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In the beginning . . . darkness was upon the
face of the deep.
And God said, Let there be light: and there was
light.

Genesis 1:1-3

1.1
Introduction

Light has been a trusted probe of
a variety of aspects of the universe
since the beginning of scientific inquiry.
Today, regardless of whether searching
for gravitational waves, exploring the
fundamental properties of quantum
mechanics, or designing metamaterial,
light continues to play a critical role in
revealing nature and engineering tools
to enhance life. In this chapter, we
review a few key elements of classical
and quantum light. A comprehensive
review of light is well beyond the scope
of this chapter. Thus, we have chosen
to focus on the properties that are most
often encountered in the laboratory while
providing some context and history.

Light, an electromagnetic (EM) field,
is an intimate coupling between time-
dependent electric and magnetic fields.
Classically, the EM field is described
quantitatively through Maxwell’s equa-
tions (Section 1.3.1), where it can

be viewed as a wave1) – a distur-
bance – satisfying the wave equation,

∇2� = εµ
∂2�

∂t2
(1.1)

In Eq. (1.1), ε and µ are the permittivity
and permeability of the medium through
which the light is traversing (

√
1/εµ = v

is the speed of light or phase velocity in
the medium), and ∇2 is the Laplacian.2)

The form of the solution depends on the
coordinate system – rectangular, spheri-
cal, and so on – in which ∇2 is expressed,
as we discuss in Section 1.3.2. However,
in general, the solution for the so-called
running wave in one dimension is

�(x, t) = f (x ± vt) (1.2)

1) Christiaan Huygens, a contemporary of Isaac
Newton, viewed light as a wave prior to the
mathematical formulation as we now know
it. Newton, on the other hand, was convinced
that light was a stream of corpuscles.

2) The Laplacian is shorthand for

∇ · ∇
which can be written as

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

in rectangular coordinates.
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4 1 Electromagnetic Radiation

where x describes the distance that the
disturbance moves as t increases. The
‘‘−’’(‘‘+’’) sign indicates motion in the
positive (negative) x direction.

In vacuum, ε → ε0, µ → µ0, and
v → c = √

1/ε0µ0, the vacuum light
speed. Special relativity tells us that c
sets a ‘‘speed boundary’’ across which
information cannot flow. Specifically,
those of us living in a ‘‘sub-c’’ universe
are prohibited from achieving speeds
equal to or larger than c as well as
those living in a ‘‘super-c’’ universe
from speeds lower than c. Light waves
in vacuum are very special and differ
from other waves that we encounter in
everyday life. There is no rest frame for
light and light travels at the same speed
in all frames.

As is true of all waves, light is
characterized by a wavelength (λ) and
a frequency (ν). In vacuum, these
quantities are linked by c,

ν ≡ c

λ
(1.3)

In media different from vacuum v = c/n
where,

n =
√(

ε

ε0

) (
µ

µ0

)
(1.4)

is the index of refraction and the quan-
tities in parentheses are the electric
and magnetic dielectric constants respec-
tively; µ differs slightly for µ0 for most
cases of interest. The more general rela-
tionship between λ and ν is

ν = v

λ
= c

λ0
(1.5)

where λ0 is defined as the vacuum
wavelength. By definition, ν is medium

independent and maintains its vacuum
value so

λ = λ0

n
(1.6)

We note that it is possible for the speed of
massive particles to exceed the speed of
light in media. Shock waves that result
are similar to a sonic boom for sound
waves. In the case of light, it is called
Cherenkov radiation.3) The emitted light
is confined to a cone, the half angle of
which is defined by

α = cos−1

(
c

nvp

)
(1.7)

where vp is the particle speed.
The wavelength spectrum of light is

vast, ranging from radio waves to γ -
rays, with characteristic wavelengths as
large as astrophysical objects to as small
as nuclei, respectively (see Section 1.2).
A narrow light source, such as a line-
narrowed continuous wave (CW) laser, is
often said to emit a ‘‘single frequency;’’
such light is termed monochromatic
light. Monochromanicity, however, is a
relative statement. Monochromatic as
compared to what? All known sources
of light emit within some bandwidth – a
spread in wavelength (�λ) or frequency
(�ν) – be it as broad as the solar
spectrum or as narrow as the resonance
line of an atom.4) While λ and ν are
inversely proportional, it is helpful to

3) The 1958 Nobel Prize in Physics went to Pavel
A. Cherenkov for his discovery in 1934 that
bears his name, which he shared with Ilya M.
Frank and Igor Y. Tamm for their explanation
(Cherenkov, Frank and Tamm, 1958).

4) Microwave sources and state-of-the-art ultra-
stable lasers can have widths of a fraction of a
Hertz. Even still, �ν �= 0!
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Fig. 1.1 Definition of rays and wave fronts (a) and paraxial
rays (b) where α � 1 rad.

recognize that

∣∣∣∣�λ

λ

∣∣∣∣ =
∣∣∣∣�ν

ν

∣∣∣∣ (1.8)

Classically, the treatment of light falls
into two categories: geometrical and
physical optics. In geometrical optics,
the wave properties (e.g., diffraction)
are ignored. Conceptually, we let λ → 0
and instead discuss rays. While we do
not review the usage of rays in this
chapter, we do point out that ray tracing
is employed extensively for designing
optical systems. Rays are related to waves
in that they are perpendicular lines
joining the wave fronts (see Figure 1.1).
The wave fronts turn out to be the
surfaces of constant phase and so rays
point in the direction of energy flow.
Thus, rays from a point source are
radial lines perpendicular to spherical
surfaces. Typically, when dealing with
rays, we focus on a subset of all the rays
called paraxial rays. These rays are nearly
parallel or form a small angle about
a preferred direction. In the example
shown in Figure 1.1, the ray traversing
the center of the lens is the preferred
direction and is called the optical axis.
Paraxial rays deviate from the optical

axis by such a small amount that sin α �
tan α � α. Rays are useful for describing
refraction, the bending or redirection of
light at the interface between two media
with different indices of refraction, and
reflection. Refraction, responsible for
focusing of light by lenses and the
angular spread of the �λ components
after passing through prisms, is a
result of momentum conservation and
is succinctly stated through Fermat’s
principle: light traverses a path from A
to B that is an extremum of the optical path
length (OPL).5) That is,

δ(OPL) ≡ δ

(∫ B

A
n(s)ds

)
= 0 (1.9)

where s is the geometric path. Fermat’s
Principle leads to two important proper-
ties of light. First, the law of reflection,

θi = θr (1.10)

5) The principle is often stated as the shortest
path, that is, δ(OPL) would be a minimum.
However, the calculus of variation only uses
the fact that OPL is stationary; the second
derivative is not considered. Thus, while
usually the case, the path taken is not
necessarily the minimum optical path.



6 1 Electromagnetic Radiation

where θi (θr) is the incident (reflected)
angle. The second is Snell’s Law,

n1 sin θ1 = n2 sin θ2 (1.11)

relating the incident (θ1) and refracted
(θ2) angles for a ray refracted (i.e., bent)
as it passes through an interface between
two media with different indices of
refraction.

It is interesting to note that Fermat’s
principle (ca 1657) is closely related to
Maupertu’s principle in mechanics (ca
1744) for self-contained systems obeying
conservation laws,

δ

(∫ B

A
pds

)
= 0 (1.12)

where p is the momentum. Equa-
tion (1.12) is the principle of least action6)

when formulated more generally as

δ

(∫ B

A
L dt

)
= 0 (1.13)

with L being the Lagrangian.7) These
equations show that particles and rays
of light assume rectilinear motions in
free space or when there are no forces
(fields8)) and the index of refraction is
constant. In general, the trajectories of
particles and light are stationary. The
index of refraction plays the role of a field

6) Like with Fermat’s principle, least action is
a bit of a misnomer; stationary action would
be more appropriate as again only the first
derivative is considered.

7) We point out that Hamilton, Lagrange, Euler
and others played a role in the development of
the principle as well.

8) Even in vacuum, the trajectory of light is
deflected by a gravitational field. See, for
example, Refs. Misner, Thorne and Wheeler
(1973) and Hartle (2003) for a discussion of
light in a gravitational field.

causing rays to deviate from linearity
when not constant just like forces
(potentials) cause particle trajectories to
bend.

The geometrical approximation is
good when the variation of the physi-
cal features of the media are large in
comparison to λ. When they become
comparable to λ, the wave properties
of the light must be considered. The
realm of physical optics allows descrip-
tions of elements such as apertures and
grating. It further provides a framework
to discuss fundamental concepts such as
diffraction (the angular spread of a beam
of light and the bending of light around
obstacles Section 1.7), interference (the
superposition of two or more waves,
leading to constructive and destructive
sums depending on the relative phase
of the waves Section 1.8), and coherence
(issues associated with how stable the
phase is in time and across wave fronts).

The smallest unit of light is called the
photon, light quanta after the German
Lichtquanten meaning portions of light.9)

While centuries before the age of quan-
tum physics, Isaac Newton championed
the idea of light as a stream of cor-
puscles, photons are quantum entities
whose behavior under certain conditions
are well known. However, the answer to
the question ‘‘What is a photon precisely’’
continues to be illusive. Over the years,
the definitions tend to fall into one of
three distinct categories:

• a fundamental particle;
• an elementary excitation of the EM

field; or
• something registered by a

photodetector.

9) Gilbert N. Lewis is given credit for coining
this name (Lewis, 1926).



1.2 The Spectrum of Light 7

In this chapter, we do not argue for or
against one view over another.

Massless photons, like massive parti-
cles, carry both energy, hν, and momen-
tum, h/λ, where h is Planck’s constant.
However, the photon wavefunction must
be constructed with care. There have
been suggestions that the photon can be
understood as simply a classical field plus
vacuum fluctuations10) – a semiclassical
approach if you will. There are cases,
however, where such an approach gives
the wrong answer (as determined by ex-
perimental observation). Thus, we have
two regimes: classical light and quantum
light. By definition, quantum light is any
behavior of light that cannot be explained
by classical fields, that is, solutions to
the wave equation. An example would
be squeezed light (Henry and Glotzer,
1988).

The photon is considered to be a
fundamental particle. It has an intrinsic
spin, which is an integer of unit
magnitude. Thus, it obeys Bose statistics,
but it has only two states of helicity
(aligned or antialigned with its direction
of propagation) because being massless,
it has no vacuum rest frame. In addition
to spin, light has other nonclassical
features, typically revealing themselves
through intensity noise, correlations, and
counting statistics. Finally, both classical
fields as well as photons can carry orbital
angular momentum and support vortices
and solitons (Desyatnikov, Kivshar and
Torner, 2005; Kivsha and Agrawol, 2003;
Pismen, 1999).

We conclude this introduction by
pointing out that if we substitute h/λ

for p into Eq. (1.12), we get a different

10) Vacuum fluctuations refer to the photons that
are created spontaneously from the vacuum.

formulation of Fermat’s principle,

δ

(
h

∫ B

A

ds

λ

)
= 0 (1.14)

The close analogy between Eqs (1.12)
and (1.14) suggests an intimate con-
nection between matter and light, from
which one can postulate a wave equation
for matter similar to that for light. As
we discuss in Section 1.9, if we iden-
tify the wavelength of the particle as
h/p (the de Broglie wavelength) and
the index of refraction with (U − V)/U,
where U and V are the total and
potential energies, respectively, the
time-independent Schrödiger equation
emerges in a form that is not very dif-
ferent from the wave equation for light.
Thus, photons, like matter, exhibit both
wave and particle behavior.

With this overview as a backdrop, the
remainder of this chapter is devoted to
the details of selected characteristics of
light. We start with the description of
EM spectrum in Section 1.2 followed
by a review of the wave equation
and its solutions in Section 1.3. In
Section 1.4, we consider radiometric
issues and address the vector nature
of light in Sections 1.5 and 1.6. We
cover diffraction and interference in
Sections 1.7 and 1.8 and conclude the
chapter by further discussing the photon
matter analogy in Section 1.9.

1.2
The Spectrum of Light

The EM spectrum is traditionally di-
vided into the seven regions shown in
Figure 1.2. It should be understood that
the boundaries between these regions
as well as those between subregions are
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Fig. 1.2 The electromagnetic radiation spectrum.

not hard and fast, nor are the number of
subregions unique. The most familiar re-
gion of the spectrum, the visible region,
consists of wavelengths that range from
about 0.40 µm at the blue end to 0.78 µm
at the red end. Table 1.1 shows the corre-
sponding colors for the wavelengths be-
tween. The visible subregions are a good
example of the nonuniqueness of sub-
bands of regions; for example, some ref-
erences include cyan between green and
blue while others insert indigo between
blue and violet. Breaking the spectrum
into six rather than seven or eight bands
is of little consequence typically, because
most objects emit a range of colors (i.e.,
�λ is relatively broad) or multiple colors
(e.g., λ1 + λ2 + · · · + λn again spanning
a large �λ), making the identification

of a pure color a rare event. Of course,
when �λ is small as it often is for some
lasers, our eyes in fact do perceive a
pure color. For example, consider the red
Helium–Neon laser at 632.8 nm or the
green doubled Nd : YAG laser at 532 nm.

Subbands also exist for the other
regions of the EM spectrum. Tables 1.2–
1.4 give some of the more familiar sub-
bands for the other regions. More about
the spectrum of light can be found in
Ref. (HyperPhysics, 2006).

1.3
Basics of Electromagnetic Waves

As mentioned in the introduction,
physical optics is concerned with the

Tab. 1.1 The approximate wavelength, frequency, and energy
ranges for six primary visible color bands. Energies increase
from left to right.

Color Wavelengths
(nm)

Frequencies
(×1014 Hz)

Energies
(eV)

Red 780–625 3.8–4.8 1.6–2.0
Orange 625–590 4.8–5.1 2.0–2.1
Yellow 590–565 5.1–5.3 2.1–2.2
Green 565–500 5.3–6.0 2.2–2.4
Blue 500–435 6.0–6.9 2.4–2.8
Violet 435–380 6.9–7.9 2.8–3.6
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Tab. 1.2 The approximate wavelengths, frequencies, and energies of key radio bands.

Designation Wavelengths (m) Frequencies
(MHz)

Energy (meV)

AM radio 560–190 0.540–1.600 (2.33–6.62) × 10−3

TV 5.5–0.33 54–890 0.223–3.68
FM radio 3.40–2.78 88.1–108.1 0.364–0.447
Cell phone 0.43, 0.35, 0.18, 700, 850, 1700 2.89, 3.52, 7.03

0.16, and 0.14 1900, and 2100 7.85, and 8.68
Satellite radio 0.129–0.128 2320–2345 9.59 and 9.70
WiFia 0.124–0.121 2412–2480 9.97–10.1
Radar 300–0.001 1–300 000 0.00414–1241

aThe IEEE 802.11b/g/n standards communicate at 2.4 GHz. The IEEE 802.11a standard
communicates at 5 GHz, but is essentially obselete.

Tab. 1.3 The approximate wavelength, frequency, and energy ranges of the
three primary infrared (IR) bands.

Color Wavelengths (µm) Frequencies
(×1014 Hz)

Energies (eV)

Far IR 1000–10 3 × 10−3 –0.3 1.24 × 10−3 –0.124
IR-C 10–3.0 0.3–1.0 0.124–0.414
IR-B 3.0–1.4 1.0–2.14 0.414–0.886
IR-A 1.4–0.7 2.14–4.28 0.886–1.77

wave properties of light, which we
examine in this section. We first review
how Maxwell’s equations lead to the wave
equation for the components of the E and
B fields. We examine EM wave solutions
and their properties, primarily focusing
on laser light in homogeneous media
in the absence of charge and current
sources.

1.3.1
Maxwell’s Equations

As we alluded to in the introduction, a
wave theory of light predates Maxwell’s
treatment. In the late 1800s, it was
believed that the aether, an omnipresent

elastic medium, supported light propa-
gation much like the atmosphere or ma-
terial supports sound waves. Although
the theory based on the aether had con-
sistency issues and required ad hoc
assumptions to sustain it, its belief was
so pervasive that even the null result
of the experiments by Michelson and
Morley could not easily dethrone it.11) It
was not until Maxwell showed that his

11) The Michelson-Morley experiment was de-
signed to measure a shift in interference
fringes (see Section 1.8.1 for a discussion of
interference) caused by a change in the speed
of light moving with and perpendicular to
the aether. The experiment is discussed in
Refs. Michelson (1881) and Michelson and
Morley (1887a,b).
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Tab. 1.4 The approximate wavelength, frequency, and energy ranges of the three
primary ultraviolet (UV) bands.

Designation Wavelengths (nm) Frequencies
(×1014 Hz)

Energies (eV)

UVA 400–320 7.45–9.37 3.10–3.88
UVB 320–280 9.37–10.7 3.88–4.43
UVC 280–200 10.7–15.0 4.43–6.2
Vacuum UV 200–50 15.0–60.0 6.2–24.8
Extreme UV 80–2.5 37.5–1.2 × 103 15.5–500
Soft X-ray 4.5–0.15 (0.7–2) × 104 275–8.3 × 103

mathematical formulation of Gauss’s,
Ampere’s and Faraday’s laws (Maxwell’s
equations) lead naturally to an EM wave
equation that could account for observed
phenomena without resorting to arbi-
trary assumptions that the aether idea
was abandoned.

Maxwell’s equations in a medium with
sources (represented by ρ, the charge
density) and currents (represented by
j, the current density) can be written
as

∇ · D = ρ (1.15)

∇ · H = 0 (1.16)

∇ × E = j − ∂B
∂t

(1.17)

∇ × H = ∂D
∂t

(1.18)

where

D = εE (1.19)

B = µH (1.20)

These equations are simplified in the
absence of sources, ρ → j → 0, and
are the only cases we consider in this
chapter.

1.3.2
Wave Equation

It is very straightforward to show that E
and H of the EM field satisfy Maxwell’s
equations and the wave equation simul-
taneously in a homogeneous medium
where ∇ε = ∇µ = 0, by taking the curl
of Eqs (1.17) and (1.18). Using the vec-
tor identity, ∇ × ∇ × V = ∇(∇ · V) −
∇2V, and the fact that ∇ · ∇ × V = 0
leads to

∇2E = εµ
∂2E
∂t2

(1.21)

∇2H = εµ
∂2H
∂t2

(1.22)

which, by inspection, are the same as
Eq. (1.1) because εµ = n2ε0µ0 = 1/v2.
Of course, the general solution is of the
form of Eq. (1.2), however, the specifics
depend on the geometry and constraints
of the problem.

1.3.2.1 Plane Waves
The simplest solution for EM waves
is that of a plane wave, where each
component of E and H is a function
of ξ = û · r − vt. Recall that û · r =
constant defines a plane with û being a
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dimensionless unit vector perpendicular
to that plane. It is straightforward then
to show that

∂E
∂t

= − v
∂E
∂ξ

(1.23)

∇ × E = û × ∂E
∂ξ

(1.24)

and similarly for H. Because E and
H must satisfy Eqs (1.15)–(1.18) (again
assuming a homogeneous medium), we
can further write

û × ∂E
∂ξ

=
√

µ

ε

∂H
∂ξ

(1.25)

û × ∂H
∂ξ

= −
√

ε

µ

∂E
∂ξ

(1.26)

Integrating Eqs (1.25) and (1.26) and set-
ting the constant to zero (no contribution
from the background) leads to

E = −
√

µ

ε
û × H (1.27)

H =
√

ε

µ
û × E (1.28)

This implies that E, H, and û form a
right-handed orthogonal triad and that
light is a transverse field, that is, E
and H oscillate in a plane normal to
the propagation direction, in homoge-
neous media (including vacuum) with-
out sources.

1.3.2.2 Scalar Harmonic Waves
The most common building block for
the EM wave is a wave that is har-
monic in both time and space. These
exhibit sinusoidal variation. Typically, a
scalar wave can be expressed as either

a real quantity12)

�(r, t)=A(r, t) cos(k · r ± ωt +ϕ) (1.29)

or a complex quantity,

�(r, t) = A(r, t)ei(k·r±ωt+ϕ) (1.30)

where A is an amplitude that is a slowly
varying function of position and time
(compared with the rapid variation of the
sinusoidal arguments), k is the wavevec-
tor (|k| = 2π/λ) and ω (= 2πν) is the
angular frequency. Now it should be clear
that û. The harmonic time dependence
of the wave allows the wave equation to
be written as

∇2ψ + k2ψ = 0 (1.31)

Because E and B are vectors, the EM wave
is actually a vector wave. Generally, each
component of the field satisfies the wave
equation (Eq. 1.31) and has solutions like
those in Eq. (1.29) and (1.30).

The argument of the harmonic wave
consists of two phase terms, ξ± ≡ k · r ±
ωt, the dimensionless version of ξ , and
ϕ. A constant ξ− (ξ+) defines a profile
or phase of the wave that moves toward
more positive (negative) r as time evolves
at a speed

v = ω

|k| (1.32)

known as the phase velocity. The second
phase term is often referred to as the
relative phase of the wave. It can be
a fixed constant or time dependent.
When it is a constant or has a well
defined time dependence, it gives rise

12) Note, we have multiplied ξ by |k| (|k|v = ω

because |k| = nω/c) to make the argument
dimensionless.



12 1 Electromagnetic Radiation

to coherence. When it varies randomly
with time, the light is said to be
incoherent. Furthermore, when ϕ(t) =
const·tn, the frequency changes with
time. A linear dependence simply shifts
the frequency while higher powers chirp
the frequency – as the wave passes the
frequency either increases or decreases,
depending on the sign of the constant.
More complicated functions are possible
as well.

1.3.2.3 Waves with Curved Phase Fronts
Although plane waves are highly conve-
nient to use, they are appropriate only
when dealing with light that is effectively
far from its source.13) Many situations
do not fall into this category. It is beyond
the scope of this chapter to discuss non-
planar waves extensively, but we will give
two examples. For a more extensive dis-
cussion, the reader is directed to the text
by Cowan, 1968. First, when the fronts
are not planes, the solutions in Eq. (1.30)
must be modified to correspond to the
Laplacian being expressed in a differ-
ent coordinate system. For example, a
spherical wave takes the form

�(r, t) = A

r
ei(kr±ωt+ϕ) (1.33)

where kr = constant. The phase fronts are
clearly spheres. A bit more complicated
example would be a cylindrical wave,
which follows

�(ρ, z, θ, t)

= AJm(kρ)e±ikzze±imθ e−i(ωt+ϕ) (1.34)

where Jm(kρ) is the mth order Bessel
function of the first kind (which are

13) By far field, we mean that the phase fronts are
planes. This can be achieved near the source
with lenses.

regular at the origin)14) with m being
a positive integer, and

k2 =
(ω

c

)2 + k2
z (1.35)

The surfaces of constant phase are just
cylinders in this case.

1.4
Energy, Intensity, Power, and Brightness

Because the EM field is composed of E
and B fields, its Energy Density is given by

u = 1

2

(
ε|E|2 + µ|H|2) (1.36)

As a wave, this energy flows as described
by the Poynting Vector,

S = E × H (1.37)

The Intensity of the light is defined as the
time average of S,

I = |〈S〉| ≡ 1

2
|E × H| = n

2µc
|E|2 (1.38)

which has dimensions of watt per square
centimeter.15) In Eq. (1.38) we used the
fact that ω/|k| = c/n. In vacuum, using
the fact that ε0µ0 = 1/c2, we can write

I = 1

2µ0c
|E|2 = 1

2
ε0c|E|2 (1.39)

� |E|2
240π

(1.39a)

14) The boundary conditions of the problem
might dictate a different Bessel solution.
For example, if the origin were excluded,
Bessel functions of the second kind, which
are singular at the origin, would have to be
considered as well.

15) Technically, the SI unit is watt per square
meter but in the United States, it is typically
expressed as watt per square centimeter .
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In this form, I has dimensions of watt
per square centimeter (watt per square
meter) when the dimensions of E are
volt per centimeter (volt per meter).
The Power, P, delivered is the integrated
intensity over the exposed area,

I = P

A
(1.40)

where A is the area.16) A related quantity,
the Brightness, which is sometimes
referred to as the Radiance, takes into
account the solid angle, ��, through
which the intensity is delivered and is
given by

B = I

��
(1.41)

which has dimensions watts per stera-
dian per square centimeter. It is inter-
esting to note that an unfocused laser
delivering 1 mW of power at 780 nm
is considerably brighter than a 100 W
light bulb, 1.7 × 107 W/sr-cm2 for a typi-
cal laser beam17) with w0 = 1 mm and
�� = 2 × 10−7 sr compared with 0.6
W/sr-cm2 for a light bulb at a distance
of 1 m radiating into 4π . Thus, a laser is
considered very bright, which can do real
damage to an unprotected eye. Finally,
laser light can be further characterized
by its spectral brightness, the brightness
per unit optical bandwidth,

SB = B

�ν
(1.42)

with units as watts per steradian per
square centimeter hertz. The brightness
and spectral brightness are often confused

16) The area of a laser beam is given by πw2
0,

where w0 is the beam radius.
17) For a diffraction limited laser beam, �� =

πθ2
d where θd = λ/πw0.

with each other as well as with the
Luminance, a photometric quantity re-
ferring to a perceived brightness related
more to how the eye responds.

1.5
Polarization

As mentioned earlier, EM waves are
actually vector waves, because E and B
point in specific directions. Polarization
captures this feature, and is defined in
terms of the direction of E.18) The most
general case is elliptical polarization,
which has two limiting cases, linear
and circular polarization. These names
are so chosen because they describe
the geometric shapes E that sweeps out
while looking at the light along (parallel
or antiparallel to) k. We have already
discussed that E, B, and k form a right-
handed Cartesian triad so polarization
also specifies the direction of B. We will
take k̂ ≡ ẑ and focus on light that is
perfectly polarized in the discussion that
follows.

In general E will have two orthogonal
components,

E1 = x̂E01ei(kz−ωt+ϕ1)

= x̂E01ei(ξ+ϕ1) (1.43)

E2 = ŷE02ei(kz−ωt+ϕ2)

= ŷE02ei(ξ+ϕ2) (1.44)

We will first consider the case where
E01, E02, ϕ1, and ϕ2 are all real and

18) Another reason for considering only E is the
magnitude of B relative to E is down by a factor
of c. Thus at low intensities, < 1014 W/cm2, E
dominates the physics.
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Tab. 1.5 Various electromagnetic field quantities.

Quantity Name SI Unit

c = 2.99792458 × 108 Light vacuum speeda m/s
µ0 = 4π × 10−7 Vacuum permeabilitya T-m/A (kg-m/A2-s2)
ε0 = 8.854187817 . . . × 10−7 Vacuum permittivity F/m (A2-sec4/kg-m3)
E Electric fieldb V/m (kg-m/A-s3)
D Electric displacement C/m2

B Magnetic inductionc T (kg/A-s2)
H Magnetic field A/m
ρ Charge densityb C/m3

j Current densityb A/m2

P Power W (kg/m2-s3)
S ≡ E × H Poynting vector W/m2 (kg/m4-s3)
I ≡ 〈|S|〉 Intensityb W/cm2

a All defined to be exact.
b In the US, the explicit length measures for these quantities are given in centimeters, for
example, volt per centimeter, watt per square centimeter, and so on.
c Sometimes called the magnetic-flux density.

time independent. Taking the real part
of these fields,

E1 = x̂E01 cos(ξ + ϕ1) (1.45)

E2 = ŷE02 cos(ξ + ϕ2) (1.46)

leads to an equation of a conic section

( |E1|
E01

)2

+
( |E2|

E02

)2

− 2
( |E1|

E01

) ( |E2|
E02

)
cos ϕ=sin2 ϕ (1.47)

and ϕ=ϕ2 − ϕ1. Equation (1.47) de-
scribes an ellipse when

sin2 ϕ

E2
01E2

02

≥ 0 (1.48)

Because the numerator and denominator
are positive definite, Eq. (1.48) is always
true.

Special Linear Case # 1: ϕ = 0 or ϕ = π

Equation (1.47) reduces to

|E1|
E01

= |E2|
E02

(1.49)

which describes a straight line. Because
the two component oscillate in phase,
this case leads to linear polarization. The
case for ϕ = 0 and ϕ = π are orthogonal
to each other.

Special Circular Case # 2: ϕ = ±π/2 and
E01 = E02

The equation reduces to

|E1|2 + |E2|2 = E2
01 (1.50)

the equation of a circle of radius E01.
The two components are out of phase
by half a wavelength (or period) but
the magnitude of the resultant, E01, is
constant but sweeps out a circle leading
to circular polarization. The sense of
rotation depends on the sign of ϕ,
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with the minus (plus) sign producing
light with positive (negative) helicity,
where positive helicity obeys the right-
hand rule, so if you look in the
direction of propagation, the E-field
rotates clockwise.19)

Special Elliptical Case # 3: ϕ = ±π/2 and
E01 �= E02

Equation (1.47) reduces to

( |E1|
E01

)2

+
( |E2|

E02

)2

= 1 (1.51)

which is an ellipse with the major axis
aligned with the horizontal (vertical) axis
when E01 > E02 (E01 < E02). The sense of
rotation is the same as in special case # 2.

General Elliptical Case E01 �= E02

In the general elliptical polarization case,
one has a rotated ellipse where the angle,
α, of the major axis away from the Ê1

direction is given by

tan 2α = 2E01E02

E2
01 − E2

02

cos ϕ (1.52)

Note, when E01 = E02, Eq. (1.52) cannot
be used and one must go back to
Eq. (1.47) to determine α.

1.5.1
Polarization Bookkeeping

There are several approaches to keeping
track of the polarization of light, which is
particularly important when light inter-
acts with media that can either decrease
the intensity or delay the transit time of

19) It should be noted that some references
define circular polarization in terms of right-
hand and left-hand circular polarization. This
definition traditionally corresponds to looking
antiparallel to k so ϕ = −π/2 would lead to
left-hand circular polarization.

one polarization or helicity relative to the
other. Here, we mention two matrices,
namely, the Jones and Mueller matri-
ces. A more in depth discussion can be
found in Ref. Goldstein, 2003. The Jones
approach involves a set of 2 × 2 matrices
with complex elements that transform
two-element vectors that describe the
complex amplitude and phase of the
light. Every Jones vector corresponds to
a physically realizable polarization con-
figuration. The Mueller approach uses
a set of 4 × 4 matrices with real ele-
ments, which have values of either 0 or
±1, to transform the Stokes vectors (see
Section 1.5.3). However, some matrices
do not represent real configurations.

1.5.2
Jones Matrices

In the Jones calculus Clark Jones, 1941,
an initial complex field E is transformed
to the final complex field E′ via matrix
multiplication

(
E′

xeiφ′
x

E′
ye

iφ′
y

)
=

(
j11 j12

j21 j22

)
·
(

Exeiφx

Eyeiφy

)
(1.53)

where the components of the matrix J for
common elements are given in Table 1.6.

1.5.3
Mueller Matrices

The general Muller calculus is also a
matrix operation,

S′ = M · S (1.54)

where M is a 4 × 4 matrix and S is
the four-element Stokes vector, cred-
ited to Sir George Gabriel Stokes
for their invention. Given the electric
fields in Eqs (1.45) and (1.46), the four
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Tab. 1.6 Jones matrices for common optical
elements.

Optical element Jones matrix

Linear polarizer ‖x̂

(
1 0
0 0

)

Linear polarizer ‖ŷ

(
0 0
0 1

)

Linear polarizer at ±45◦ 1
2

(
1 ±1

±1 1

)
1
4 -Wave plate, Fast axis

‖ x̂ (+)

ŷ (−)

eiπ/4

(
1 0
0 ±i

)

Circular polarizer,
± Helicity

eiπ/4

(
1 ∓i
±i 1

)

components of S are defined as

S0 = |E01|2 + |E02|2 (1.55)

S1 = |E01|2 − |E02|2 (1.56)

S2 = |2E01E02 cos ϕ| (1.57)

S3 = |2E01E02 sin ϕ| (1.58)

The Mueller matrices are given in
Table 1.7.

1.6
Longitudinal Field Component

Another manifestation of the vector
nature of light is that it has a longitudinal
component, even though it is customary
to ignore it. It must be noted that a
pure plane wave exists over all space
and has no transverse variation. The
finite extent of the field turns out to be
acceptable in many cases but one runs
into problems with very intense light,
particularly when focused. Lax, Louisell,
and McKnight (1975) showed that a
purely transverse field is not an exact

Tab. 1.7 Mueller matrices for common
optical elements.

Optical element Mueller matrix

Linear polarizer

‖ x̂ (+)

ŷ (−)

1
2




1 ±1 0 0
±1 1 0 0
0 0 0 0
0 0 0 0




Linear polarizer
at ±45◦

1
2




1 0 ±1 0
0 0 0 0

±1 0 1 0
0 0 0 0




1
4 -Wave plate,

Fast axis
‖ x̂ (+)

ŷ (−)




1 0 0 0
0 1 0 0
0 0 0 ±1
0 0 ±1 0




Circular
polarizer, ±
Helicity

1
2




1 0 0 ±1
0 0 0 0
0 0 0 0

±1 0 0 1




solution to Maxwell’s equations, but
rather it is the zeroth-order solution to
the paraxial approximation to Maxwell’s
equations. The exact solutions require a
longitudinal component given by

Ez(x, y, z) = 1

ik
∇⊥ · E⊥ (1.59)

where k = |k| =
√

k2
x + k2

y + k2
z and the

⊥ symbol indicate the transverse compo-
nents of the ∇ operator and E field. Using
Fourier analysis of the fields, Scully and
Zubairy (1991) showed a field obeying
the paraxial approximation,

kx, ky � k (1.60)

kz � k

(
1 − 1

2

k2
x + k2

y

k2

)
(1.61)

implies Eq. (1.59).
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1.7
Diffraction

When light passes a sharp edge, it does
not produce a sharp shadow. Also, when
it passes through a circular hole, it
does not produce a disk of the same
size. Under the right conditions, it pro-
duces not only a larger spot but also
rings. Furthermore, the transverse size
of a laser beam expands as it propa-
gates. These observations are elegantly
described by diffraction theory. Diffrac-
tion falls into two classes – Fraunhofer
and Fresnel. Fraunhofer diffractions de-
scribes what happens when the phase
fronts are near plane waves, where the
curvature of the field can be ignored.
Fresnel diffraction takes curvature into
account.

Huygens, in the late seventeenth
century, suggested a description for wave
propagation as a collection of individual
spherical sources called secondary sources,
the sum of which would make up the
wavefront. It is a straightforward exercise
to convince oneself that Huygens’s
principle can be used to construct a
plane as well as other simple geometries.
When applied to a hole, Huygens’s
approach leads to an emerging spherical
wave, because part of the plane wave is
blocked. This would appear to account
for the observed spread. However, there
is a difficulty. If the secondary waves
are spherical, then there should also
be part of the wave going backward.
Huygens had to ignore this part of the
wave. It turns that when considered
more mathematically, this problem is
corrected by what is call the obliquity
factor.

The mathematical statement of the
principle for a wave propagating in
free space is the Fresnel-Kirchhoff

integral formula,20)

ψP = − ik

4π
ψ0

∫ ∫
eik(r+r)

rr

× [cos θ(n, r) − cos θ(n, r)] dA

(1.62)
where the integral is over the area of the
aperture. The distances, r and r, between
the aperture and observation point and
aperture and source, respectively, are de-
fined in Figure 1.3 as is n, the normal to
the surface, pointing toward the source.
The angles between the vectors and the
normal are represented by θ(n, r) and
θ(n, r).

Let’s consider an example of an
aperture. In the Fraunhofer limit, s and
p are effectively a long way from the
aperture. In this case, we can take the
surface of the aperture to be a spherical
cap such that F is constant. Thus, r and n
are antiparallel always and cos θ(n, r) =
−1.21) Equation (1.62) then reduces to

ψP = − ik

4π
Aψ0

∫
eik(r+r)

rr

× [cos θ(n, r) + 1] dA (1.63)

20) The Fresnel-Kirchhoff integral formula of
Eq. (1.62) can be derived from Green’s
theorem (see, for example, Fowles, 1968) for
two functions that are continuous, integrable
and satisfy the wave equation,

∫ ∫
(V∇⊥U − U∇⊥V) dA

=
∫ ∫ ∫ (

V∇2U − U∇2V
)

dV

where the first integral is over any closed
surface and the second is over the volume
enclosed.

21) When r and r are much larger than the
aperture size, a spherical surface is not much
different from a flat surface.
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S

P

r

n r

Fig. 1.3 Geometry for the
Fresnel-Kirchhoff integral
formula.

where cos θ(n, r) + 1 is the obliquity
factor mentioned above, which is zero
for the wave that is going backwards,
towards the source. Table 1.8 gives a few
key results derived from Eq. (1.63).

From Table 1.8, we draw an important
conclusion. The smaller the aperture,
the larger the diffraction. In general, the
diffraction angle is given by

Slit −−−→ θ ∼ λ/b (1.64)

Circle −−−→ θ ∼ 1.22λ/2r (1.65)

1.8
Interference

Interference is concerned with the
superposition of waves. In general, the

Tab. 1.8 Diffraction patterns from key
apertures.∗

Aperture Intensity

Slit, width b I0 (sin β/β)2

Rectangular slit,
area a × b

I0 (sin α/α)2

(sin β/β)2

Circular aperture,
radius r

I0
(
2J1(ρ)/ρ

)2

N slits, h spacing N2I0 (sin β/β)2

(sin Nγ /Nsinγ )2

∗α = (πa/λ) sin φ

β = (πb/λ) sin θ

γ = (πh/λ) sin θ

ρ = (2πr/λ) sin θ

φ diffraction angle, y direction.
θ diffraction angle, x direction.

sum of wave solutions is also a solution
to the wave equation. Here, we consider
three examples: summing two waves of
the same frequency, the general case of
summing multiple waves of different fre-
quencies and generation of short pulses
of light by summing many frequencies
with a precise phase relationship.

1.8.1
Superposition: Single Frequency

This is straightforward to see with plane
waves. Consider first two plane waves of
the same frequency but with different
real amplitudes and a relative phase
between them,

AT(r, t, ϕo) = a1ei(k·r−ωt+ϕ1)

+ a2ei(k·r−ωt+ϕ2) (1.66)

The sum produces a new sinusoidal
wave,

AT(r, t, ϕ) = A0ei(k·r−ωt+ϕ0) (1.67)

where

A0eiϕ0) = a1eiϕ1 + a2eiϕ0 (1.68)

We can determine A0 and ϕ0 in terms
of a1,2 and ϕ1,2 by expanding the
exponentials such that

A0(cos ϕ0 + i sin ϕ0)

= a1(cos ϕ1 + i sin ϕ1)

+ a2(cos ϕ2 + i sin ϕ3) (1.69)
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Equating the cosine (sine) terms on the
left with those on the right and then
dividing the sine terms by the cosine
terms leads to

tan ϕ0 = a1 sin ϕ1 + a2 sin ϕ2

a1 cos ϕ1 + a2 cos ϕ2
(1.70)

At the same time, taking the modulus
squared of Eq. (1.68) produces

|A0|2 = |a1|2 + |a2|2
+ (

a1a∗
2ei�ϕ0 + c.c.

)
= a2

1 + a2
2 + 2a1a2 cos �ϕ0 (1.71)

where �ϕ0 = ϕ1 − ϕ2. Given a1,2 and
ϕ1,2, A0 (the intensity) and ϕ0 can
be found from Eqs (1.70) and (1.71).
Equation (1.71) is known as the coherent
sum of the two waves. That is, one
adds the amplitudes before squaring
to get the total intensity. The intensity
is proportional to the square of the
amplitude so it is also possible to write
Eq. (1.71) as

IT = I1 + I2 + 2
√

I1I2 cos �ϕ0 (1.72)

The third term in (Eqs 1.71 and 1.72)
is sometimes called the interference term
and plays an important role in describing
the intensity of the resultant wave.
Consider the case where a1 = a2 so
I1 = I2 = I. When �ϕ0 = 2mπ (m =
0, 1, 2, . . .), the two waves are said to
be in phase, in which case

IT = (a1 + a2)
2 = 4I (1.73)

When �ϕ0 = (2m + 1)π/2, we have the
opposite extreme,

IT = (a1 − a2)
2 = 0 (1.74)

When a1 �= a2, the two extremes give re-
sultants with maximum and minimum
IT respectively.

In the more general case of many
waves, all with the same frequency, we
have

AT(r, t, ϕ0) = A0ei(k·r−ωt+ϕ0)

=
N∑

j=1

aje
i(k·r−ωt+ϕj) (1.75)

where

IT = |A0|2 =
N∑

j=1

|aj|2 + 1

2

N∑
j �=k(

aja
∗
kei(ϕj−ϕk) + c.c.

)
(1.76)

and

tan ϕ0 =
∑N

j=1 aj sin ϕj∑N
j=1 aj cos ϕj

(1.77)

Again, the resultant is a sinusoidal wave
with an intensity given by a coherent
sum. In the case where all the amplitudes
are the same so that each wave has an
intensity I,

IT = N2I (1.78)

In the case where �j,k = ϕj − ϕk is not
well defined but varies randomly with
time, it is straightforward to show that
the second sum in Eq. (1.76) vanishes
by writing the exponentials in terms of
sines and cosines and using the fact that
the time average of sin �j,k → 0 as does
that of cos �j,k. Thus, the interference
terms vanish. In the case where all
amplitudes are the same, the resultant
wave corresponds to an incoherent sum
of the contributors,

IT = NI (1.79)
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For an incoherent sum, one squares first
and then adds the intensities.

1.8.1.1 Interferometry
An entire field of study with industrial
applications is built upon an equation
similar to Eq. (1.72). The most general
situation is where a beam of light is
divided into two with each traveling dif-
ferent paths and brought back together.
Because the two beams came from the
same source, and if the path length dif-
ference is not too large, so that the two
beams are still in phase, the resultant
intensity will be the same as Eq. (1.72)
except that �ϕ0 → δ in the argument of
the interference term where

δ = k�l (1.80)

with �l being the path length difference
between the two arms. In this case, con-
structive interference occurs when �l =
nλ, whereas destructive interference oc-
curs when �l = (2n + 1)λ/2, where n is
a positive integer. Two-beam interfero-
metry exploits interference patterns to
measure inhomogeneities and defects in
material.

1.8.2
Superposition: Multiple Frequencies

Superposition involving waves of dif-
ferent frequencies leads to some very
interesting possibilities such as ultra-
short busts of light. The general principle
of summing waves with different fre-
quencies can be understood in the special
case where the amplitude and phase are
the same for each wave:

AT(r, t) = A0 exp[i(k1 · r − ω1t)]

+ A0 exp[i(k2 · r − ω2t)]

= 2A0 exp

[
i

2
(�k · r − �ωt)

]

× exp
[

i

2
(km · r − ωmt)

]
(1.81)

where

�k = 1

2
(k1 − k2) (1.82)

km = 1

2
(k1 + k2) (1.83)

�ω = 1

2
(ω1 − ω2) (1.84)

ωm = 1

2
(ω1 + ω2) (1.85)

Equation (1.81) represents a wave os-
cillating at the mean of the two fre-
quencies, ωm, and modulated by a
temporal and spatial envelope given

by 2A0 exp[
i

2
(�k · r − �ωt)]. Figure 1.4

shows examples of adding two waves
with different frequencies. Unlike the
case of equal frequencies, in this case,
the two sinusoidal waves produce a wave
that is periodic but not sinusoidal. Such
waves are called anharmonic. For the
sum of two waves, we have two differ-
ent speeds. As with a single frequency,
we again have a phase velocity – the ra-
tio between the average frequency and
wavenumber, vph = ωm/|k|. But, we have
a new speed that goes by the name of the
group velocity, the speed with which the
envelope moves, vg = �ω/�|k|.

When a wave is composed of many
frequencies, ω → ω(k). Typically, the
frequencies are grouped around a central
frequency, ω(k0), allowing ω(k) to be
expanded into a Taylor series,

ω(k) = ω(k0) + (k − k0)
dω

dk

∣∣∣∣
k0

+ · · ·

(1.86)
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Fig. 1.4 Superposition of two waves, A1 exp[i(k1 · r − ω1t) + ϕ1] + A2 exp
[i(k2 · r − ω2t) + ϕ2] where the top row corresponds to the individual amplitudes (A1

solid curves), the middle row to the resultant sum of amplitudes and the bottom row to
the square of the modulus of the resultant amplitudes: (left column) A1 = A2,
�ϕ = π/2 and ω1/ω2 = 0.9; (right column) A1 = A2/2, �ϕ = 0 and ω1/ω2 = 0.9,
where �ϕ = ϕ1 − ϕ2.

In this case, the addition of the vari-
ous frequency components is more easily
handled via Fourier analysis (see, for ex-
ample Arfken and Weber (2000) and
Boas (2006) for a review), where the
amplitude A(t) (A(z)) in the time (co-
ordinate space) domain is linked to
Ã(ω) (Ã(k)) in the frequency (spatial fre-
quency) domain through

A(t) = 1√
2π

∫ ∞

−∞
Ã(ω)e−iωtdω (1.87)

Ã(ω) = 1√
2π

∫ ∞

−∞
A(t)eiωtdt (1.88)

for time-frequency and

A(z) = 1√
2π

∫ ∞

−∞
Ã(k)e−ikzdk (1.89)

Ã(k) = 1√
2π

∫ ∞

−∞
A(z)eikzdz (1.90)

for coordinate space - frequency space.
Thus, in Fourier components, the elec-
tric field for a scalar wave propagating in
the z-direction can be written as

E(z, t) = 1√
2π

∫ ∞

−∞
Ẽ(k)e−i[kz+ω(k)t]dk

(1.91)
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In many cases, dω/dk is the appropriate
and more general expression for the
group velocity. This can be seen by
substituting the first two terms of
Eq. (1.86) into Eq. (1.91),

E(z, t) = 1√
2π

ei[k0(dω/dk)|k0 −ω(k0)]t

×
∫ ∞

−∞
Ẽ(k)e−i[z+(dω/dk)|k0 t]kdk

(1.92)

However, Eq. (1.90) implies

Ẽ(k)= 1√
2π

∫ ∞

−∞
E(z, t = 0)eikzdz

(1.93)
which allows Eq. (1.92) to be written as

E(z, t) = ei[k0(dω/dk)|k0 −ω(k0)]t

2π

×
∫ ∞

−∞
E(z′, 0)dz′

×
∫ ∞

−∞
ei(z′−z−(dω/dk)|k0 t)kdk

(1.94)
where we do the k integration first. The
last integral is just δ

(
z′ − z − dω

dk

∣∣
k0

t
)
,

from which we get

E(z, t) = 1

2π
E(z + dω/dk|k0 t, 0)

× e−i[ω(k0)−k0(dω/dk)|k0 ]t (1.95)

By inspection, it is clear that the
envelope in Eq. (1.95) moves with speed
dω/dk|k0 and the carrier oscillates with
frequency ω(k0) − k0

dω
dk |k0 under the

envelope. Thus, we define the group
velocity as

vg = dω

d|k| (1.96)

In vacuum vph = vg . However, if the
medium through which the wave prop-
agates is dispersive, n → n(λ) so that
dn/d|k| �= 0, the two velocities can be
very different. Thus, it is often conve-
nient to write vg in a form that includes
the dispersion explicitly,

vg = c

n

(
1 − |k|

n

dn

d|k|
)

(1.97)

The group velocity is typically the speed
with which information is transmitted. It
is important to remember that the group
velocity is actually only the first term
in a series and in cases where dn/d|k|
changes very rapidly or is anomalous
(i.e., negative), higher order terms must
be kept to determine the speed with
which information travels correctly.

1.8.3
Short Pulses

Figure 1.4 shows the basic idea for
generating pulses of light of short
duration. Specifically, in this case, two
frequencies with well-defined relative
phase (i.e., fixed in time) are summed
in the frequency domain to provide a
new wave with beats in the time domain.
As additional frequencies are added, the
temporal width of the beat envelope
narrows. To gain a better understanding
of the relationship between the length
of the pulse train and its bandwidth or
number of frequencies required to sum
in order to produce it, we will turn
the problem around and start with an
idealized pulse train in the time domain.
Figure 1.5, for example, shows two finite
length, idealized, pulse trains, one with
three cycles and the other with six cycles.
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Fig. 1.5 Idealized short pulses formed by finite unit amplitude N-cycle pulse
trains (top) with N = 6 (left) and N = 3 (right). Their respective Fourier
transforms appear below with peak amplitudes of

√
π/2N/ω0 and the first zeros

occurring at ω = ω0(1 ± 1/N).

Mathematically, these obey

E(t) =
{

E0 sin ω0t for − τ ≤ t ≤ τ

0 at other times.

(1.98)
The length of this pulse is 2τ , where
τ = Nπ/ω0 with N being the number
of cycles in the train. Using a Fourier
analysis similar to that described above,
the frequency spectrum is given by

Ẽ(ω) = E0√
2π

[
sin τ(ω − ω0)

ω − ω0

− sin τ(ω + ω0)

ω + ω0

]
(1.99)

At optical or near IR frequencies, be-
cause the second term is much smaller
than the first, we can apply the Fourier
transform to just the first term, which
is also plotted in Figure 1.5. Clearly,
the number of frequencies involved in
the shorter pulse is larger than the

number needed for the longer pulse.
This inverse relationship between the
length of the pulse in the time domain
and the spread in the frequency do-
main is conveniently captured in the
time-bandwidth product, τ�ν. From
Figure 1.5 and Eqs (1.98) and (1.99), it
is clear that Ẽ(ω) = 0 when Nπ(ω −
ω0)/ω0 = ±π . Thus, �ω = ω+ − ω− =
2ω0/N = 2π/τ , where ω± = ω0

(1 ± 1/N), which leads to

τ�ν = 1 (1.100)

It is interesting to note that if we multi-
ply Eq. (1.100) by h, this time-bandwidth
product satisfies the Heisenberg uncer-
tainty principle,

�t�E ≥ h̄

2
(1.101)

where �E = h�ν, h̄ = h/2π and we
substituted �t for τ . The minimum is
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reached when the so-called minimum
uncertainty wavepacket is prepared.22)

Ultrashort pulses are achieved by
‘‘locking’’ the frequency components
that extends over a wide frequency
range. The minimum width achievable
by this technique corresponds to one
complete cycle of light. At 800 nm, near
the peak of the Ti : Sapphire laser,
this is ∼ 2.7 femtoseconds. For a more
complete discussion on mode locking
and the generation of ultrashort pulses,
the reader is directed to the classic text
by Siegman Siegman, 1986

1.9
Photons and Particles

We conclude by discussing the anal-
ogy between light and particle waves
a bit further. Equations (1.13), (1.14)
and (1.31) can be used to motive
the time-independent Schrödinger wave
equation,

− h̄2

2m
∇2ψ + Vψ = Eψ (1.102)

∇2ψ + 2m

h̄2 (E − V)ψ = 0 (1.103)

where h̄ = h/2π . Because λ for the par-
ticle is h/p, in free space, we postulate
that k (= 2πn/λ) in Eq. (1.31) must be
proportional to p. Thus, in the absence
of a potential (when n = 1)

k2
n=1 = p2

h2/4π2
(1.104)

But,

p2 = 2mE (1.105)

22) The minimum spread criterion applies to
conjugate variables such as time frequency
and position momentum.

so

k2
n=1 = 2m

h̄2 E, which lead to Eq. 1.102.

(1.106)
To account for the potential we let
n2 = (E − V)/E �= 1 so that k2 = n2k2

n=1
is just the coefficient of the second term
in Eq 1.103.

Space does not permit a more in depth
discussion of the quantum nature of
light. The interested reader is directed
to a recent review Smith and Raymer,
2007 and references therein.
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