed for high
dispersion stability with good blocking efficiency. Suitable reagents are listed in
Sections 1.4.2.1–1.4.2.3.

1.4.2.1 RAFT Agents
The structure of the RAFT agent is not crucial because most hydrophilic
macro-CTAs prepared by RAFT polymerization can be utilized and its influence
on a polymer of sufficient molecular weight seems to be small. However,
RAFT polymer chain ends are often susceptible to hydrolysis when RAFT
polymerizations are conducted in water. In particular, dithiobenzoates are more
susceptible to in situ hydrolysis than trithiocarbonates [92]. However, commonly
used RAFT agents such as dithiobenzoates and trithiocarbonates are available
for aqueous dispersion polymerization giving high monomer conversions and
good blocking efficiencies. This may be because polymerization proceeds in a
waterless field, i.e. a hydrophobic core. As dispersion polymerization progresses,
the growing second block becomes a water-insoluble block, which causes in
situ self-assembly to form a micellar nanoparticle. Thus, the penetration of
monomers into the hydrophobic core gradually becomes more difficult, which
causes the molecular weight distribution to become larger than in homogeneous
polymerization. Since the macro-CTA is required to have high hydrophilicity,
carboxylic RAFT agents are often used. However, ionization of the carboxylic
acid end group on a shell block derived from the RAFT agent occasionally
induces a morphology transition [93].

1.4.2.2 Steric Stabilizer (Macro-CTA, Shell)
The macro-CTA plays both the role of a steric stabilizer block and the func-
tion of the resulting block copolymer. In RAFT aqueous dispersion polymer-
ization, a wide range of steric stabilizers are used as shown in Figure 1.7. Most
CTAs for shell structures are well documented for both aqueous dispersion and
emulsion polymerization [61]. Among them, functional examples include zwitte-
rionic poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) with biocom-
patibility and enhanced salt tolerance [84, 85, 94], nonionic poly(ethylene oxide)
(PEO) with biocompatibility [87, 95], and anionic poly(ammonium 2-sulfatoethyl
methacrylate) with the ability to include particles within inorganic crystalline
hosts [96], which is used in a 2:1 v/v ethanol/water mixture.

1.4.2.3 Monomers (Core)
The choice of an appropriate monomer is difficult for aqueous dispersion poly-
merization. Literature examples include NIPAM [82], N ,N′-diethylacrylamide
(DEAA) [97], 2-methoxyethyl acrylate (MEA) [87, 98, 99], 2-hydroxypropyl
methacrylate (HPMA) [84–86, 93, 95, 96], and di(ethylene glycol) methyl
ether methacrylate (DEGMA) [100] as shown in Figure 1.8. These monomers
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Figure 1.7 Representative macro-CTAs for RAFT aqueous dispersion polymerization: (a) PMPC,
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Figure 1.8 Representative monomers for RAFT aqueous dispersion polymerization.

possess the requisite “water-miscible monomer” and “water-insoluble poly-
mer” characteristics. Strictly speaking, since these monomers have a weakly
hydrophobic nature, they produce thermoresponsive polymers that have an
appropriate hydrophilic/hydrophobic balanced side chain. For example, lower
critical solution temperatures (LCSTs) are approximately 32, 33, under 0, around
0, and 26 ∘C for NIPAM [101], DEAA [102, 103], MEA [99], HPMA [104],
and DEGMA [100, 105], respectively. Since these polymers are synthesized
above the LCST, the requisite “water-miscible monomer” and “water-insoluble
polymer” characteristics of dispersion polymerization are fulfilled. The weakly
hydrophobic nature of the core-forming block leads to interesting thermore-
sponsive behavior for the assemblies. For example, worms form free-standing
gels at room temperature but undergo reversible degelation upon cooling as a
result of a worm-to-sphere transition [106, 107]. Analogous thermoresponsive
worm gels have also been reported by Monteiro and coworkers [108, 109].
An and coworkers reported tunable sized nanogels using poly(ethylene glycol)
methyl ether acrylate prepared via PISA [99, 100], analogous to the initial RAFT
aqueous dispersion of NIPAM [82].
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1.4.3 Representative RAFT Aqueous Dispersion Polymerization

As a representative aqueous dispersion RAFT polymerization, RAFT polymer-
ization of HPMA in water is shown using macro-CTA based on biocom-
patible PMPC as the solvated block [84, 94]. This formulation is the chain
extension of PMPC with HPMA in water, which produces a hydrophobic
poly(2-hydroxypropyl methacrylate) (PHPMA) block that drives in situ self-
assembly to form various assemblies, as shown in Figure 1.9.

Using the same PMPC25 macro-CTA, various PMPC25–PHPMAx diblock
copolymers were directly prepared in water by varying the total solids content
of the formulation. The combined mass of HPMA and PMPC25 macro-CTA
(the mass of the free radical initiator is considered negligible) was initially fixed
at 10 wt% solids concentration. Both the PMPC25 macro-CTA and the HPMA
monomer were initially fully soluble in the aqueous reaction solution, but the
aqueous dispersion polymerization of HPMA led to in situ phase separation
and self-assembly, with the final morphology of the PMPC25–PHPMAx diblock
copolymer assemblies dictated solely by the initial reaction conditions. For
example, the resulting polymer exclusively formed spherical particle morpholo-
gies in situ at 10 wt% solids concentration. A systematic increase in the target
degree of polymerization (DP) of the PHPMA block from 100 to 400 leads to
a monotonic increase in the particle diameter, while maintaining the spherical
morphology. It is a common phenomenon that larger spherical morphology is
invariably obtained when the chain length of the core-forming block, PHPMA, is
increased. This is also well documented in the case of another spherical micellar
aggregation formed by diblock copolymers in selective solvents [54, 55, 110].

However, dramatic changes in block copolymer morphology were observed
when the aqueous dispersion polymerization of HPMA was conducted under
increasingly concentrated conditions, as shown in Figure 1.10. For example,
spheres, worms, or vesicles were observed for the PMPC25–PHPMA400 series:
spheres were obtained at 10% solids concentration, both spheres and worms
were obtained at 12.5% and 15%, a pure worm phase was obtained at 16.2%,
both worms and vesicles were obtained at 17% and 20%, and purely vesicles
were obtained for Y ≥ 22.5%. The phase diagrams are shown in Figure 1.10,
where for a given mean DP of the PMPC block, the final particle morphology
obtained at full conversion is solely dictated by (i) the target DP of the PHPMA
block and (ii) the total solids concentration at which the HPMA polymerization
is conducted. Here, varying the target DP of the PHPMA block at a fixed 25%
solids concentration leads to similar morphological control. Thus, for the series
of MPC25-PHPMA400 at 25 wt% solids, pure phases of spheres, worms, or
vesicles were observed. This approach resembles the “ideal” sequence of phases
of small-molecular amphiphiles in Figure 1.2 and lipids in nature produced in
high concentrations to spontaneously form vesicles. Before this study, literature
examples were simply achieved by varying the diblock copolymer composition.
The effect of varying the total solids concentration has not been properly
explored for such RAFT aqueous dispersion polymerizations.

The mean core width can be controlled by the DP of the core-forming PHPMA
chains, as expected from the packing parameter of Figure 1.1. Furthermore,
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Figure 1.10 Phase diagram constructed for the PMPC25-PHPMAm (M25Hm-Y) formulation by
systematic variation of the mean target degree of polymerization of PHPMA (m) and the total
solids concentration (Y w/w%) used for each synthesis. Source: Sugihara et al. 2011 [84].
Copyright 2011. Reproduced with permission of American Chemical Society.

the core-forming PHPMA chains within the worms are fully extended, while
those of the PHPMA chains within the spheres are intermediate between the
fully stretched and fully collapsed states. This information is very important
for controlling the formation of various morphologies. In addition, using the
phase diagram in Figure 1.10 as a predictive “roadmap” enables the direct, repro-
ducible, and highly efficient preparation of pure phases comprising either block
copolymer vesicles or well-defined worms in aqueous solution. For example,
metastable worms of toroids or loops can be seen in a detailed kinetic study in
the synthesis of PMPC25–PHPMA400 at 25% solids concentration.

In this way, the in situ self-assembly synthetic route produces frozen, noner-
godic structures in aqueous solution. Thus, thanks to this study, two formidable
technical challenges of formulation concentrations and different morphologies
using identical and kinetically frozen block copolymers were first overcome using
RAFT aqueous dispersion polymerization.

In the same period, robust formulations comprising the PHPMA core block
and poly(glycerol monomethacrylate) (PGMA) as the hydrophilic stabilizer
block were reported by Blanazs et al. [86]. Careful monitoring of the in situ
polymerization by transmission electron microscopy revealed various novel
intermediate structures including branched worms, partially coalesced worms,
nascent bilayers, “octopi,” “jellyfish,” and finally pure vesicles that provide
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important mechanistic insights regarding the evolution of particle morphology
during the sphere-to-worm and worm-to-vesicle transitions.

These two formulations [84, 86] advanced various RAFT aqueous dispersion
polymerizations, especially using HPMA. The fundamental polymerization is
derived from the size-controllable nanolatexes of PGMA-PHPMA prepared
by RAFT aqueous polymerization [111], and the primary polymerization is
regarded as a “green” RAFT polymerization [48].

The PHPMA system has been expanded to the PEO-PMEA system [87].
PEO-PMEA diblock copolymers were synthesized by RAFT aqueous dispersion
polymerization of MEA using PEO macro-CTA, as shown in Figure 1.11. Both
segments are well known to be bio- and blood-compatible polymers. This formu-
lation enables the production of various particle morphologies, such as spheres,
worms, and vesicles, from the same block copolymer in water by controlling the
solids concentration in the polymerization mixture. As an application for DDS,
worms and vesicles are preferable and more efficient in terms of circulation time
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Figure 1.11 RAFT aqueous dispersion polymerization of MEA using the PEO macro-CTA
(n = 113) at 70 ∘C. Various morphologies can be directly prepared, depending on either the
total solids concentration or the DP of the PMEA block. The representative AFM (dynamic
mode) image of PEO113-b-MEA400 prepared at 30.0 wt% solids is shown (right).
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and cell entry than spherical micelles [28, 29]. Thus, it is anticipated that these
PEO-PMEA formulations will be useful for biomedical applications.

As an example of complex shells, Williams et al. utilized a judicious binary
mixture of CTAs, nonionic PGMA, and cationic PQDMA for RAFT aqueous
dispersion polymerization of PHPMA [112]. Higher cationic character led to
the formation of kinetically trapped spheres. This is because more effective
electrostatic stabilization prevents sphere–sphere fusion. If a wholly cationic
stabilizer is used, only spheres can be obtained [113, 114]. However, using a
binary mixture of a nonionic and a cationic stabilizer allows access to cationic
spheres, worms, or vesicles. This is because the nonionic stabilizer dilutes the
charge density within the coronal layer. In our research introduced in preprint
[115], when the whole PQDMA or protonated PDMA is used in the presence
of a large amount of NaCl, the resulting assemblies of PQDMA-PHPMA or
protonated PDMA-PHPMA allow access to spheres, rods, toroids, or vesicles.
Thus, the final morphology can be dictated by the amount of NaCl, as shown in
Figure 1.12 [115].

In the study of PGMA/PQDMA-PHPMA [112], the use of 5 mol% PQDMA
stabilizer enabled preparation of a 12.5% w/w cationic worm gel that exhibited
a zeta potential of +20 mV and a storage modulus of 137 Pa, as demonstrated
by variable temperature rheology studies. This worm gel proved to be ther-
moresponsive: it underwent reversible degelation upon cooling from 25 to
5 ∘C. Finally, such cationic gels exhibited weak antimicrobial activity toward the
pathogen Staphylococcus aureus.

For other interesting morphologies such as toroid, octopi, or jellyfish, which
are metastable structures, anisotropic particles can be prepared via RAFT aque-
ous dispersion polymerization [85]. RAFT synthesis is carried out in the presence
of a cross-linker as in the PMPC–PHPMA formulation in Figure 1.13, showing
the preparation of PMPC50–(PHPMAm-stat-EGDMAx) (m = 100–400; x = 0–7)
diblock copolymer nanoparticles. At either zero or relatively low levels of ethy-
lene glycol dimethacrylate (EGDMA) cross-linker (x≤ 2 for m= 400), only spher-
ical morphologies were observed. However, using higher levels of EGDMA (x= 6,
or up to 1.50 mol% based on HPMA) led to increasing particle anisotropy, with
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HOOC
HOOC

NC

NC

NC

S

S

OH

S

N

N

N N

N

N
H

N
2HCl

H

OO
OO

O O

NH

S

x

S

S

n

15

1,4-dioxane, 70 °C
V-501

CADB

Protonated PDMA-b-PHPMA

DMA

acetate buffer
pH 4.0, 50 °C

VA-044
NaCl

HPMA

PDMA
macro-CTA

n = 15

VA-044

+

Figure 1.12 Synthesis of the protonated PDMA25-b-PHPMAx assemblies via RAFT aqueous
dispersion polymerization. Using this facile approach, spheres, rods, toroids, or vesicles can be
directly prepared, depending on the amount of NaCl at the constant solids. The inset is AFM
(dynamic mode) image of a toroid for PDMA25-b-PHPMA300 prepared at 25 wt% solids in the
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both a worm-like morphology and a novel “lumpy rod” morphology (comprising
fused nano-sized aggregates of primary spherical particles) being observed. In
the case of emulsion polymerization for PGMA-PHPMA, the effect of adding
a third comonomer such as benzyl methacrylate leads to “framboidal vesicles.”
These morphologies may indicate that the formulations are not dispersion, but
seeded, emulsion polymerizations. These may be applied to complex nanocarri-
ers for polyprodrug amphiphiles, as proposed by Liu and coworkers [31].

The formulations and the resulting polymers can be utilized in various fields,
e.g. biomedical applications such as DDS [116], and Pickering emulsifiers using
worms [117] or vesicles [118] for producing stable oil-in-water emulsions. Such
emulsifiers using vesicles are also applied to DNA-mediated self-organization,
which leads to interconnected artificial organelles [119]. These assemblies are
prepared from the environmentally benign approach of PISA (which involves no
toxic solvents, is conducted at relatively high solids concentration, and requires
no additional processing) and is readily amenable to industrial scale-up, since it
is based on commercially available starting materials.

In addition to RAFT aqueous dispersion polymerization, nonaqueous
dispersion polymerization can be applied to toughened epoxy resins with block
copolymer worms [17] and films with wrinkly surface patterns [120]. Thus, it is
anticipated that these formulations will be useful for both fundamental research
and industry.

1.5 Promising Polymerization Technology

One of the ultimate goals of PISA using RAFT polymerization is to obtain assem-
blies of freely controlled morphology. For this purpose, the number of polymers
available to serve as steric stabilizers and cores must be increased. As a first
step, various synthetic approaches are currently under development in our group.
Although radical, cationic, and anionic initiators are used in chain polymeriza-
tions of vinyl monomers (strictly speaking, unsaturated monomers), they cannot
be used indiscriminately, since all three types of initiation do not work for all vinyl
monomers [121]. Monomers show varying degrees of selectivity with regard to
the type of reactive center that will cause their polymerization. Most monomers
will undergo polymerization with a radical initiator. In other words, RAFT radical
polymerization is available for these monomers because it is based on free radical
polymerization. In practice, however, among unsaturated monomers, homopoly-
merization of 1-alkyl alkenes (α-olefines), 1,1-dialkyl alkenes, vinyl ethers, and
aldehydes or ketones cannot be established. Polymers using these building blocks
are generally prepared by ionic polymerization, and these monomers except for
1-alkyl alkenes are only amenable to cationic polymerization. Thus, RAFT poly-
merization of these exclusive cationically polymerizable monomers is an urgent
issue. Therefore, we have focused on vinyl ethers, which are typical cationic poly-
merizable monomers.

Touse macro-CTA for RAFT polymerization, well-defined CTA-functionalized
polymers are needed and there are several methodologies for their preparation.
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These methodologies can be classified into two types of polymerizations:
controlled/living cationic polymerization and direct RAFT radical polymeriza-
tion. The former can also be divided into polymerizations based on termination
(A and B) [110, 122] and initiation methods (C and D) [123, 124] and those using
known living cationic polymerization and novel RAFT cationic polymerization
(E and F) [125, 126] as shown in Figure 1.14. In the case of A and B, the key to
success in the introduction of the RAFT moiety is to utilize a RAFT agent of
the carboxylic trithiocarbonate/SnBr4 initiation system in the presence of an
additive such as ethyl acetate or dioxane for living cationic polymerization of
vinyl ethers. The living cationic polymerization is initiated from a proton derived
from the carboxylic RAFT agent. After a certain period, the polymerization is
quenched and the RAFT group as a counteranion is concurrently recovered,
followed by the RAFT process of radical polymerization. For C and D, the
living cationic polymerizations of vinyl ethers proceed under the synthesized
BVCT-CF3COOH adduct/EtAlCl2 and XTVE-CF3COOH adduct/EtAlCl2
initiating system in the presence of ethyl acetate. Both systems show a living
polymerization nature and the resulting polymers have a high number of average
end functionality. However, poly(vinyl ether) macro-CTA prepared from car-
boxylic RAFT agent contains hemiacetal esters as a relatively weak covalent bond
for A and B, and BVCT-HX and XTVE-HX adducts are needed, resulting in a
complicated synthesis. In contrast, metal-free RAFT cationic polymerization
(MRCP) is also used for in situ introduction of the thiocarbonylthio moiety
into poly(vinyl ether)s. Our group designed a MRCP with RAFT radical and
metal-free living cationic polymerizations in the absence of a thiocarbonylthio
compound using HCl⋅Et2O [125, 126], and Kamigaito and coworkers used triflic
acid as reported by Webster et al. of DuPont in 1990 [127]. This technique
enables the production of various block copolymers between radically and
cationically polymerizable monomers using both cationic and radical RAFT
processes in one pot. Thus, this technique would lead to novel PISA.

Another notable technique is the direct RAFT polymerization of hydroxyl-
functional vinyl ethers [128–130]. Although it has been demonstrated that
vinyl ethers cannot be inherently homopolymerized via the (controlled) radical
mechanism and either no polymer or only oligomers can be obtained via the
radical mechanism [131, 132], RAFT radical polymerization has been achieved.
The primary key to success in the radical polymerization of vinyl ethers is
hydrogen bonding between the vinyl ether oxygen and the hydroxyl group in
the pendant of the vinyl ether. This hydrogen bonding reduces the reactivity
of the growing radical, suppressing unfavorable side reactions. The resulting
hydroxyl-functional vinyl ethers include hydrophilic poly(2-hydroxyethyl
vinyl ether), poly(diethylene glycol monovinyl ether), and thermoresponsive
poly(4-hydroxybutyl vinyl ether) (LCST∼ 42 ∘C) [133, 134]. These polymers act
as excellent steric stabilizers (macro-CTA) for nanoparticles. Such unprece-
dented RAFT radical polymerization of vinyl ethers will lead to the synthesis of a
wide range of novel copolymers and the development of a radical polymerization
system, and eventually “polymerization-induced self-assembly.”
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